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Abstract. The common issues people struggle with when they are doing the work of classification are improving the 

efficiency and accuracy of training. Some of the reasons for this are there are too many unnecessary features and the 

limitation of original training dataset. This paper addresses the first issue by proposing an approach of the Genetic 

Algorithm (GA) to select essential features from original dataset to improve training efficiency. The second issue is 

dealt with in this paper by extending the original dataset with the blurred output data of an auto-encoder-decoder which 

can be considered as a drop-out measure to improve its classification accuracy. Therefore, my experiments can be 

divided into four parts as following, the realization of classification model, the efficiency improvement with the method 

of GA, the accuracy enhancement of auto-encoder, and the combination of the above two measures to achieve better 

accuracy with similar amount of training time. My results of these experiments confirm my assumption of the 

availability of these methods. The feature selection method can reduce the half number of features by achieving similar 

accuracy, while dataset extending measure can enhance the accuracy by almost 10%. Furthermore, the combination 

method of these two successfully achieve better accuracy and efficiency, and the improvement is remarkable. 

Keywords: Neural Network, Machine-Learning, Auto-Encoder, Genetic Algorithm, Feature Selection, Classification, 

Drop-out. 

1   Introduction 

There is a considerable number of applications for neural network, the most essential one of them is classification. 

However, the training of neural network is sometimes problematic. To be specific, the training process of some tasks is 

time consuming due to redundant features, which makes the neural network require more neurons and its training process 

last longer. Therefore, extracting optimal features amongst the given features without hurting the accuracy is of vital 

importance in the process of data preprocessing [11] [12]. In this paper, a feature subset selection measure based on a 

genetic algorithm [13] is introduced, and experiments related to the classification is later evaluated. The motivation behind 

these experiments is to testify the effectiveness of genetic algorithm on feature selection. 

Another focus of this paper is on enhancing the accuracy of classification by extending the existing dataset with the 

processed dataset. The original dataset is put into an auto-encoder-decoder [1] and the output of the auto-encoder-decoder 

is the processed data. Then, the combination of the processed data and the original one is used as the input of the neural 

network. The objective of this measure is trying to use the blurring effect of data generated by the decoder as a substitution 

of the drop-out [2] method to extend the existing dataset and eliminate the over-fitting in the training process to achieve 

better accuracy. 

After the above two experiments, these two approaches are combined for the sake of achieving higher accuracy with 

the same time consumed. This is because the feature selection deducts redundant features while auto-encoder generates 

more data out of the left features. The ultimate goal of these experiments is to combine these two approaches to achieve 

better performance of the classification neural network. 

The training and testing dataset are the “mushroom” dataset from UCI collection [3], which is provided for 

classification, with 23 features and 2 labels. In comparison, the classification in the work of Hall and Simith [4] is also 

used to evaluate the classification results. 

2   Methods 

The whole processes of my experiments can be divided into four parts. The first one is the basic classification network 

which is a simple full-connection neural network; the second one uses genetic algorithm to select subset of the features 

of original dataset to minimize the training time and enhance training efficiency; the third one is using auto-encoder-

decoder to generate blurring dataset from the original dataset to increase the training accuracy; the last one combines the 

above measures, the purpose of this is increasing the amount of training data with truncated features to enhance training 

accuracy but not increase the training time of the classification neural network. 

2.1   Classification Network 

The implementation of the classification neural network is simple, with three layers of neurons included. Each neuron 

from last layer connects every unit in the next layer of this simple neural network with weights, also known as a full-

connection network, which can be illustrated as following Fig.1. 
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Fig.1. Classification neural network. 

 

The neuron number of the input layers is the same as the number of features. In the usage of genetic algorithm, the number 

of input layer is the same as the number of the selected features, which means the number is changing with the genetic 

difference of individuals. On the other hand, in the instance of evaluation of the blurring effect of auto-encoder, the 

number of neurons of input layer is the same as the output layer of the auto-decoder for the reason that this classification 

network uses the result of the auto-encode-decode network. The motivation behind this is trying to realise the similar 

function of drop-out, which eliminating the over-fitting effect in the training session. This is achieved by adjusting the 

number of neurons in the hidden-layer of the auto-encode-decode network to generate the blurring effect on the decoded 

pictures, which hopefully having the same effects as the drop-out [2] process. The number of neurons in the hidden-layer 

is around half of that in input layer to capture the information of the features of input data. There are only two neurons in 

the output layer which represent the two labels of the “mushroom” dataset. 

