
Neurotrophy: Improving Classification of Skin Diseases

through Evolutionary Selection of Training Data

David Norrish1

1 Research School of Computer Science,
Australian National University

Canberra, Australia
david.norrish  @anu.edu.au   / u4815128@anu.edu.au

Abstract. Perhaps  surprisingly,  reducing  the  size  of  a  training  set  can,  in  certain  circumstances,  improve  the
generalisability,  performance,  and training time of  feed-forward neural  nets.  Simple neural  nets  were trained to
classify  a  family of  dermatological  diseases  on  the  basis  of  clinical  and histopathological  features.  An average
accuracy of 97.7% was achieved with minimal optimisation of hyperparameters. Two methods were then applied to
reduce  the  training  set:  heuristic  pattern  reduction  and  a  novel  evolutionary  pattern  reduction  approach  termed
“neurotrophy”. It is seen that heuristic pattern reduction allows reduction of the training set to 50% with no impact to
accuracy, and to as low as 25% with minimal impact. Neurotrophy, when run for 15 generations, evolved to use 74%
of the dataset for training, with no impact on performance compared to using the full training set.
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1   Introduction

A number of painful erythemato-squamous diseases, such as psoriasis, seboreic dermatitis, and lichen planus, present
with very similar clinical manifestations. As these dermatological diseases can require quite different treatment regimes,
an accurate diagnosis is nonetheless crucial to achieving a positive clinical outcome. The conventional procedure for
disease identification is time-consuming and invasive,  requiring a biopsy and subsequent microscopic examination.
There is therefore clear imperative to develop improved diagnosis procedures.

A number of machine learning approaches have been adapted to this domain in the literature. These include K-means
clustering [1], boosted Decision Trees [2], voting feature intervals coupled to k-nearest neighbours [3], fuzzy extreme
learning machines [4], and genetic algorithms [5]. These approaches have been high successful for a popular open data
set of dermatological diseases [6], with accuries ranging from the low to mid 90%s in early papers which employed
simple clustering methods, to upward of 99% accuracy for the latest fuzzy and evolutionary approaches.

There  has  been  a  lot  of  research  recently  (e.g.  [7])  into  hyper-parameter  optimisation  methods  to  maximise  the
performance of neural networks. These approaches have led to refinement of performance on a wide range of tasks, and

in some cases (such as grid search), can deliver globally optimal performance — albeit at enormous computational cost.
Another potentially useful approach, which has been relatively more neglected, is selection of the optimal training data
to include. As well as reducing training time, this approach may improve model generalisability (e.g. by discarding
unhelpful outlier samples) and provide insights into working with small dataset.

As a baseline for training data selection, I implement a technique known as heuristic pattern reduction, first described
25 years ago [8], which uses loss contribution to select samples for retention. To build from there, I explore the use of
an evolutionary approach for discovering an improved set of training samples to use. At a high level, this approach
treats each sample in the training dataset as a unit in a boolean “DNA”, whose purpose is to determine which samples to
train on. By allowing several agents to compete for the best performance and mutate their DNAs over generations, the
process  is  expected  to  trend towards  an improved subset  of  training samples.  I  term the  approach “neurotrophy”,
combining the technique of neural nets with the Greek “troph”, to nourish. The idea is that neural networks can evolve
to learn the most valuable data samples to “nourish” themselves with by training on.
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2   Method

2.1   Data preparation

The UCI Dermatology dataset comprises 35 columns, corresponding to disease classification and 34 assorted clinical
and histopathological variables. There are 366 rows, corresponding to independent patient cases. Almost all variables
come pre-banded as integer values in the range 0-3, indicating a lack of the symptom (0) or the symptom strongly
present (3). These numbers roughly denote degree of severity, meaning they can be considered as numerical. Family
history is a binary variable encoded as 0/1 for absent/present, and age ranges fall from 0 (a newborn) to 70.

Eight samples were identified with missing age data. As this represented only a small fraction of the data, these samples
were discarded. The neural network architecture required equal size inputs, and problems may arise if age ended up
being an important variable, i.e. weights from that neuron were high.

