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Abstract. Neural networks are widely used in the multi-class classification problems. However, the potential noise in 
the dataset and the instability of the data are two main problems that will influence the performance of neural networks. 
Genetic algorithms apply mechanisms inspired by biological genetic to determine the quality of the solutions, which 
can be used to select useful features. Besides, shared weight topology can contribute to enhancing the robustness of the 
data. In this paper, genetic algorithms and shared weight topology are applied in feed-forward neural networks for 
multi-class vehicle classification. The comparisons of the evaluation results demonstrate the practicability of genetic 
algorithms while shared weight topology will influence the performance of neural networks. Finally, the results are 
compared with another academic paper on the same dataset. 
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1 Introduction 

Multi-class vehicle classification, which refers to recognitions of vehicle types, is widely applied to transportation 
management to detect potential traffic congestions and efficiently manage the transportation. Recently, this technique has 
also been used into the research of autonomous cars. The accurate recognition of vehicles is the significant part of 
designing autonomous cars, which can greatly avoid car accidents (Sun, Bebis & Miller, 2006). Some researchers have 
already applied some machine learning methods, like support vector machines (Zhong & Fukushima, 2007), in order to 
get better recognition rate. However, the recognition rates those methods achieve are not high enough for applying on 
autonomous cars. In this paper, a feed-forward neural network is designed to achieve better recognition rate. However, 
large existences of the noise and instable encrypting the underlying structure of the raw data will influence the process of 
learning. Shared weight topology derives from the reduction in free parameters and the faster training of the input to 
hidden weights (Gedeon, Catalan & Jin, 1997). Besides, genetic algorithms apply mechanisms inspired by biological 
genetic to determine the quality of the solutions, which can be used to select useful features (Wang, Wu, Liu, Cao & Xie, 
2017). Both of them may contribute to learning. Therefore, genetic algorithms and shared weight topology are applied in 
this paper to reduce the noise and enhance the data's robustness. 

Statlog Vehicle Silhouettes dataset (Mowforth & Shepherd, 1993) is used in this paper for vehicle type recognition. I 
use this dataset because it is a famous multi-class vehicle classification dataset and features in this dataset are interesting. 
These features are from measurement and there are some physical significances in them. In detail, there are 18 attributes, 
946 instances but 100 are retained in case of dispute, thus, there are actually 846 instances available. These attributes 
include compactness, circularity, etc. Besides, a double decker bus, Cheverolet van, Saab 9000 and an Opel Manta 400 
are 4 target classes for classification. This particular combination of vehicles is chosen with the expectation that these 
four vehicles are easy to distinguish while the differences between the cars are difficult to distinguish. Considering the 
data directly from measurement, some errors can hardly be avoided. More seriously, some features might mislead the 
recognition. In order to deal with those features, some pre-processing methods applied in this paper are expected to largely 
decrease the effects of those aspects.  

In order to solve the problem of recognition, I design a feed-forward neural network and use standard scores, genetic 
algorithms and shared weight topology to extract useful and robust features to do classification. Then, I utilize precision, 
recall, F1 score and test accuracy to evaluate the original and improved neural networks. The results demonstrate the 
practicability of genetic algorithms while shared weight topology will influence the performance of neural networks. 
Finally, I compare my results with another academic paper's results on the same dataset. 
 



2 Methods 

2.1 Data Pre-processing 

There are 9 original data files. I read them into a .csv file. Some mathematical analysis about this dataset is shown in 
Table 1. The different attributes range widely, which may lead to irrational distribution of the weights. Thus, they 
influence the training. In order to solve this issue, the basic principle is to avoid encrypting the underlying structure of 
the data (Bustos & Gedeon, 1995). Therefore, I use standard scores to normalize the raw data, which can contribute to 
decryption of the raw data. The standard scores can be calculated as: 
 

z = 	 $	%	&
'

                                                             (1) 

where z is standard score, x is the original data, µ is the mean of the population and σ is the standard deviation of the 
population. Besides, I replace 4 target class names with 0-3 in order to do classification. 

