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Abstract. This paper investigates the effects of network pruning on model 
performance. We draw upon the work of EHUD D. KARNIN [1] and 
implement the “simple procedure” for pruning back-propagation trained 
networks. On this occasion, we consider an image classification problem, which 
involves a ten-class image dataset. We use a convolution neural network, as 
they are the best suited for problems of this kind. After various experiments and 
analysis, we find that the procedure outlined by [1] does produce a simpler 
network and one with comparable accuracy. Furthermore, we learn that if we 
are willing to sacrifice some accuracy, randomly pruning the network can result 
in much simpler networks, rather than with our pruning procedure. 
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1   Introduction 

The size and complexity of a neural network plays an important role, as resources as 
limited. The general understanding is that a smaller, simpler network is better. 
Simpler networks train faster, generalize better and can result in simpler rules. Almost 
every time one uses a neural network to solve a particular problem, the question of 
how many hidden layer neurons is always an issue. One often finds using themselves 
just guessing or using some rule of thumb, which cannot always lead to the best 
results. It is worth noting that it is better to start off with a larger network rather than a 



network too small. A network too small may not actually solve the problem at hand 
(such as the XOR function). However a network too large can over-fit, leading to 
poor generalization results. Thus it is always recommended to commence with a more 
complex network and use a pruning technique to reduce the irrelevant synapses. 

 
The purpose of this investigation is thus to determine, whether a pruned network, 
based on the simple pruning procedure proposed by [1] can perform just as well as a 
larger base-case network. Our model is a simple convolutional network (conv-net), 
however, it could easily be very large, if we increased certain parameters. Thus an 
effective pruning method would be handy to reduce network sizes. 
 
This image-classification problem was investigated as more complex problems such 
as driverless cars are built upon this foundation. Understanding the difficulties and 
techniques that are utilized in a simpler image classification tasks such as this one, 
can help us approach more complex problems. The dataset provided is already in an 
elegant format; with target variables encoded appropriately and contains no missing 
values. The dataset is one of the most common datasets used in the study of computer 
vision and convolutional neural networks. The wide usage and popularity of this 
particular dataset means we are able to compare our performance. 

2. Method 

The dataset chosen is “CIFAR 10” complied by [3]. It contains 60,000 32X32 colour 
images with 10 classes and 6,000 images per class. The dataset contains 50,000 
training images and 10,000 test images. The labels are encoded from 0 to 9; 
representing the class to which the image belongs to. The classes contained in this 
study are plane, car, bird, cat, deer, dog, frog, horse, ship and truck. The dataset 
contains classes that are mutually exclusive. It can be easily obtained by visiting the 
CS Toronto website.  Below are 10 random samples from the dataset: 

 
Figure 1. Random Samples from the Dataset 

 
 



Keeping the dataset in mind, we model a convolution neural network with the 
following structure: 2 convolutional layers (Conv 1 and Conv 2), one pooling layer 
and three fully connected layers (FC1, FC2 and FC3). A dropout layer has been 
omitted since we want to study the effects of our pruning method, which is in some 
sense, regularising our network. The process of dropout is very similar to that of 
pruning. Thus in order to prevent potential interference, we decided to not include a 
dropout layer.  

 

2.1 Technique  

The usual back-propagation algorithm was used to train the convolutional network. 
For pruning the network, we use the method proposed by [1], which computes the 
sensitivity of each synapse as: 

  
The method is appealing, as the above computation is based on values that are known 
throughout the training process. Furthermore, this method does not interfere with the 
training process itself and does not affect the cost function, as some other proposed 
methods do. Thus the simplicity and the low overhead of computation make this an 
ideal process. However, there are problems associated with these methods, which are 
not considered by [1]. One obvious issue is what happens if the denominator in 
question is 0, which was the case for our dataset.  Thus we have decided to adapt the 
method and set the sensitivities to 0 for problem weights. Another issue not dealt with 
by [1] is that of negative sensitivities; we use thresholds and normalization to over-
come this. A brief description of the algorithm is shown below: 

Initialize an empty array, S, of size equal to the number of synapses for the layer 
Let   be the initial weights array for this layer. 
For n = 0 to number_epochs: 
    = current weights computed in this epoch 

   =  weight change in the n-th epoch. 
 