All variables were visualised to assess their distribution and scope for normalisation (see fig. 1 for several examples).
Age is normally distributed, which would suggest z-scores as being most appropriate to capture the significance of
outliers. Of the banded variables, several seem roughly normally distributed, though this is hard to tell with only 4
possible values. Because they are already defined in a hard limit of 0-3, meaning there is no risk of outliers skewing
results, they were uniformly normalised to floating point numbers in the range of 0-1. This is unlikely to materially
affect results, and done more in keeping with convention. Age was converted to z-scores. This results in a slightly wider
range of  possible  values  for  age  than  for  the  other  variables,  as  well  as  negative  input  values.  The difference  in
magnitude is not substantial though, and as the sigmoid activation function in the hidden layer can readily handle
negative values, no further adjustment was deemed necessary.

The six disease classes were encoded as arbitrary integers in the range of 0-5. This format is suitable for PyTorch to
compute cross-entropy loss during training.

Fig. 1. Distributions of several characteristic variables, along with the two exceptions, family history and age. Most variables were
banded and seemingly roughly normally distributed. as is the case for erthyema and scaling, two clinally obtainable variables.



Highly unbalanced ratios between examples of different training classes can skew a network toward learning just the
most common class or classes. In such cases, interventions such as oversampling of minority classes or weighing the
loss function based on class frequency may be important. We therefore visualised the count of each disease class ( fig.
2). Four of the classes are roughly equally represented, with one class having significantly more examples and one class
significantly fewer. This degree of unbalanced was deemed not serious enough to merit pre-emptive intervention, but a
resolution was made to investigate classification efforts of the first trained networks with confusion matrices, and take
action if there was failure seen for the minority classes.

Fig. 2. Counts of the 6 disease classes in the original dataset. Class 1 (psoriasis) is notably more common than the other diseases, and
class 6 (pityriasis rubra pilaris) is notably rarer.

Finally, the dataset was randomly permutated to dissolve any possible structure in the original listed order, and saved to
disk as a CSV file.

2.2   Model validation

Two approaches were taken to validate the model. The first was using a holdout dataset, in keeping with the original
heuristic pattern reduction paper [6], and the second was using 10-fold cross validation. In the holdout case, because
this data set is slightly larger than the original Gedeon paper, only 70% of samples were used for training and the
remaining  30% set  aside  as  a  validation set.  Classification accuracy  was  uses  as  the  foremost  measure  of  model
performance, as this is the ultimate desirable clinical application of applying machine learning to this dataset.

2.3   Neural network topology and hyperparameters

A simple feed-forward fully connected neural network model was defined using PyTorch (0.4.0) and used for all trials.
This involved 34 inputs, corresponding to all variables of the dermatology dataset. These were fully connected to only 5
hidden neurons, which were then fed through a sigmoid activation function. The hidden layer was fully connected to 6
output neurons, representing the different disease classes.

Initial  investigations  were  made  into  topologies  with  a  greater  number  of  hidden  neurons,  however  this  did  not
significantly improve performance, so the number was kept at 5 to i) reduce the risk of overfitting, ii) minimise training
time, iii) more faithfully replicate the topology of the original heuristic reduction network [8].

For all training runs, 1000 epochs were used, with mini-batches of size 25. Models were validated using the full holdout
set, generally comprising either 30% of the original dataset or 10% when 10-fold validation was used. As the task called
for classification, cross-entropy was selected as a suitable loss function, with output neuron activations first passed
through a softmax function to convert them to probability-like values in the appropriate range of [0, 1].



Learning rate was explored manually, with an optimal range of about 0.05 – 0.1 being found to minimise loss without
triggering significant over-training within the 1000 epochs.

Finally, guided stochastic gradient descent was used to update network weights, and interrupt training if necessary.
Every 50 epochs, the validation set was used to test loss on the partially-trained network, without updating weights. If
loss was found to increase twice in a row, the network was considered to be overfitting to the training set. Training was
then halted, and the weights were reverted to the epoch exhibiting the smaller validation set loss.