Table 1. Summary of Raw Data 

Attributes Min Max Mean 
COMPACTNESS  73 119 93.7 
CIRCULARITY  33 59 44.9 
DISTANCE CIRCULARITY  40 112 82.1 
RADIUS RATIO 104 333 168.9 
PR. AXIS ASPECT RATIO  47 138 61.7 
MAX.LENGTH ASPECT RATIO  2 55 8.6 
SCATTER RATIO  112 265 168.8 
ELONGATEDNESS 26 61 40.9 
PR. AXIS RECTANGULARITY  17 29 20.6 
MAX.LENGTH RECTANGULARITY  118 188 148 
SCALED VARIANCE (MAJOR)  130 320 188.6 
SCALED VARIANCE (MINOR)  184 1018 439.9 
SCALED RADIUS OF GYRATION  109 268 174.7 
SKEWNESS ABOUT MAJOR AXIS  59 135 72.5 
SKEWNESS ABOUT MINOR AXIS  0 22 6.4 
KURTOSIS ABOUT MINOR AXIS  0 41 12.6 
KURTOSIS ABOUT MAJOR AXIS  176 206 188.9 
HOLLOWS RATIO  181 211 197.4 

 

2.2 Neural Network  

I design a feed-forward neural network with shared weight topology in order to achieve better test accuracy. Besides, I 
will introduce my decisions on the activation function, loss function and optimizer. 

2.2.1 Neural Network Architecture 

I utilize shared weight topology implementing a neural network to do some pre-processing on training data in order to 
improve the data's robustness. The neural network contains 18 input neurons, 15 hidden neurons and 18 output neurons. 
I follow the simplest method (Gedeon, Catalan & Jin, 1997) to back-propagate errors and update weights as in standard 
back-propagation without shared weight, and then after the values of the input-hidden weight and hidden-output weight 
have diverged to average their values. I train the neural network until it converges and apply the output of it as the input 
for the second neural network.  
    As for the second neural network, I implement a 2-layer neural network and a 3-layer neural network. There are 18 
input neurons, 36 hidden neurons and 4 output neurons for the 2-layer neural network. As for the 3-layer neural network, 
it contains 18 input neurons, 36 hidden neurons for each hidden layer and 4 output neurons. Then, I compare their test 
accuracies and find there are not significant differences between them, while 2-layer neural network can learn faster 
because fewer hidden neurons largely reduce calculation amount. Therefore, I use the 2-layer neural network for the 
training. 
    Finally, I compare the results between using shared weight topology with the neural network and only using the neural 
network. Fig. 1 shows the whole process. 



 
 

Fig. 1. Neural Network Architecture with Shared Weight Topology or Not 

2.2.2 Activation Function 

As for the hidden neurons, I use Rectified Linear Unit (ReLU) as the activation function. The ReLU can be calculated as: 
 

f(x) = max	(𝑥, 0)                                                         (2) 
A ReLU has output 0 if the input is less than 0, and raw output otherwise. The ReLU loses less information during training 
and it is efficient for training large neural networks (Ramachandran, Zoph & Le, 2018). I compare Sigmoid activation 
function and ReLU activation function. Actually, there is not a big difference for the test accuracy. 
    As for the output neurons, I use Softmax as the activation function. Softmax can be calculated as: 
 

σ(z)3 = 	
456

∑ 4589
8:;

                                                               (3) 

where z is a vector of the inputs to the output layer, K is the number of dimensions of the vector and j is the index of each 
dimension of z. Softmax performs well on multi-class classifications. 

2.2.3 Loss Function 

In the shared weight topology, I use MSE Loss, which is for regression problems, as the loss function. MSE Loss measures 
the mean squared error between n elements in the input x and target y. It can be calculated as:  
 

ℓ(x, y) = {𝑙A, … , 𝑙C}E,								𝑙F = (𝑥F − 𝑦F)I                                                           (4) 

In the second neural network, I use Cross Entropy Loss, which is for classification problems, as the loss function. The 
losses are averaged across observations for each minibatch. Besides, it is particularly useful when you have an unbalanced 
training set. Cross Entropy Loss for an instance can be calculated as: 

 
loss(x, class) = 	−𝑥[𝑐𝑙𝑎𝑠𝑠] + log	(∑ exp	(𝑥[𝑗])X )                                                  (5) 

2.2.4 Optimizer 

In order to achieve better test accuracy and train within less time, I compare 3 different optimizers. They are Adam, SGD 
with momentum = 0 and SGD with momentum = 0.9 respectively. Adam (Kingma & Ba, 2014) combines the advantages 
of two recently popular optimization methods: the ability of AdaGrad to deal with sparse gradients, and the ability of 
RMSProp to deal with non-stationary objectives. The results in Fig. 2 do indicate Adam not only can achieve better test 
accuracy but also can learn faster. 