This simple classification network uses simple training measure as well. The optimizer used is Adam, which is an 

optimizer for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of 

lower-order moments [17]. The loss function in this classification network is the cross-entropy loss function which is 

motivated by an adaptive algorithm for estimating probabilities of rare event in complex stochastic networks [18]. The 

preprocessing of the “mushroom” includes normalization which convert the features that represented by single letters in 

the original databases to a floating number in the range of 0 and 1. The reason for this is keeping each feature having 

similar weights in the network. In addition, the mini-batch [6] is also used to avoid the local minimum effect in the training 

process, which is essential to keep out of local minimum value. The original dataset is divided into two parts, seven-

eighths of them is training dataset, while the left one-eighth is testing dataset. However, the training dataset is shuffled in 

each epoch to avoid reliance of the sequence of data training. 

The evaluation method in my experiments is accuracy which is a percentage number made by the number of correct 

predictions divided by the total number of predictions. 

2.2   Feature selection by genetic algorithm 

The original idea of genetic algorithms is on the basis of the Darwinian’s theory of evolution, such as the survival of the 

fittest [14]. This method is commonly used to address optimization problems where the evolution of a specific biosphere 

is simulated with the concepts of mutation, crossover and reproduction and so on. The simulation of evolution is happened 

in the simulated environment of fitness function, which evaluate the survivability of individuals. After many generations 

with so-called reproduction and selection, new generations with better gene performance in fitness may be picked up. 

Similarly, the objective of the method of feature selection in my experiments is to extract the best features from the 

ones in the original mushroom dataset, which can simplify the calculation of later classification network [15]. The flow 

chart of my implementation is illustrated as Fig.2. 
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Fig.2. Genetic algorithms flowchart. 

 

In the Fig.2, The specific steps of genetic algorithm are as follows: 

• gene expression: A binary string is used to represent the chromosome which express the selection of features 

with the length of feature numbers. Genes are generated randomly by number 0 and 1, where 0 means this 

feature is excluded while 1 represent the usage of its corresponding feature. After this stage, all the individuals 

in the population are composed by one chromosome. 

• Get fitness: This function denotes the fitness of one chromosome (one subset of features), which is calculated 

by the accuracy of the training result of module. The higher number of fitness value, the better one individual 

fit the environment which means the selection of subset of features are desirable. 

• Selection: The selection method used in this paper is so-called Roulette wheel selection [16], which is a 

frequently used method in genetic algorithm. It follows the simple rules: the higher fitness value one individual 

has, the larger possibility of its surviving, which means the chances of being selected is proportional to 

individual fitness value. It can be denoted as the formula below: 

 

𝑝𝑖 =
𝜔𝑖

∑ 𝜔𝑖
𝑁
𝑖=1

  (i = 1,2,…,N)                                (1) 

 

Where 𝑝𝑖  is the probability of the i-th individual is selected, while N is the number of individuals, and each of 

them is characterized by its fitness 𝜔𝑖 > 0 (i = 1,2,….,N). 

• Crossover: For each individual A, a crossover process is performed with another randomly picked one B in the 

selected population. The gene of this individual A is also randomly replaced by the gene of the other individual 

B. After the exchange of chromosome, a new child C is given birth, and this child C replace its parent A in the 

population. This crossover is implemented in a pre-defined cross rate (0.8) which means crossover happens in 

80% times. 

• Mutation: Mutation also happens in a pre-defined mutation rate for each child individual. For each gene in the 

chromosome, a random value is generated. If this number is smaller than the mutation rate, its corresponding 

gene value reverse. 

• Iteration: The above process happens in a specific number of generation, which is also predefined. If the 

population number is large, the number of generation can be less. Otherwise, if the population number is small, 

the generation number should be larger. 

2.3   Auto-Encoder and Auto-Decoder neural network 

The realization of auto-encoder and auto-decoder is inspired by the work of Gedeon and Harris [1] using shallow feed-

forward neural network of three-layer neurons. Each neuron from last layer connects every unit in the next layer of his 

simple neural network with weights, also being known as a full-connection network. The numbers of input neurons (the 

first layer) and output neurons (the last layer) are the same, so as to recover the original image. However, the hidden layer 

(the second layer) has fewer number of neurons for the sake of compressing images, and the quality of the decoded image 

is positively correlated to the number of hidden neurons. More hidden units can create better decoded images that more 

closely resemble original ones. The network can be illustrated as Fig.3. 
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Fig.3. The auto-encoder neural network. 