2.4   Heuristic pattern reduction

After  training  and  obtaining  results  for  our  feed-forward  network,  we  investigated  the  possibility  of  improving
performance by replicating a technique described for heuristically reducing the size of the training set [8]. 

This involved determining contribution to total sum of squares for each training example, then ranking samples. This set
could then be reduced in size by discarding e.g. every 2nd sample, and a de novo network trained. While squared error is
generally deemed more appropriate for numerical regression-style tasks than classification, it was implemented here to
capture the additional information that cross-entropy loses (i.e. activation for non-target classes), and more faithfully
seek to reproduce the original paper. This involved one-hot encoding all disease labels into 6 vectors and using the
different mean square error function on a sample by sample basis.

Loss and accuracy was used to  compare the performance of  networks trained on a range of  heuristically reduced
samples, including an 80% set, 67%, 50%, 33% and 25%.

2.5   Evolutionary process

In order to evolve toward a training set comprising a valuable subset of the available samples, a neurotroph class was
defined. This encapsulates a boolean “DNA” list indicating which data samples to include when training, a method to
spawn offspring entities,  and a mutation rate which determines the likelihood of  each DNA boolean (“base pair”)
flipping state when creating a child. The mutation rate was constrained in the range of 0 (no mutation possible) to 0.5
(50% chance of any given base changing). The mutation rate could in turn mutate itself. A beta distribution ( fig. 3) was
used to determine child mutation rates based on parent mutation rate, with the alpha and beta parameters set so as to
create an expected new value equal to the parents value (see script file #4 for further detail).

A pool of 10 neurotroph instances was generated, and 15 generations were run. In each generation, standard neural nets
are instantiated for each neurotroph; 30% of data samples are randomly assigned to the validation set and the remaining
70% assigned as available. Each neurotroph network is then partially trained, using only the training samples prescribed
by its DNA, for 2000 presentations of batch size 6. The small batch size allows the potential to evolve very sparse
DNAs involving few training samples.

Accuracy rates on the validation set are then determined for each neurotroph network. “Hall of fame” and “hall of
shame” approaches are used to retain and discard the best  and worst  performing neurotrophs respectively.  Fitness
proportionate selection is employed (equation 1) to probabilistically select which additional neurotrophs to retain for
the following generation, summing to 50% of the original size (i.e. 5 in this case). Each surviving neurotroph then
spawns a single child to rejuvenate the population, with a child DNA mutating from its parent’s DNA probabilistically,
according to the mutation rate.

Finally, a concensus DNA is taken across the DNAs of all surviving neurotrophs. This was used to train a final network,
and  contrast  its  performance with  a  similar  network  trained  using  the  full  training  set,  again  using  k-fold  cross-
validation.



Fig. 3. Probability distribution of child neurotroph mutation rate for a parent mutation rate of 0.05. The mean (expected) value is still
0.05, however the beta distribution function compresses spread of possible mutation rates that would exceed 0 or 0.5

Equation.  1. Fitness  proportionate  selection.  Accuracies  of  all  neurotrophs  are  summed,  then  individual  neurotrophs  selected
probabilistically, with likelihood proportionate to their contribution to the total accuracy.

3   Results and Discussion

3.1   Feed-forward network performance

Loss and accuracy of the training sets were recorded every 50 epochs during network training, using either a 30%
holdout validation set or 10-fold cross validation. Guided stochastic gradient descent was employed, whereby validation
loss  was  regularly  tested  (without  training  the  network),  and  if  loss  was  seen  to  be  increasing,  the  network  was
considered to be overfitting on the training data and training halted.

Using a learning rate in the general range of 0.05 – 0.1, and 5 hidden neurons with sigmoid activation functions,
networks typically trained to a loss < 0.25, and achieved near perfect accuracy on the training set within 1000 epochs
(fig. 4).

Using 10-fold cross validation yielded an overall accuracy of  97.7%. On this dataset, this is a comparable or even
superior result to those achieved by early papers which used approaches such as K-means clustering [1] or boosted
decision tree [2], generally achieving accuracies only as high as 96.72%. While this performance is impressive and
perhaps surprising given the simple topology and very limited degree of hyperparameter optimisation, better results
have been obtained by more recent papers that employed techniques such as voting feature intervals with kNN [3],
fuzzy extreme learning machines [4] or AdaBoost couple with the “Apriori” affinity rules algorithm [5]. These modern
approaches are able to achieve accuracies as high as 99.57%, or only a single misclassified sample.



