
Classifying capital letter from letter-recognition data in deep nerual netwroks
based on Back Propagation

Yinheng Chen

Reserarch School of Computer Science, The Austrilian National University, Canberra
{Yinheng Chen}@u6341895@anu.edu.au

Abstract. The object of my dataset is to identify 26 capital letters which is displayed by a large number of black-and-
white rectangular pixel in English alphabet. These capitals are also from 20 different fonts and each letter is randomly
distorted to produce a file of 20000 unique stimuli. Each stimuli contains 16 numerical attributes whose value ranges
from 0 to 15 and one attributes of capital letter. I finally used the 4-layers neural network to get the predication of
selected dataset. After trying different size of dataset, changing the parameter of deep neural network, pre-processing
method and implementing a function to detect whether there are some biases in dataset and remove the biases, the result
was significantly improved. Dmitry, Alexandrin, David and Lyle (2003) got the highest result of accuracy of 76.62%,
in my last experiment, my result was worse than theirs. However, after using a deep neural network, this time I found
my result was better than theirs.

Keywords. Dnn, capital letter, target as matrix, normalization

1 Introduction

This dataset was used as a classification task, and this dataset contains enough instances (around 20000) and
effective attributes. In addition, this dataset can be used to detect the letter categories linked with 16 vectors which is
processed from pixel (Peter and David, 1991), it is helpful for us to guess a value which is determined by a series of
value in others dataset. During my experiment, I previously used a neural network with batch size. However, there are a
number of problems of this neural network. In my previous assignment, I used a neural network to predict the results:
however, I found the accuracy was not ideal enough, and the loss was high. So, in this experiment, I used a deep neural
network to train and test, and I used more pre-processed methods on dataset, and the result was greatly improved
compared to the result in last experiment.

2 Method.

2.1 Simple dataset analysis.

In this experiment, I used the dataset which I had used in assignment 1.

Firstly, I should find whether there are some missing values in this dataset or not. The dataset description
showed there are no missing value and I check the dataset in DataFrame and confirmed it.

Now, in the next step, I intended to sample the dataset to reduce the unbalance and bias. However, I found the
following information from Data Description

Class Distribution:

 789 A 766 B 736 C 805 D 768 E 775 F 773 G

 734 H 755 I 747 J 739 K 761 L 792 M 783 N

 753 O 803 P 783 Q 758 R 748 S 796 T 813 U

 764 V 752 W 787 X 786 Y 734 Z

I found the class distribution is pretty balanced in this dataset, as we can see the max number of one class is
813 of U, and the min number of one class is 734 of H. These two number are closed. So, any method of sampling
would not help to increase the accuracy of result.

In addition, I found each attribute cannot be dropped for the target value is determined by them, and all
attribute is necessary so I keep all attribute in my dataset.

2.3 Method to process dataset

I found the information of dataset with its attributes and target value.

Here below is the information of dataset.

Attribute Information:

Attribute Explanation Type

lettr capital letter object

x-box horizontal position of box (integer)

y-box vertical position of box (integer)

width width of box (integer)

high height of box (integer)

onpix total # on pixels (integer)

x-bar mean x of on pixels in box (integer)

y-bar mean y of on pixels in box (integer)

x2bar mean x variance (integer)

y2bar mean y variance (integer)

xybar mean x y correlation (integer)

x2ybr mean of x * x * y (integer)

xy2br mean of x * y * y (integer)

x-ege mean edge count left to right (integer)

xegvy correlation of x-ege with y (integer)

y-ege mean edge count bottom to top (integer)

yegvx correlation of y-ege with x (integer)

According the attribute information, we found the first feature should be our target value, however, the type of
this attribute is object, so the first step is to numeric the features, and provide a suitable distribution of the 26 classes
(Peter and David, 1991).

In my last experiment, I set A as 1, B as 2 …………. Z as 26. However, I found this method had some
disadvantages. Manual setting the numeric values for 1 to 26 in order is not objective. Besides, are there really some
size and sequence relationship among these 26 letters? Does Z (26) is greater than A (1)? Does A is front of Z?

The answers are no. So, one solution is to transform target values to matrix.

In that case, I firstly used a fit_transform function in LabelEncoder to set 26 target values to the numeric
values from 0 to 25 randomly. Then, I used to OneHotEncoder to transform 26 numeric values to 26 matrixes as below
pictures shows.

This means, every target value was represented by 26 columns.

2.4 Methods from selected paper

I used two methods from a paper in NN4.

There are following two methods:

1. Need to normalize data.

Because all feature values are integers. I normalized all 16 feature values in this experiment.

2. Consider using statistical Z function to remove bias of lowest and highest values.

As we can see, the value of input attributes ranges from 0 to 15, so we should check whether values are correct
in this dataset, I used max () and min () functions for array in python, I found all inputs are correct and the max value is
15 and the min value is 0.

2.5 Setting training dataset and testing dataset

Because this dataset contains 20000 instances, so I divided the original dataset randomly in python by using
train_test_split function to avoid there were overlapped data in training dataset and testing dataset. The training
dataset contains 16000 instances while testing dataset contains 4000 instances.