Normalise the sensitivities (using any appropriate measure) 
Determine the synapses that are below a specified threshold 
Set the weights of these synapses to 0 

 



 
In this method we train the network and in parallel compute the sensitivities for each 
of the layers. Once training has stopped we can analyze the sensitivities and then 
decide to prune the weights. A pruning threshold is then used, once the sensitivities 
are normalized. We normalize to the range (0,1). The threshold determines which 
units to prune, and once this information is available we prune those weights. 

2.2   Validation  

To validate the model we use the usual confusion matrix and predictive accuracy. We 
also study the accuracy within each of the classes to determine the effectiveness of the 
model. 

2.3   Investigations and Experiments 

We want to examine how well a simpler model performs in the classification task. 
Thus we first look at a larger base model determine its performance, and then 
compare it to the pruned model. Subsequently we prune the weights in the FC1 and 
FC2 layers of our network. We then perform randomized pruning, on the same layers, 
to determine whether our pruning method performs better than a randomly pruned 
network. Finally, we study the effects of different pruning threshold values on model 
performance.  

3.  Results  

We first investigate the base model. This is the classifier chosen with the parameters 
shown below. We then investigate what happens when we prune this network. The 
network parameters that we will use throughout are shown below.  
 

Table 1. Convolution Layer Parameters 
Layer Input Output Kernel Size 

Conv 1 3 10 5 
Conv 2 10 16 5 

 
 
  



 
Table 2. Fully Connected Layer Parameters 

Layer Input Output 
FC 1 400 120 
FC 2 120 84 
FC 3 84 10 

  
 
The learning rate was kept constant to 0.001 throughout the process. This figure was 
determined after experimenting with various different values. We discern that the 
highest accuracy obtained was 52%, and this occurred with the above learning rate. 
Thus we will use 52% as our benchmark for our particular study. Current state of the 
art algorithms have reported accuracies up to 93%, for this dataset. We will not be so 
ambitious as we are using a very simple convolutional network, for studying pruning. 
 

Figure 2. A plot of the loss function for the base model 
 

 
 

 
 
 

 
 

 
 
 
 
 

 
 

 
 

 
 
 

 
The loss function above is fluctuating throughout the training process. However, it 
does show a decreasing trend and never exceeds the range shown above. Thus, we are 
obtaining some kind of convergence. 



 
 

Figure 3. The training confusion matrix for the base model 

 
 
 

Table 3. The overall Accuracy of the base network on the 10,000 test images is 52 %. 
 

Class Plane Car Bird Cat Deer Dog Frog Horse Ship Truck 
Accuracy 56% 51% 33% 42% 39% 40% 64% 61% 57% 71% 
 
Examining the training confusion matrix above, we notice some interesting details. 
During training, our classifier wrongly classified cats as dogs and dogs as cats. This is 
anticipated, as the two animals are extremely similar in their appearance. We also 



notice that Truck and Frog have the highest accuracy. The test-data confusion matrix, 
shown below also confirms our observation. Truck is still the most accurately 
classified class. We notice that the two confusion matrices are very similar. 
              
 

Figure 4. The test-data confusion matrix for the base model. 

 
 
Next, we prune the base case model with a pruning threshold of 0.45. The overall 
accuracy is still 52%. As a result, we have removed 46 synapses from FC1 and 13 
from FC2. While this may not be much, it is still an improvement, particularly 
because we have not forfeited any accuracy. 
 

Table 4. Comparing the accuracy of the base model and the pruned model. 
 Plane Car Bird Cat Deer Dog Frog Horse Ship Truck 

Accuracy 
Base 

56% 51% 33% 42% 39% 40% 64% 61% 57% 71% 

Accuracy 
Pruned 

57% 52% 35% 40% 41% 401 64% 62% 57% 69% 



 
 

Figure 4. The test-data confusion matrix for the pruned model. 

 
The above is a confusion matrix of the pruned model on the test dataset. Again, we 
see that we have improved the accuracy across each class as a result of our pruning. 
This implies that our model is now generalizing better than before.  
 
In order to verify whether our pruning method is correct, we carry out another 
experiment in which we randomly prune the same model above. To this end, we 
generate random sensitivities and prune based on these values. 
 