Fig. 4.  Representative loss/accuracy curves observed for training of feed-forward neural network. Results shown for training and
validation datasets. Loss was measured every 50 epochs, along with accuracy for the training set. Guided stochastic gradient descent

was used to safeguard against overfitting, with training interrupted if two consecutive increases took place for validation loss.

3.2  Quantifying Unbalanced Class Effects

There was a concern during the data pre-processing step that due to the unbalanced nature of the disease classes, the
model may predominately learn the majority class, or at least fail to adequately learn the minority class, which may
have accounted for the few percentage points of errors in prediction. To investigate this possibility, and potentially take
corrective action, confusion matrices were generated to plot predicted disease classes against the true labels for the
validation sets (fig. 5).

It transpired this concern was unsubstantiated. For every iteration that was run, every instance of the minority class was
predicted correctly. In fact, that only errors ever seen were misclassifications between two of the intermediate frequency
diseases, seboreic dermatitis and pityriasis rosea. Given the very similar symptomology of these two conditions [7], this
likely represents a genuine challenge in differentiation rather than a perverse failure of the network.

It is worth noting that half of the 10-fold validation runs achieved 100% accuracy, and other than these two occasionally
conflated diseases, all other diseases were identified with 100% accuracy in every run.

3.3   Heuristic pattern reduction

Due to the high degree of accuracy achieved, and the essentially perfected performance on this dataset in the literature,
it was of interest to explore a technique which could offer improvements in ways other than our primary measure of
interest, accuracy. For this reason, a technique called heuristic pattern reduction was implemented [6]. This involves
determining  contribution  of  each  training  sample  to  the  total  sum  of  squares  on  a  trained  network,  sorting  by
contribution, and removing samples at regular intervals, e.g. every 2nd or 3rd sample.

The idea is that samples giving rise to similar square error may contain similar information, so the network could
theoretically see proportionally fewer of each type of sample and still train to a high degree of performance. In fact, an
improvement to performance may even be seen, due to “simplification of the error surface in pattern space traversed by
the network” [10].



Fig. 5. Confusion matrix showing typical performance of a trained network at predicting disease class of the validation dataset after
1000 epochs of training (or until halted by validation loss increasing). Similar results were seen whether using a 30% holdout set or
10-fold cross validation. Misclassification errors were only ever seen between seboreic dermatitis and pityriasis rosea.

As per the original paper, a holdout set was created (in this case 107 samples, 30% of the total) and the remaining 251
(70%) used to train a new network for 1000 epochs.  The same result was repeated using 10-fold cross-validation,
yielding a 322/36 (90%/10%) split. Following training, the disease label vector was converted to a one-hot encoded
matrix for the 6 disease classes, and the same samples were passed through again. This time their contribution to total
sum of squares  was determined, in accordance with the original  paper [6].  Samples were then ranked in order of
increasing  error  contribution  and  visualised  (fig.  6).  It  was  seen  that  the  great  majority  of  samples  were  learned
extremely well by the network and contribute close to 0 squared error,  while a small  fraction (approximately 8%)
contributing almost the entirety of the error.

Fig. 6. All training samples were used to train a network for 1000 epochs. Then their activations were were passed through a softmax
function and used to calculate sum of squares . Samples were then sorted by their square error across all 6 disease classes and ranked.

Using this adjacency vector of squared error, clusters of arbitrary sizes were assumed and used to create subsampled
trainined datasets of various sizes. There were: full set, 80%, 67%, 50%, 33% and 25%. These reduced training sets



were then used to train 10 brand new networks each (being sure to use the same seeds for randomisation once per
iteration for all datasets to avoid introducing error there).