 
Fig. 2. Comparison of Optimizers 

2.2.5 10-fold Cross-validation 

The test accuracy ranges from 74% to 86% if the data is directly divided into training data and testing data because there 
are some noises in the dataset. The results fluctuate so significantly that it is difficult to apply any heuristic algorithm in 
order to achieve better test accuracy, because any result can be explained to be lucky or unlucky.  

In 10-fold cross-validation, the original sample is randomly partitioned into 10 equal sized subsamples. A single 
subsample is retained as the validation data for testing the model, and the remaining 9 subsamples are used as training 
data. The cross-validation process is then repeated 10 times, with each of the 10 subsamples used exactly once as the 
validation data. The 10 results from the folds can then be averaged to produce a single estimation (McLachlan, Do & 
Ambroise, 2005). 
    In order to make full use of the data and decrease fluctuations, I use 10-fold cross-validation. It only wastes 10% of the 
data. Besides, the test accuracy only ranges from 80% to 82%, which is more stable. 

2.3 Genetic Algorithms 

Genetic algorithms often perform well approximating solutions to all types of problems because they ideally do not make 
any assumption about the underlying fitness landscape. It applies mechanisms inspired by biological genetic to determine 
the quality of the solutions, which can be used to select useful features. Especially, some attributes in this particular 
dataset might not contribute to learning at all as all the attributes are directly calculated from the statistics. More than that, 
they might even destroy the process of learning. Therefore, it may be a good idea to select some useful features by genetic 
algorithms rather than using all of them. 

In this paper, I randomly generate 100 chromosomes as the population, choose 0.8 as cross rate and 0.002 as mutation 
rate respectively. Besides, there are 18 binary genes, which stand for 18 input features, in each chromosome. As for 
selection, I use propositional selection to choose chromosome. There is a positive correlation between the possibility of 
a chromosome to be selected and the fitness which is test accuracy in this paper. The possibility can be calculated as: 

 
φZ[𝑥\(𝑡)^ = 	

3_($`(a))
∑ 3_($b(a))
cd
b:;

                                                                           (6) 

where φZ[𝑥\(𝑡)^ is the possibility of a chromosome to be selected, 𝑓f(𝑥\(𝑡)) is a fitness value and ∑ 𝑓f(𝑥g(𝑡))
Fd
ghA  is total 

fitness values. Then I randomly replace some genes from one parent with the genes from another parent to generate a 
child chromosome and remove one parent. After that, I randomly mutate genes with very low possibility. The whole 
process is shown in Fig. 3. 
 



 
Fig. 3. Genetic Algorithms 

3 Results and Discussion 

3.1 Evaluation Methods 

I use precision, recall, F1 score and test accuracy to evaluate the neural network. They all can be directly calculated from 
the confusion matrix. A confusion matrix is a table that is often used to describe the performance of a classification model 
on a set of test data for which the true values are known. There are four basic terms: 

1. true positives (TP): It correctly predicts the target vehicle type. 
2. true negatives (TN): It correctly predicts the other vehicle types. 
3. false positives (FP): It incorrectly predicts the target vehicle type. 
4. false negatives (FN): It incorrectly predicts the other vehicle types. 