 

The training measure used is the traditional back-propagation. The input data are firstly fed forward in the neuron 

layers, then, are compared with the difference with the labels. In the scenario of encoding and decoding images, the labels 

are actually the input data for the purpose of recovering original images. Then, update the weights of neurons according 

to the calculated errors with the Adam optimizer [5]. The activation function of the hidden layer used in this paper is the 

sigmoid function, since the input data have been normalized in the range of 0 to 1 so do the output data. The loss function 

used in this encoder-decoder neural network is mean-squared-error (MSE) function. This is because that this function is 

able to compare two arguments of the same dimension, which is essential in this application as the labels are actually 

input data. Whereas other loss functions that are for classification cannot do this work because their hyper-parameters are 

labels that are different with input data. Similarly, the usage of encoding and decoding mushroom data is using the same 

auto-encoding network to generate the blurring effect and extend the original dataset. 

2.4   The combination of genetic algorithm and auto-encode for classification 

The last experiment is the combination of genetic algorithm and auto-encode for preprocessing method of the 

classification neural network of mushroom to achieve a higher accuracy with the similar time consumed. This is because 

the feature selection deducts redundant features while auto-encoder generates more data out of the left features. The 

objective is to combine these two combined approaches to achieve better performance of the classification of neural 

network. The original dataset with full features are firstly put into the process of genetic algorithm to select an essential 

subset of features. Then, the dataset with the left features are put into an auto-encoder to generate the blurred dataset. 

After that, this blurred dataset is combined with before blurring the dataset to create an extended dataset with more data 

of fewer features. At last, these data are put into classification neural network. The training process of classification 

network is the same as before, while the beginning and end of the training time is recorded to be compared with the 

training process of the original dataset to testify the improvement of training efficiency and accuracy. 

 

3   Result and Discussion 

3.1   feature selection with genetic algorithm 

The accuracy is the result of testing of classification neural network, so the training process and testing process of the 

classification network run once for each individual in the population of each generation. For example, in a population of 

100 individuals, if the genetic algorithm runs 100 generations, the total run times of training and testing process will be 

10,000 times. Due to the prohibitive time, it is critical to reduce the training time of classification network. Two 

methods have been done to accelerate the training process, the first one is this network trained using GPU. I transfer the 

training process of Pytorch from CPU to GPU, which makes the training process almost 10 times faster. The second one 

is making the learning rate as large as possible, so that the epoch number can be as few as possible. At last the network 

can be trained at the accuracy of more than 95% in just 15 epochs with the learning rate of 0.03. The loss function and 



optimizer is MSE and Adam respectively, and the number of neurons in the hidden layer is set to 2 to minimise the 

training time. After these improvements the training process can be finished within 2 seconds. 

To get better and more thoroughly results, the population of my experiment is set to 100, and the generation is also set 

to 100, while the cross rate of individual crossover is 0.8 and the mutation rate of each gene is set to 0.002. After the 

almost 6 hours evolution the results of the accuracy and the number of features through the whole period is shown in 

box diagram of Fig.4, and the number of individuals corresponding to different number of features in the whole 100 

generation is shown in the Fig.5. 

 
Fig.4. The distribution of accuracy to number of features. 

 
Fig.5. The number of data corresponding to that of features 

 

From the median value of different number of features in the box diagram Figure 4, we can see that the accuracy 

increases with the number of features. However, for the purpose of minimizing the number of features, the first quartile 

and the third quartile of feature number 12 is obviously better than those of the data with feature number 11, while not 

significantly worse than those of 18 or 20. At the same time, the feature number 14 has the much better median value 

than 13 and not much worse than the ones with more features. Therefore, from this box diagram, decrease the feature 

number from 23 to 12 or 14 is desirable. From the Figure 5, we can see the most number of individuals have 12 to 19 

features, so the individuals of 12 and 14 features have enough amount of data to support the results in Figure 4, which 

makes its data applaudable. Consequently, choosing an individual with 12 or 14 features is appropriate. 

