

Examining the Effects of Pruning on a Convolution

Neural Network

Abinash Khanal

Research School of Computer Science, Australian National University

Canberra, Australia
u4594331@anu.edu.au

27 May, 2018

Abstract. This paper investigates the effects of network pruning on model
performance. We draw upon the work of EHUD D. KARNIN [1] and
implement the “simple procedure” for pruning back-propagation trained
networks. On this occasion, we consider an image classification problem, which
involves a ten-class image dataset. We use a convolution neural network, as
they are the best suited for problems of this kind. After various experiments and
analysis, we find that the procedure outlined by [1] does produce a simpler
network and one with comparable accuracy. Furthermore, we learn that if we
are willing to sacrifice some accuracy, randomly pruning the network can result
in much simpler networks, rather than with our pruning procedure.

Keywords: image classification, network pruning, convolutional neural
networks, deep learning, CIFAR-10

1 Introduction

The size and complexity of a neural network plays an important role, as resources as
limited. The general understanding is that a smaller, simpler network is better.
Simpler networks train faster, generalize better and can result in simpler rules. Almost
every time one uses a neural network to solve a particular problem, the question of
how many hidden layer neurons is always an issue. One often finds using themselves
just guessing or using some rule of thumb, which cannot always lead to the best
results. It is worth noting that it is better to start off with a larger network rather than a

network too small. A network too small may not actually solve the problem at hand
(such as the XOR function). However a network too large can over-fit, leading to
poor generalization results. Thus it is always recommended to commence with a more
complex network and use a pruning technique to reduce the irrelevant synapses.

The purpose of this investigation is thus to determine, whether a pruned network,
based on the simple pruning procedure proposed by [1] can perform just as well as a
larger base-case network. Our model is a simple convolutional network (conv-net),
however, it could easily be very large, if we increased certain parameters. Thus an
effective pruning method would be handy to reduce network sizes.

This image-classification problem was investigated as more complex problems such
as driverless cars are built upon this foundation. Understanding the difficulties and
techniques that are utilized in a simpler image classification tasks such as this one,
can help us approach more complex problems. The dataset provided is already in an
elegant format; with target variables encoded appropriately and contains no missing
values. The dataset is one of the most common datasets used in the study of computer
vision and convolutional neural networks. The wide usage and popularity of this
particular dataset means we are able to compare our performance.

2. Method

The dataset chosen is “CIFAR 10” complied by [3]. It contains 60,000 32X32 colour
images with 10 classes and 6,000 images per class. The dataset contains 50,000
training images and 10,000 test images. The labels are encoded from 0 to 9;
representing the class to which the image belongs to. The classes contained in this
study are plane, car, bird, cat, deer, dog, frog, horse, ship and truck. The dataset
contains classes that are mutually exclusive. It can be easily obtained by visiting the
CS Toronto website. Below are 10 random samples from the dataset:

Figure 1. Random Samples from the Dataset

Keeping the dataset in mind, we model a convolution neural network with the
following structure: 2 convolutional layers (Conv 1 and Conv 2), one pooling layer
and three fully connected layers (FC1, FC2 and FC3). A dropout layer has been
omitted since we want to study the effects of our pruning method, which is in some
sense, regularising our network. The process of dropout is very similar to that of
pruning. Thus in order to prevent potential interference, we decided to not include a
dropout layer.

2.1 Technique

The usual back-propagation algorithm was used to train the convolutional network.
For pruning the network, we use the method proposed by [1], which computes the
sensitivity of each synapse as:

The method is appealing, as the above computation is based on values that are known
throughout the training process. Furthermore, this method does not interfere with the
training process itself and does not affect the cost function, as some other proposed
methods do. Thus the simplicity and the low overhead of computation make this an
ideal process. However, there are problems associated with these methods, which are
not considered by [1]. One obvious issue is what happens if the denominator in
question is 0, which was the case for our dataset. Thus we have decided to adapt the
method and set the sensitivities to 0 for problem weights. Another issue not dealt with
by [1] is that of negative sensitivities; we use thresholds and normalization to over-
come this. A brief description of the algorithm is shown below:

Initialize an empty array, S, of size equal to the number of synapses for the layer
Let be the initial weights array for this layer.
For n = 0 to number_epochs:
 = current weights computed in this epoch

 = weight change in the n-th epoch.