The accuracy, precision, recall, f1 score can be calculated as: 
 

Accuracy	 = 	 El	m	EC
El	m	EC	m	nl	m	nC

                                                                         (7) 

Precision = 	 El
El	m	nl

                                                                                  (8) 

Recall	 = 	 El
El	m	nC

                                                                                    (9) 

F1	score = 	 I	∗	lv4w\Z\xF	∗	y4wz{{
lv4w\Z\xF	m	y4wz{{

                                                                      (10) 

    The accuracy is only good for symmetric data sets because it can achieve high accuracy by only predicting the most 
frequent label if the data set is far from symmetric. Precision looks at the ratio of correct positive observations while recall 
is the ratio of correctly predicted positive events. They both focus on the performance of positives rather than negatives. 
As for F1 score, it is the harmonic mean of precision and recall, which means it takes both false positives and false 
negatives into account. Therefore, I use all of them to evaluate my results in order to eliminate biases from only applying 
one method. 

3.2 Evaluation on Multi-Layer Neural Network 

The test results during training of the 2-layer neural network (I design in 2.2.1) and 3-layer neural network (I design in 
2.2.1) are shown in Table 2. The 2-layer neural network converges more quickly than the 3-layer neural network and the 
final test accuracies are same. Therefore, I choose the 2-layer neural network. 

Table 2. Evaluation on 2-layer NN and 3-layer NN 

 2-layer neural network 3-layer neural network 
epoch accuracy precision recall F1 score accuracy precision recall F1 score 

0 0.25 0.24 0.25 0.25 0.21 0.22 0.18 0.19 
40 0.68 0.65 0.60 0.62 0.48 0.43 0.47 0.45 
80 0.78 0.73 0.79 0.75 0.62 0.64 0.63 0.64 
120 0.81 0.82 0.84 0.83 0.71 0.71 0.73 0.72 
160 0.82 0.82 0.83 0.83 0.81 0.81 0.83 0.82 
200 0.81 0.79 0.81 0.80 0.81 0.80 0.81 0.80 



 

3.3 Evaluation on Shared Weight Topology 

I train 2 neural networks with different architectures and evaluate the test results for both of them. The two different 
neural networks are: 

1. The original neural network. 
2. The original neural network with the new input which is from the output of shared weight topology. 
    The Table 3 shows the evaluation on both neural networks. As the results show, it is not surprised that accuracy, 
precision, recall and F1 score have decreased to some extent. The reason is the data is compressed when applying shared 
weight topology. Therefore, these evaluation values all decrease. As for the different proportions of decrease, it is because 
there are different effects of compression on different types of vehicles. 

Table 3. Evaluation on Shared Weight Topology or Not 

 original neural network original neural network with shared weight topology 
vehicle type accuracy precision recall F1 score accuracy precision recall F1 score 

bus 0.82 0.84 0.86 0.85 0.72 0.72 0.73 0.72 
saab 0.75 0.72 0.76 0.74 0.63 0.65 0.64 0.64 
opel 0.85 0.83 0.85 0.84 0.83 0.82 0.81 0.81 
van 0.81 0.81 0.84 0.82 0.72 0.73 0.73 0.73 

average 0.82 0.82 0.83 0.83 0.75 0.73 0.74 0.73 

    In order to identify whether the data become robustness or not, I apply the distinctiveness (Gedeon & Harris, 1991) to 
remove insignificant hidden neurons and retrain the neural network to see if the data is robust. Specifically, I simply prune 
one neuron in the pair of neurons whose distinctiveness is less than 15 and both neurons in the pair of neurons whose 
distinctiveness is bigger than 165. The Table 4 shows the evaluation on both neural networks. The results seem strange. 
In fact, they do not conflict with experimental results from Gedeon. As Gedeon, Catalan & Jin (1997) mentioned that the 
former data using standard back-propagation were better than that using shared weights. However, the test accuracy of 
using shared weight topology after pruning is very low, so it is meaningless to prune one more hidden neuron with 
distinctiveness near 60. Therefore, I decide not using shared weight topology. 