 



 
Fig.6. the accuracy of the most fitted individual in each generation 

 

From figure 6, we can see that the best accuracy of each generation does not improve significantly after the 20th 

generation, and most of them have the best accuracy of 95.665024%. In other words, the result of this genetic algorithm 

converges before the generation 20. Therefore, in this scenario, the gene of individuals after 20 generation can be 

selected as the result of genetic algorithm. The reason of this maybe because that the number of population is large 

enough to cover most situations of the relative small size of gene 23 (which is the number of features as well), so more 

evolution makes no major improvements. 

3.2   Classification using the output from the auto-decoder 

The objective of this experiment is trying to use the blurring effect of data generated by the decoder as a substitution of 

the drop-out [2] method to extend the existing dataset and eliminate the over-fitting in the training process to achieve 

better accuracy. The dataset chosen is the “mushroom” dataset collected from UCI collection [3] which has 8124 instances 

that is specifically used for classification, with 22 features and 2 labels. For the purpose of comparison, another 

classification in the work of Hall and Simith [4] is also used to evaluate the classification results. In the preprocessing 

session, the dataset is first translated from the original character represented features to floating numbers ranging from 0 

and 1. Then, they are clustered in mini-batch of size 30 to avoid sticking in local minimum value. After that, the training 

set are shuffled to avoid relying on a specific sequence. In this experiment, the decoded dataset is mixed with the original 

dataset, because if only decoded dataset exists, the over-fitting still can exist. 

The number of training epoch is 20000, the learning rate is 0.001, the number of neurons in input layer, hidden layer, 

and output layer is 22, 18 and 22 respectively, the loss function and optimizer is MSE and Adam respectively. After the 

training process, the result (the blurred data with dimension of 8124 x 22) is combined with the original data (8124 x 22) 

as an input (with dimension of 16248 x 22) of the classification network. On the other hand, the classification network is 

trained 25 epochs using this combined data, other hyper-parameters are: the learning rate is 0.001, the number of neurons 

in input layer, hidden layer, and output layer is 22, 11 and 2 respectively, the loss function and optimizer is Cross Entropy 

and Adam respectively. After that, this classification network is trained another time with original data (8124 x 22) by 50 

epochs for the sake of comparison. In both of these two experiments, 1/8 dataset is used as test dataset, the left 7/8 is used 

for training.  

 

The result is shown in the Table 1: 

 

Loss result of encoder-decoder 0.00033521 

The accuracy of combined dataset 95.1747% 

The accuracy of original dataset 85.0246% 

The accuracy in the comparing pater 94.75% 

Table 1.  The comparison of accuracies of different groups 

 

From this experiment, it is clear that the accuracy is increased more than 10%, which testifies the effectiveness of this 

method. Apart from this final result, other experiments were also done, the conclusion is that when the result of it is not 

large, the accuracy of combined dataset is better than the original one. However, when the loss value is too high, the 

accuracy of combined dataset declines instead. Therefore, the key point in this experiment is to find appropriate hyper-



parameter of encoder-decoder to generate a desirable improvement of classification. In contrast, in the work of Hall and 

Smith [4], the accuracy of the dataset mushroom is 94.75%, which is 0.4% lower than the combined dataset. However, 

other feature selection methods they use have higher accuracy. One method in their work is called Correlation-based 

Feature Selection (CFS) having the accuracy of 98.53%, and the other method called wrapper [10] achieves the even 

higher accuracy of 98.86%. 

3.3   Classification using the results from the auto-decoder and feature selection 

The objective of this experiment is to combine the results of two above approaches (3.1 and 3.2) to achieve better 

performance of the classification of neural network. The first step is the data preprocessing to get the results of the blurred 

data and selected features, which are the same with the two above experiments: the original dataset with full features are 

put into an auto-encoder to generate the blurred dataset. After that, this blurred dataset is combined with the original not 

blurred the dataset to create an extended dataset. Then, the features of combined data are selected by two selected subsets 

of features with 12 and 14 features (from the result of 3.1), which finishes the data preprocessing stage. Secondly, these 

data are put into classification neural network. The training process of classification network is the same as before, while 

the beginning and end of the training time is recorded to be compared with the training process of the original dataset to 

examine the improvement of training efficiency and accuracy. 

The selections of features are from the result of genetic algorithm of section 3.1. The selection array of 12 features is 

[0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0], where each element represents the selection of its corresponding 

feature. “0” means deselect this feature, while “1” means select. The selection array of 14 features is [0, 0, 1, 1, 1, 1, 1, 1, 

0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1]. 