Normalise the sensitivities (using any appropriate measure)
Determine the synapses that are below a specified threshold
Set the weights of these synapses to 0

In this method we train the network and in parallel compute the sensitivities for each
of the layers. Once training has stopped we can analyze the sensitivities and then
decide to prune the weights. A pruning threshold is then used, once the sensitivities
are normalized. We normalize to the range (0,1). The threshold determines which
units to prune, and once this information is available we prune those weights.

2.2 Validation

To validate the model we use the usual confusion matrix and predictive accuracy. We
also study the accuracy within each of the classes to determine the effectiveness of the
model.

2.3 Investigations and Experiments

We want to examine how well a simpler model performs in the classification task.
Thus we first look at a larger base model determine its performance, and then
compare it to the pruned model. Subsequently we prune the weights in the FC1 and
FC2 layers of our network. We then perform randomized pruning, on the same layers,
to determine whether our pruning method performs better than a randomly pruned
network. Finally, we study the effects of different pruning threshold values on model
performance.

3. Results

We first investigate the base model. This is the classifier chosen with the parameters
shown below. We then investigate what happens when we prune this network. The
network parameters that we will use throughout are shown below.

Table 1. Convolution Layer Parameters
Layer Input Output Kernel Size

Conv 1 3 10 5
Conv 2 10 16 5

Table 2. Fully Connected Layer Parameters

Layer Input Output
FC 1 400 120
FC 2 120 84
FC 3 84 10

The learning rate was kept constant to 0.001 throughout the process. This figure was
determined after experimenting with various different values. We discern that the
highest accuracy obtained was 52%, and this occurred with the above learning rate.
Thus we will use 52% as our benchmark for our particular study. Current state of the
art algorithms have reported accuracies up to 93%, for this dataset. We will not be so
ambitious as we are using a very simple convolutional network, for studying pruning.

Figure 2. A plot of the loss function for the base model

The loss function above is fluctuating throughout the training process. However, it
does show a decreasing trend and never exceeds the range shown above. Thus, we are
obtaining some kind of convergence.

Figure 3. The training confusion matrix for the base model

Table 3. The overall Accuracy of the base network on the 10,000 test images is 52 %.

Class Plane Car Bird Cat Deer Dog Frog Horse Ship Truck
Accuracy 56% 51% 33% 42% 39% 40% 64% 61% 57% 71%

Examining the training confusion matrix above, we notice some interesting details.
During training, our classifier wrongly classified cats as dogs and dogs as cats. This is
anticipated, as the two animals are extremely similar in their appearance. We also

notice that Truck and Frog have the highest accuracy. The test-data confusion matrix,
shown below also confirms our observation. Truck is still the most accurately
classified class. We notice that the two confusion matrices are very similar.

Figure 4. The test-data confusion matrix for the base model.

Next, we prune the base case model with a pruning threshold of 0.45. The overall
accuracy is still 52%. As a result, we have removed 46 synapses from FC1 and 13
from FC2. While this may not be much, it is still an improvement, particularly
because we have not forfeited any accuracy.

Table 4. Comparing the accuracy of the base model and the pruned model.
 Plane Car Bird Cat Deer Dog Frog Horse Ship Truck

Accuracy
Base

56% 51% 33% 42% 39% 40% 64% 61% 57% 71%

Accuracy
Pruned

57% 52% 35% 40% 41% 401 64% 62% 57% 69%

Figure 4. The test-data confusion matrix for the pruned model.

The above is a confusion matrix of the pruned model on the test dataset. Again, we
see that we have improved the accuracy across each class as a result of our pruning.
This implies that our model is now generalizing better than before.

In order to verify whether our pruning method is correct, we carry out another
experiment in which we randomly prune the same model above. To this end, we
generate random sensitivities and prune based on these values.

 Table 5. Comparing the accuracy of the base, pruned and randomly pruned model.
 Plane Car Bird Cat Deer Dog Frog Horse Ship Truck

Base 56% 51% 33% 42% 39% 40% 64% 61% 57% 71%
Pruned 57% 52% 35% 40% 41% 41% 64% 62% 57% 69%

Random 15% 11% 71% 6% 46% 7% 62% 4% 57% 23%

Figure 5. Test data confusion matrix for the randomly pruned model.

