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Abstract. Recently the size of the neural network has been increasing at a very fast pace. This increases the                   
training time and computation cost required by the neural net. There are various ways to reduce the network to                   
decrease the computation time and resource requirement. 

This paper measures the impact of network reduction on various optimisation algorithms by predicting              
Wall-Following robot movement. The network is reduced using the sensitivity of the neurons. Performance of               
various optimisation algorithms (Adadelta, Adagrad, Adam, Adamax, Rprop and SGD) are compared before and              
after network reduction. A single hidden layer neural network and a three hidden layered deep neural network are                  
used for this experiment. 
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1 Introduction 
 
Neural network is a computer system which is based on the human brain and the nervous system. The network consists                    
of an input layer, hidden layers and the output layer. The input layer is the number of input parameters in the network                      
and the output layer is the number of expected outputs from the network. The hidden layer, which is the main part of the                       
neural network, can contain any number of layers and each layer can contain any number of neurons. In the past 20                     
years, the number of hidden neurons has increased significantly due to increase in computational power. 
 
Although, the computational power has increased and the number of neurons that can be trained has increased with it,                   
however, high computational cost is still an issue. To reduce the cost there are many network reduction techniques that                   
can help reduce the size of the network. There are various simple and complex network reduction techniques, however,                  
for the purpose of this paper we will be focusing on sensitivity.  
 
Sensitivity (Karnin 1990) is a measure which can be calculated by the change in weight of each neuron after each epoch.                     
The neurons whose weight change the most are more sensitive, whereas, the neurons whose weight does not change by                   
high degree have less sensitivity. This implies that the neurons that have the least sensitivity do not contribute to any of                     
the output and the optimisation does not change that neuron. Hence, it is not considered a useful neuron and just                    
increases our computation cost. 
 
 
1.1 Optimisation Algorithms 
 
There are various optimisation techniques available and each of them can react in a different way to network reduction.                   
Hence, we will evaluate the impact of network reduction on the following algorithms: 
 
Stochastic Gradient Descent  
 
Stochastic Gradient Descent (SGD), is the incremental version of the basic gradient descent algorithm. Computing the                
gradient for the entire dataset can be very slow and computationally expensive. SGD solves this issue, as it can find the                     
gradient using few values as well and it also converges very quickly to local minima. It is one of the basic algorithm                      
used to reduce the error and many algorithms are derived from it. 
 
Adagrad 
 
Adagrad (Duchi 2011), is a variation of SGD with per parameter learning. It uses subgradient method that includes the                   
geometric information from previous iterations. This information helps make the algorithm make more informed              
learning decisions. This gives it an edge over vanilla SGD. 
 
Adam 
 
Adam (Kingma 2017), is also a gradient based optimisation technique. It is based on dynamic lower-order moment. In                  
this algorithm, second moments and gradients are used for the optimisation. The computational efficiency of the                



 

algorithm is good and is suited for a large number of attributes or parameters in the dataset. This algorithm is also                     
suitable for datasets that have sparse or noisy gradients. This algorithm is derived from the above mentioned algorithm                  
Adagrad. 
 
Adamax 
 
Adamax (Kingma 2017), is one of the variants of the above mentioned Adam algorithm and shares similar advantages                  
with it. The only difference is the rule for updating the weights of the neuron is inversely proportional to the previous                     
and present gradients. 
 
Rprop 
 
Rprop (Riedmiller 1993), stands for ​resilient propagation. It overcomes the disadvantages of pure gradient-descent and               
is based on the local adaptation of weight according to the error function. Basically, whenever the sign of the gradient                    
change is reversed, the algorithm detects that it has missed a local minima. Then it decreases the weight by a very small                      
amount and checks if the gradient is decreasing. 
 
 
Adadelta 
 
Adadelta (Zeiler 2012), provides a new learning rate for the ​gradient descent. The method required less overhead                 
computation as compared to stochastic gradient descent and the learning rate adapts over time. The advantage of this                  
algorithm is that we don’t have to assign any learning rate and the algorithm automatically the learning rate for better                    
performance. 
 
 
2 Method 
 
2.1 Neural network architecture 
 
There are two types of neural networks used for this study. The first neural network consists of three layers. The first                     
layer is the input layer and the number of neurons are equal to the number of inputs. The third layer is the output layer                        
which is equal to the number of possible outputs. The middle layer is the hidden layer consisting of 40 hidden neurons.  
 
The second network used consists of five layers. The input and output layers are similar to the above mentioned                   
network. However, there are three hidden layers with 40 hidden neurons each. 
 
Moreover, for this experiment the number of epochs used is 300 and learning rate is 0.05 for all the algorithms. The                     
activation function which has been used for each layer is relu. Finally, on the output layer softmax is applied followed                    
by logarithm. The loss function used for calculating the loss is negative log likelihood loss. All these parameters are                   
kept constant for both the networks and all the algorithms. It is possible to find parameters with better performance for                    
different algorithms, however our aim is not to maximise the performance but it is to compare the effects of pruning on                     
different optimisation algorithms. Keeping these parameters constant makes sure that the external environment for all               
the algorithms is kept constant. 
 