As with the original network, the training and validation loss (fig. 7) and accuracy (fig. 8) were tracked during training.
Performances on the 10 runs were averaged and visualised. Findings were broadly consistent with the original paper. As
expected, there is no improvement to accuracy, though this may have been limited by the very high performance. Loss
on the validation set and prediction accuracy during training show no discernible difference among any of the reduced
training sets and the full set. Prediction accuracy of the fully trained nets showed no statistical differences from each
other according to ANOVA, though there was a trend of sightly lower accuracy on the 25% and 33% networks, often
around 96%, versus 98% for the larger training sets.

Fig. 7. Validation loss during training of networks using a full-sized training dataset (70% of total rows), or subsets with varying
proportions of data discarded. Rows were discarded at regular intervals after all samples were sorted based on their contributing sum

of squares. This is a representative sample of one of10 such runs which were made with different initialisation weight seeds

Fig. 8. Prediction accuracy during training of a network using a full-sized training dataset (70% of total rows), or subsets with
varying proportions of data discarded, with batch size of 6. This is a representative sample of 10 runs.



3.4   Neurotrophy

A limitation of heuristic pattern reduction is that the virtual clusters that training samples are placed into are equally
sized and determined merely on the basis of adjacency. It is conceivable however that relaxing this requirement to allow
for more complex patterns of sample inclusion or exclusion may further improve performance, allowing either faster
training or maintaining performance on even smaller training sets.

To this end, 10 “neurotroph” agents were initialised with uniform random DNAs determining which training samples to
include, and random mutation rates (which could in turn mutate up or down). They each had a neural net partially
trained (for 2000 batches only, rather that 10,000 epochs), then were assessed for performance on a 30% holdout set.
The best performer was retained, the worst was discarded, and an addition 4 were selected for retention using fitness
proporionate selection. Each of these surviving agents was used to spawn a child with mutated DNA to restore the
population. This process was repeated for 15 generations, and the results plotted (fig. 9).

Several  predictions  were  made:  i)  that  average  population  accuracy  would  increase  over  generations,  ii)  that
heterozygosity would decline and iii)  that  mutation rates would tend to decline as “fitter” DNAs were discovered.
Heterozygosity is the degree of variety in the state of a given DNA base pair. If all neurotrophs in the population have
the same state (either positive or negative),  heterozygosity at  that  base pair is  0. Conversely,  an equal split  in the
population at a given base pair results in a heterozygosity value of 1, with intermediate results scaled linearly in this
range.

Fig. 9. Example of evolutionary performance over one run of 15 generations. In order: A) boxplot of population accuracies, B)
average number of “positive” DNA bases per genome, determining the number of training samples to include, C) the number of

lineages surviving from the original 10 neurotrophs, D) average mutation rate, average heterozygosity

Accuracy did show a noisy upward trend over time, however predictions ii) and iii) were not born out by the evidence.
Heterozygosity barely changed on average, in one run starting a little above 0.7 (i.e. high variability about the state of
each DNA base pair) and finished at 0.68. Mutation rate appeared to fluctuate freely, being able to greatly rise and fall
throughout generations. The number of training samples also rose and fell seemingly stochastically. As expected, the
number of surviving lineages quickly declines, generally with only a single lineage surviving by 10 generations.



Extensive  further  research  would  be  required  to  understand  the  basis  of  all  these  observations.  However,  several
possible explanations present themselves. Firstly, there may be very little difference in the information value of most

training  samples—in  other  words,  low  selective  pressure.  This  would  allow  maintenance  of  a  high  degree  of
heterozygosity,  and allow relative freedom in the  size of  positive DNA base  pairs.  Another  consideration is  mere
training time. If mutation rates are initialised too high, the system may be quite chaotic, and it would take a certain
number of generations for highly performing agents to evolve children with low mutation rates to maintain their DNA
into future generations. An additional consideration is the population size and selective mechanism. Because fitness
proportionate selection is not deterministic, there is a risk every generation of discarding highly-performing agents and
retaining weaker ones. Due to the relatively minor differences in accuracies (generally around 10-20% between the best
and worst agent in a population), poor selective decisions will be relatively common. The small population size (5 after
each culling) means that large swings can happen each generation.