W observe that randomly pruning the network, reduces overall accuracy to 31%. The
confusion matrix above also shows that our resulting network is erroneous. We note
that although accuracy dropped to 31%, the accuracy is still better than randomly
predicting a class (10%). We notice that the class car, plane, cats and dogs are not
identified so well anymore. However, ship and frog do not seemed to be affected as
much.

Although, random pruning seems to reduce accuracy, we cannot rush to a conclusion
just yet. This is because so far, we have used a fixed pruning threshold of 0.45. It
may be the case that different threshold values may result in different networks. As
with many machine learning problem, certain parameter values tend to work better for
certain problems. Thus in order to determine which threshold values work better; we

carry out an experiment where we study the network accuracy for various values of
the threshold parameter.

Figure 6. A plot of pruning threshold vs accuracy for the pruned and random pruned models

Table 6. An extract of the results for the pruned model.
Pruning

Threshold
Test Accuracy Synapses Removed

FC1
Synapses Removed

FC2
0.45 52 % 46 13
0.31 52 % 3 3
0.21 52 % 2 2
0.12 52% 1 1
0.01 52% 1 1

Table 7. An extract of the results for the randomly pruned model.

We use 20 equally spaced points between 0.45 and 0.001 and generate the above
plots. When using our pruning method, the maximum accuracy is 52.66, which occurs
at the threshold value of 0.45. In this particular case we remove 46 FC1 synapses and
13 FC2 synapses. Random pruning results suggest that lower threshold values give

Pruning
Threshold

Test Accuracy Synapses Removed
FC1

Synapses Removed
FC2

0.45 31 % 21,653 4,497
0.31 44 % 14,830 3,139
0.21 49 % 10,326 2,170
0.12 51 % 5,662 1,257
0.01 52% 37 7

better accuracy. The best accuracy occurs when we use a very small threshold, in
which we barely remove any synapses.

It is worth perceiving that although random pruning fluctuates more in its accuracy, it
does sometimes produce an accuracy of up to 51% percent and removes 2,332 FC1
synapses and 505 FC2 synapses. So it tends to simplify the network significantly on
certain instances. After additional verification, we confirm that random pruning does
indeed achieve this. In Comparison, our pruning procedure tends to not remove as
many synapses, but keeps the accuracy somewhat constant. Furthermore, with random
pruning, we obtain 52% accuracy only when we remove very few synapses. Thus
both methods agree on the 52 %accuracy if we prune a similar number of synapses.

4. Conclusion

The purpose of this investigation was to determine the effects of pruning a network by
using the “simple procedure”, proposed by [1]. We conclude by realizing that for this
particular dataset, the pruning method produces a slightly a simpler network. It does
so by maintaining the 52% accuracy. We further recognize that if we are willing to
sacrifice some accuracy, we can obtain much smaller networks by using a random
pruning method. The random pruning technique should be tested on other datasets, as
it may have performed well in this particular dataset. Amongst our research, we failed
to find convincing evidence against the procedure proposed by [1].

There are numerous improvements we can make to our study. The algorithm used,
only allowed us to simplify the network after we had already trained it. Even for our
current dataset, training and experimentation times were starting to become an issue.
It would be ideal if the algorithm told us which weights to prune and when to stop
training, simultaneously as the training is happening. This would then result in the
optimal network. Another investigation that we did not carry out is pruning the
convolutional layer connections. The approach would be identical, however it may be
possible to simplify our model even further. Another area worth exploring is the use
of genetic and evolutionary algorithms in pruning networks. Perhaps considering
advanced techniques such Fractional Max-Pooling, Shakedrop Regularization and
Regularized Evolution may help us learn more or dismiss our simple pruning
procedure. It is also worth comparing our pruning procedure to the results from
dropout layers that come naturally with convolutional networks.

References

1. Karnin, ED: A simple procedure for pruning back-propagation trained neural networks.
IEEE Transactions on Neural Networks, vol 1., pp. 239-242, 1990.

2. T.D. Gedeon & D. Harris: Network Reduction Techniques. Department of Computer
Science, and Brunel University.

3. Krizhevsky , Alex: Learning Multiple Layers of Features from Tiny Images, 2009.