Table 4. Evaluation on Shared Weight Topology or Not After Pruning 

 original neural network original neural network with shared weight topology 
vehicle type accuracy precision recall F1 score accuracy precision recall F1 score 

bus 0.75 0.74 0.75 0.75 0.58 0.54 0.57 0.56 
saab 0.65 0.63 0.64 0.64 0.32 0.33 0.35 0.34 
opel 0.73 0.73 0.75 0.74 0.57 0.56 0.54 0.55 
van 0.71 0.71 0.73 0.72 0.52 0.53 0.51 0.52 

average 0.71 0.72 0.73 0.72 0.52 0.54 0.54 0.54 

3.4 Evaluation on Genetic Algorithms 

I apply genetic algorithms to select input features because some features may not contribute to learning. I stop processing 
until the most fitted DNA does not change. I do this method several times to see whether the same features are extracted 
every time. Actually, the results are mixed. On the one hand, I cannot get the same features every time. The reasons for 
it are: 

1. The whole search space is large. The genetic algorithm on this dataset cannot search the whole search space and has 
random start. Therefore, it may miss the global optimum chromosome and choose the local optimum chromosome 
instead. 

2. The randomness affects every result. Every time there are random initial weights for training the neural network and 
test accuracy has a small fluctuation as the result. Therefore, it may not provide the best test accuracy just because of 
unluckiness. 

    On the other hand, the good news is we can always get better and more stable results if there are a big population size 
and a large enough generation size. I randomly generate 100 chromosomes and process until it converges. I do above 10 
times and find there are 4 times that I get the same chromosomes with the best fitness in the end. The average test accuracy 
is 83.6%, it is 1.5% higher than the original features. Therefore, genetic algorithms can contribute to features selection. 
The best features I find are to remove "skewness about major axis", "elongatedness" and "Pr. axis rectangularity" from 
the original features and there are 15 input neurons as the results. Table 5 shows the evaluation on the improved neural 
network. 

 



Table 5. Evaluation on New Neural Network Using Genetic Algorithms 

vehicle type accuracy precision recall F1 score 
bus 0.86 0.87 0.86 0.87 
saab 0.77 0.75 0.76 0.75 
opel 0.84 0.83 0.83 0.83 
van 0.82 0.82 0.84 0.83 

average 0.84 0.83 0.85 0.84 

 

3.5 Comparison with Another Academic Paper 

Pappa, Freitas & Kaestner (2002) provide a multi-objective genetic algorithm for attribute selection. It is based on the 
wrapper approach to discover the best subset of attributes for a given classification algorithm, namely C4.5, which tries 
to minimize the error rate and the size of the tree. Their method achieves 26.03 ± 1.78% for the error rate on the Vehicle 
dataset. Actually, the test accuracy they achieve can be directly calculated by (1 − error	rate) which is 73.97 ± 1.78%. 
    I achieve 82% ~ 84% on this dataset. Obviously, both of us apply genetic algorithms for feature selection. The different 
results may come from these points: 

1. We implement different genetic algorithms. To be more specific, our selection, crossover, mutation and fitness function 
may be different. 

2. The randomness affects every result. Every time there are random initial weights for training the neural network and 
test accuracy has a small fluctuation as the result.  

3. I use Adam optimizer. Adam is considered to be more efficient and robust. 

4 Conclusion and Future Work  

In this paper, I implement a 2-layer neural network to recognise vehicle types on Vehicle Silhouettes dataset. I apply 
standard scores normalizing the initial data to do pre-processing. Besides, shared weight topology and genetic algorithms 
are used to improve the data's robustness and increase the test accuracy. However, I find the test accuracy is so low that I 
decide not using shared weight topology. As for genetic algorithms, the test accuracy averagely increases 1.5%, which 
indicates the practicability of genetic algorithms. Finally, I compare my results with another academic paper on the same 
dataset. My neural network performance is better because I use a more efficient genetic algorithm and Adam optimizer.  
    As for future work, there are several parts that I can improve my approach. As for the pre-processing, I can prune some 
instances that may affect training. Specifically, I plan to use bimodal distribution removal method (Slade & Gedeon, 
1993). The idea of this method is to calculate errors and remove train data with big errors during training, which 
contributes to getting better test accuracy. It is quite similar with feature selection. Consequently, it must be very 
interesting to compare the results of these two methods. Besides, I can try other selection, crossover and mutation methods 
for genetic algorithms and compare the results. Last but not least, fussy logic can achieve good results for multi-class 
classification problems. I can generate fuzzy sets for every attributes and utilize these fuzzy sets as the input of neural 
network. I would like to try these methods in the future. 
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