For the sake of comparison, the classification network is trained four times as the ones shown in Table 2. The second, 

third and fourth networks (full features, 12 features and 14 features respectively) are trained 25 epochs while the first one 

is control group which is trained 50 times. This is because the first one uses the original dataset which is half the scale of 

others, whereas the second, third and fourth use the combination of original and blurred dataset which is twice the size of 

the first one, so the first one doubles its epoch number. Other hyper-parameters are: the learning rate is 0.001, the number 

of neurons in input layer, hidden layer, and output layer is 22, 2 and 2 respectively, the loss function and optimizer is 

Cross Entropy and Adam respectively. In these experiments, 1/8 dataset is used as test dataset, the left 7/8 is used for 

training.  

Something noteworthy is that the number of neurons in the hidden layer is 2 which is fewer than that of above 

experiments, so the accuracy is lower than classification network of above experiments. The reason for this is because 

the focus of this experiment is on both accuracy and efficiency, so fewer hidden layer makes the training process faster. 

The server I run this result has a memory of 64116 megabytes, with 12 CPUs (Intel(R) Core(TM) i7-7800X CPU @ 

3.50GHz), and one GPU (NVIDIA Corporation Device 1b06). 

 

 The result is shown in the Table 2: 

 

 The accuracy The time consumed 

Control group 76.157635% 14.151923s 

Full features of combined dataset 90.989660% 55.087041s 

12 features of combined dataset 90.004923% 11.769714s 

14 features of combined dataset 90.004923% 13.263888s 

Table 2.  The comparison of accuracies and time consumed of different groups 

 

From the result, we can see that the features pruned groups (12 and 14 features) have the similar accuracy (less in 1%) 

with the one having the full features (22 features), while the time saved is significant, they just use 20% or so time of the 

one with the full features dataset. This means the feature selection of genetic algorithm has successfully chosen essential 

features and excludes the unnecessary ones. While the dataset of 12 features has the same accuracy with the one of 14 

features, it saves almost 2 seconds, so the one with 12 features is a better choice. Something else noteworthy is that the 

results of 12 and 14 features groups are better than the control group which match the assumption before experiments. 

This means the improvement of efficiency and accuracy with auto-encoder and genetic algorithm is remarkable. 

4   Future work  

Due to the limitation of time in this assignment, not enough amount of experiments is made to fully testified the results. 

Therefore, more extensions can be made to thoroughly testify the conclusion of the whole experiment. For instance, in 

the encoder-decoder part, more optimizer can be tried to see if there are better choices and to find their merits and 

drawbacks. 

For the classification network, more hyper-parameters should be tried to get more results to confirm the conclusion, 

and a critical value of the Loss result from encoder-decoder network could be found that combined dataset and original 

dataset getting the same accuracy. Moreover, in the combined dataset, the current proportion is 50-50, other percentage 



of decoded data to original data should also be tried to get more results. Furthermore, the feature selection methods in the 

paper of Hall and Smith [4] are also worthy of trying to get better accuracy. 

For the genetic algorithm, more choices of number of generation and population can be tried to get better choices of 

features that generate higher accuracy and save more training time of classification network. Other hyper-parameters of 

the genetic algorithm are also needed to have a try to fully explore its potential. 

5   Conclusion  

These experiments have successfully testified the effectiveness of the usage of auto-encoder-decoder and genetic 

algorithm in improving accuracy and efficiency of neural classification network. 

In the part of testifying auto-encoder-decoder, the classification networks show desirable results. The method of using 

blurred data indeed creates better accuracy than the original data. The key point to get better result of classification is 

choosing a set of hyper-parameters that generates loss value which is not too large. Otherwise, the accuracy can be worse. 

As for the part of genetic algorithm, the process of getting desirable result is long due to the amount of population and 

generation, so I use several measures to shorten the training time of classification network so that the getting fitness step, 

the most time-consuming step, can run faster. From the result of 100 population and 100 generation, I choose two 

candidates with 12 features and 14 features, for further experiments. 

For the last and most important part, the selected features from the result of genetic algorithm is used to select features 

from the combination dataset, which is combined of the decoded blurred dataset and the original dataset. The result is 

desirable. Comparing to the control group, this method achieved higher accuracy with less training time. That is to say, it 

achieved higher accuracy and efficiency. 
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