 Table 5. Comparing the accuracy of the base, pruned and randomly pruned model. 
 Plane Car Bird Cat Deer Dog Frog Horse Ship Truck 

Base 56% 51% 33% 42% 39% 40% 64% 61% 57% 71% 
Pruned 57% 52% 35% 40% 41% 41% 64% 62% 57% 69% 

Random  15% 11% 71% 6% 46% 7% 62% 4% 57% 23% 
 
 



 
Figure 5. Test data confusion matrix for the randomly pruned model. 

 
 
W observe that randomly pruning the network, reduces overall accuracy to 31%. The 
confusion matrix above also shows that our resulting network is erroneous. We note 
that although accuracy dropped to 31%, the accuracy is still better than randomly 
predicting a class (10%). We notice that the class car, plane, cats and dogs are not 
identified so well anymore. However, ship and frog do not seemed to be affected as 
much.  
 
Although, random pruning seems to reduce accuracy, we cannot rush to a conclusion 
just yet.  This is because so far, we have used a fixed pruning threshold of 0.45. It 
may be the case that different threshold values may result in different networks. As 
with many machine learning problem, certain parameter values tend to work better for 
certain problems. Thus in order to determine which threshold values work better; we 



carry out an experiment where we study the network accuracy for various values of 
the threshold parameter. 
 
Figure 6. A plot of pruning threshold vs accuracy for the pruned and random pruned models 

 
 

Table 6. An extract of the results for the pruned model. 
Pruning 

Threshold 
Test Accuracy Synapses Removed 

FC1 
Synapses Removed 

FC2 
0.45 52 % 46 13 
0.31 52 % 3 3 
0.21 52 % 2 2 
0.12 52% 1 1 
0.01 52% 1 1 

  
Table 7. An extract of the results for the randomly pruned model. 

 
We use 20 equally spaced points between 0.45 and 0.001 and generate the above 
plots. When using our pruning method, the maximum accuracy is 52.66, which occurs 
at the threshold value of 0.45. In this particular case we remove 46 FC1 synapses and 
13 FC2 synapses. Random pruning results suggest that lower threshold values give 

Pruning 
Threshold 

Test Accuracy Synapses Removed 
FC1 

Synapses Removed 
FC2 

0.45 31 % 21,653 4,497 
0.31 44 % 14,830 3,139 
0.21 49 % 10,326 2,170 
0.12 51 % 5,662 1,257 
0.01 52% 37 7 



better accuracy. The best accuracy occurs when we use a very small threshold, in 
which we barely remove any synapses.  
 
It is worth perceiving that although random pruning fluctuates more in its accuracy, it 
does sometimes produce an accuracy of up to 51% percent and removes 2,332 FC1 
synapses and 505 FC2 synapses. So it tends to simplify the network significantly on 
certain instances. After additional verification, we confirm that random pruning does 
indeed achieve this. In Comparison, our pruning procedure tends to not remove as 
many synapses, but keeps the accuracy somewhat constant. Furthermore, with random 
pruning, we obtain 52% accuracy only when we remove very few synapses. Thus 
both methods agree on the 52 %accuracy if we prune a similar number of synapses.  

4.  Conclusion 

The purpose of this investigation was to determine the effects of pruning a network by 
using the “simple procedure”, proposed by [1]. We conclude by realizing that for this 
particular dataset, the pruning method produces a slightly a simpler network. It does 
so by maintaining the 52% accuracy. We further recognize that if we are willing to 
sacrifice some accuracy, we can obtain much smaller networks by using a random 
pruning method. The random pruning technique should be tested on other datasets, as 
it may have performed well in this particular dataset. Amongst our research, we failed 
to find convincing evidence against the procedure proposed by [1]. 

 
There are numerous improvements we can make to our study. The algorithm used, 
only allowed us to simplify the network after we had already trained it. Even for our 
current dataset, training and experimentation times were starting to become an issue. 
It would be ideal if the algorithm told us which weights to prune and when to stop 
training, simultaneously as the training is happening. This would then result in the 
optimal network. Another investigation that we did not carry out is pruning the 
convolutional layer connections. The approach would be identical, however it may be 
possible to simplify our model even further. Another area worth exploring is the use 
of genetic and evolutionary algorithms in pruning networks. Perhaps considering 
advanced techniques such Fractional Max-Pooling, Shakedrop Regularization and 
Regularized Evolution may help us learn more or dismiss our simple pruning 
procedure. It is also worth comparing our pruning procedure to the results from 
dropout layers that come naturally with convolutional networks. 
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