After  15  generations,  a  consensus  DNA sequence  was  constucted  by  comparing  the  genomes  of  all  surviving
neurotrophs. Across several runs, the consensus genome often included 70-75% of the full training set, though with a
fair bit of variation in this.

This consensus sequence was used with k-fold cross validation to train networks, and compare them to networks trained
using the full dataset. As was the case for heuristic pattern reduction, no difference is seen in loss or accuracy during
training  (fig.  10).  Average  accuracies  of  the  full  dataset  and  neurotroph  fully  trained  networks  were  statistically
indistinguishable, 98.9% and 98.5% respectively.

Fig. 9. Training loss, validation set loss and accuracy during training, comparing networks training on the full dataset versus on a
neurotrophically-selected subset of the data, often comprising ~75% of the full set.

4   Conclusions and Future Work

The dermatology dataset presents a fertile, if possibly overly redundant opportunity to explore the use of various neural
networks and pattern reduction approaches. The standard feed-forward network performed commendably with minimal
hyperparameter tweaking, achieving a 97.7% average correct  classification rate in one 10-fold run. Pleasingly, this
exceeds accuracy of  early approaches used in  the literature such as  k-Means;  though unsurprisingly,  is  inferior  to
several highly refined models that have achieved upward of 99% accuracy on this dataset. 

The heuristic  pattern reduction implementation mirror  general  findings from the literature,  demonstrating the large
portions of the trainin data can be discarded (possibly up to 75%) without adversely affecting accuracy of the trained
network. I did not however find any evident of improved training time on this dataset, possibly pointing to a lack of
strong variation in the distinctiveness or unique information value of different training samples.



Surprisingly noisy dynamics were obtained from the experimental “neurotroph” investigation. The maintenance of a
high level of heterozygosity is surpring as, even in the absence of any selection, high population turnover and regular
founder effect should result in a rapid loss of variability in a population. While the approach developed here ultimately
yielded a 25% reduced dataset with comparable performance as training on the full set, there is little reason to think the
reduced set was superior to a random subset of the same size.

Several interesting possibilities present themselves as avenues for future work. Firstly, it would be valuable to extend
this appoach to more complex datasets, where the effect of pattern reduction may be far more pronounced. For example,
even monochrome 6x6 pixel image data would be far more complex and varied than the samples used in this dataset.
Therefore for image or other feature-rich data, the effect of removing certain patterns is expected to be much more
impactful.

A high degree  of  refinement  is  clearly  possible  in  the  evolutionary  approaches  and  hyperparameters  used.  As  an
example, it may be advantageous to begin with a relatively larger population of agents, and reduce this number over
generations as with simulated annealing. There is a question mark around the value of having a larger population versus
running more generations: is greater refinement of favourable DNAs or exploring whole new regions of the search
space more valuable? There is also a trade-off between discarding valuable variation too soon versus selecting too
weakly, which risks diluting the evolutionary process. For this dataset, it seems possible that stricter selection would’ve
been valuable, e.g. deterministically retaining the highest accuracy neurotrophs each generation. Additionally, it is likely
that initial mutation rates and DNA distributions could be optimised, perhaps having lower initial mutation rates and
exploring smaller positive DNA starting sizes, to extract more predictive work out of individual DNA bases. Optimising
these parameters and approaches while maintaining a viable time complexity, presents a significant challenge.

As a final consideration, in this study all 34 variables of the dermatology dataset were used for training network models
and making inferential predictions. It is however worth noting that only 12 of the 34 variables are obtainable from
straightforward clinical evaluations. The remaining 22 derive from microscopic analysis of a histopathological biopsy, a
resource  and  time-intensive  activity.  It  would  obviously  be  highly  advantageous  to  be  able  to  make  robust
classifications of erythemato-squamous diseased based on just the clinically obtainable variables. Perplexingly, despite
the high degree of attention this dataset has received from machine learning publications, few (if any) studies have
attempted  classification  using  only  these  clinical  variables.  This  oversight  speaks  to  the  importantance  of
interdisciplinary teams: in this case, data scientists and medical professionals . A first priority for further investigations
would therefore be to attempt classification using this restricted subset of variables, which stands to greatly bolster real-
world applicability of any approaches developed.
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