2.2 Dataset 
 
The dataset used for the purpose of this experiment is obtained from UCI publication. It is wall following robot                   
navigation with of 5456 instances and 24 attributes. The 24 attributes are values of sensors on the robot at different                    
angles. According to these values, 4 possible moves are possible i.e. Move-Forward, Slight-Right-Turn,             
Sharp-Right-Turn, Slight-Left-Turn. While preprocessing, we convert the move values in the data set to integers.               
Furthermore, we randomly shuffle and then divide the dataset in 80:20 ratio for training and testing respectively. The                  
dataset is appropriate for this study as it is big and complex enough and represents a real life problem that people are                      
trying to solve. 
 
2.3 Algorithm: 
 
For the purpose of this paper, we are reducing the network using the sensitivity of the neuron. The neuron with the least                      
sensitivity is removed every 50 epochs. To calculate the sensitivity we calculate the difference in neuron weight with the                   
original neuron weight. The weight of the neuron with least absolute change is removed. For simplicity of                 
implementation, we maintain a list of removed neurons and convert its weight to zero in every iteration. Moreover, for                   
the deep neural network we maintain a list of each layer’s initial weights. We also maintain a zero list for each layer and                       
in every 50 epochs we remove the least sensitive neuron from every layer. 
 



 

Overall, we end up removing 6 neurons out of 40 from the neural network and 18 neurons out of 120 from the deep                       
neural network. 
 
To check the sensitivity of neurons the following algorithm is used every 50 epochs to remove the neuron. The                   
sensitivity of all the neurons is calculated and the minimum is added to the array. Through that array, the neurons are                     
converted to zero in every epoch. 
 
Algorithm 1. ​Finding sensitivity of each neuron 

 
 
 
Results and Discussion 
 
Two different neural networks and the same reduction technique is used to check 6 different algorithms. The test                  
accuracy for each algorithm is averaged over 100 runs so that it avoids the possibility of a rare good result by the                      
algorithm. The results are shown in Table 1 for single layered neural network and table 2 for deep neural network. 
 
For single layer neural network the accuracy with all the optimisation algorithm remained approximately the same                
before and after pruning. The highest decrease in accuracy is 1.24% which is observed with rprop and the highest                   
increase in accuracy is 0.41% which is observed with adagrad. Adam algorithm proved to be very consistent after                  
pruning as the accuracy is exactly the same even after average of 100 iterations. With other algorithms the change is                    
almost negligible. 
 

Table 1. ​Testing accuracy of various algorithms before and after network reduction for single layered neural network. 

Optimisation Algorithm Actual test accuracy After reduction accuracy 

SGD 61.00 60.95 

Rprop 95.12 93.88 

Adadelta 58.55 58.48 

Adagrad 84.99 85.40 

Adam 92.38 92.38 

Adamax 90.25 90.50 

 

 

Table 2. ​Testing accuracy of various algorithms before and after network reduction for deep neural network. 

Optimisation Algorithm Actual test accuracy After reduction accuracy 

SGD 51.97 54.75 

Rprop 94.25 72.06 

Adadelta 49.42 48.74 

Adagrad 87.58 87.07 

Adam 90.15 88.76 

Adamax 94.40 92.80 



 

 
In contrast to single layered network, the deep network experienced much significant decrease in accuracy with the only                  
exception of SGD which experienced increase in performance. Even in deep network Rprop experienced the highest                
decrease of 22.19% and SGD experienced the highest performance gain of 2.78%.  
 
The overall pattern that pruning affected deep neural network more can be attributed to the fact that more pruning has                    
been performed in the deep network. Although the proportion of pruning is same, however more learning is lost in the                    
deep neural network. This should be the primary reason for this performance difference. 
 
The main reason for rprop being affected the most could be associated with the fact that each weight has an individual                     
evolving update-value. And the weight-step is only determined by its update-value and the sign of the gradient. Hence,                  
this implies that some of the weights might not change drastically initially but they might start changing after some                   
iterations, when they hit a steep slope. As we are not really removing the pruned neuron, the Rprop algorithm might still                     
try to learn the pruned neurons. This might be affecting the algorithm performance after pruning. 
 
In the research paper (Freire et al. 2009), this data set has the maximum accuracy of 97.59% with a multilayer                    
perceptron network. As compared to this our best performance is slightly low at 95.12%. Although our performance is                  
low, it is averaged over 100 iterations. Moreover, our neural networks are not optimised for best performance because                  
we had to keep the external environment constant for both the neural networks and had to settle for good performance                    
for both. 
 
Also note, that the way that we have implemented pruning might have some impact of the performance. Mainly because                   
we don’t actually remove the neuron from the network and we just zero the output of the neuron. Hence, the algorithm                     
might still keep changing the weight even after we have removed it and result in more loss of learning. 
 
Conclusion and Future Work 
 
 
The study compared the impact of network reduction on six different neural network optimisation algorithm and on two                  
different neural networks. It was a classification task and the dataset used for this experiment was Wall-Following                 
Robot Navigation. The network reduction, decreased the performance of some algorithms, whereas, increased it for               
some. Overall, for the single layered neural network the impact was very less, however, for deep neural network the                   
decrease in performance was substantial. 
 
Overall, the performance decrease of single layer network was very less and we can employ pruning with single layer                   
networks. However, as can be seen with the results pruning with deep neural networks impacts the performance and                  
should only be employed if the performance decrease if not substantial in that particular case. 
 
In future works, we aim to integrate genetic algorithm on the network parameters such as learning rate, hidden neurons,                   
number of epochs, etc. This can ensure that each of our network reaches the maximum capability and then the actual                    
impact of pruning can be better estimated.  
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