2.6 Setting Deep neural network

In this experiment, I used a deep neural network with 1 inputs layer, 2 hidden layers and 1 outputs layer. The
activation function in hidden layers was sigmoid, the activation function in outputs layer was softmax, and the loss
function was cross-entropy.

3 Result and Discussion

In my result, I will show the results of different tests with different neural network parameters, activation
functions and whether I normalise the dataset.

Parameters:

Size: size of dataset

Normalization: whether inputs were normalized or not.

Learning rate

Num_iter: number of iteration

Hidden_neurons: number of hidden_neurons in two hidden layers.

Plot:

 The ordinate represents the loss, and the abscissa represents the number of iterations.

Test 1:

Size learning rate num_iter Hidden_neurons Normalization Accuracy

1000 0.005 500 30,30 no 19%

Plot

.

The plot showed that with the number of iterations increased, the loss firstly decreased, and then increased, and
then become stable. The accuracy was very low as well. I guess the main problem was that the inputs data wasn’t
normalized. So, in test 2, I normalized inputs data.

Test 2:

Size learning rate num_iter Hidden_neurons Normalization Accuracy

1000 0.005 500 30,30 yes 67%

Plot

 After the inputs data was normalized, the performance was significantly improved. The accuracy also reached
67%. The line in plot had a tend to increase and become stable in low loss. Because the target value had 26 classes, so I
guess the performance would be better if I increased the number of hidden neurons.

Test 3:

Size learning rate num_iter Hidden_neurons Normalization Accuracy

1000 0.005 500 50,50 yes 76%

Plot

The accuracy reached 76% after increased the number of hidden neurons. Because the performance was
improved significantly in this test. I thought the performance still could be improved more if I changed some
parameters.

Test 4:

Size learning rate num_iter Hidden_neurons Normalization Accuracy

2000 0.005 1000 75,100 yes 82%

Plot

We still can see a clear increase in accuracy and the accuracy was good, but I still want to try increased the
performance by changing the parameters.

Test5:

Size learning rate num_iter Hidden_neurons Normalization Accuracy

3000 0.005 1000 75,100 yes 85.2%

Plot

 I found the accuracy still increase but not too much. So, I considered to improve hidden neurons in next test.

Test 6:

Size learning rate num_iter Hidden_neurons Normalization Accuracy

3000 0.005 1000 100,125 yes 87.7%

Plot

After increasing the number of hidden neurons, the performance improved again, and the accuracy reached
86.7%, which was ideal.

Previous test:

hidden_neurons learning rate num_epoch function Normalization Result
100 0.01 1500 relu no 68.47%
Plot

 The best result of my previous experiment in simple nn is showed above. As we can see, the best accuracy was
around 68.47%. However, the best accuracy in this experiment in dnn reached 87.7%. So, there was a clear
improvement in my experiment after changing simple neural network to deep neural work.

Compare results with selected paper.

 The results below showed were did by Dmitry, Alexandrin, David and Lyle (2003) in the paper of Mixtures of
Conditional Maximum Entropy Models.

 The highest accuracy they did in this paper was 76.62%. However, in my later 3 tests, all results of accuracy
were over 80% and the highest was 86.7%. After using a deep neural network, the performance in my experiment was
better than that in paper.

4 Conclusion and Future Work

I have used a pixel data of letter recognition and other useful information, and I have shown the different
results with different situations. These data have been used to derived classification for letter predication by using
different methods of processing data and different neural networks.

In my last experiment in simple neural network, some basic methods to process data do not be used for the
original data is quite good and there are no missing values and bias in this dataset. I found sometimes changing an
activation function is much useful than trying other methods to process data. I did a lot of analysis task in data but a
little process in data. It is true that analysis can be very helpful for it can help us to reduce some unnecessary methods
and steps to process dataset.

After using a deep neural network in this experiment, I found more pre-process methods are necessary before I
did some tests, so the performance was significantly improved in this experiment. This time I didn’t change activation
function. Besides, I also spend many times on analysing dataset for it is so important, and I found change a target value
to a matrix is effectively to increase the performance. Also, normalization in one neural network has less impact do not
means that it does not work on other neural network. The most noticeable improvement in this experiment can attribute
to normalization.

In deep neural network, changing the number of hidden neurons can be very useful.

As for future work. I think I can try more pre-process methods on my dataset. I think there are still some
methods can improve my dataset. Besides, I also can try to increase the number hidden layers in deep learning network.
For example, I can use 5, 6 or more layers neural network to do some prediction.

In my two assignments, I used a csv dataset to do classification and prediction. In the future, I think I can use a
images document by using other deep learning methods, such as cnn, rnn ,lstm and more to do some classification and
prediction works on dataset and to get good performance in my future experiment.

References

Bustos, R. A., & Gedeon, T. D. (1995). Decrypting Neural Network Data: A GIS Case Study. In Artificial Neural Nets and Genetic
Algorithms (pp. 231-234). Springer, Vienna.

Frey, P. W., & Slate, D. J. (1991). Letter recognition using holland-style adaptive classifiers. Machine Learning, 6(2), 161-182.
doi:10.1007/BF00114162

Pavlov, D., Popescul, A., Pennock, D. M., & Ungar, L. H. (2003). Mixtures of conditional maximum entropy models. In Proceedings
of the 20th International Conference on Machine Learning (ICML-03) (pp. 584-591).

