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Abstract. Neural Networks are of growing interest in the fields of pattern recognition and regression. In 

this report, the performance of a Back-propagation neural network model is assessed based on its 

classification accuracy on the Diabetic Retinopathy Debrecen dataset. The efficiency of the implemented 

model was observed to be similar to other neural network models. In neural networks, determining the 

hyper-parameters is a tough problem to solve. This paper addresses a solution to that problem by 

implementing a genetic algorithm to find the best hyper-parameters. Moreover, a pruning technique, 

distinctiveness, is applied to further reduce the hidden units. Various other performance improvement 

techniques such as mini-batch training are also explored.  
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1 Introduction  

Neural networks have attracted tremendous interests from various fields of study [5]. The use of neural networks in 

the field of medicine is growing. The ability of such models to understand and handle large number of features makes it 

an attractive option over the traditional statistical methods [4].    

  

In this paper, an analysis of the back-propagation neural network with various state of the art approaches are studied 

using the Diabetic Retinopathy Debrecen dataset. The Retinopathy dataset was an attractive choice, aligning with the 

global trend of using artificial neural networks in medical data [6]. Moreover, being a binary classification dataset, it was 

an ideal choice to showcase various approaches mentioned further in this report.    

 

The pre-processed data is used to create a back-propagation neural network to classify the instances. A normal 

backpropagation network with a fixed number of hidden units and layers was first implemented. Later, capabilities to 

dynamically manipulate the number of hidden units were used [2].  A step-by-step approach of modifying the network 

helped in understanding the improvements made by each such modification.     

  

Cross validation is a very useful technique in evaluating the performance of the constructed neural network model. It 

shows the ability of model in classifying an unknown instance. Of various cross-validation approaches such as holdout, 

k-Fold, leave-one-out cross validation, k-Fold was chosen since the number of instances in the dataset were few [8].  

 

2 Method  

 

2.1 The Dataset  

Diabetic Retinopathy Debrecen (DRD) dataset contains 1151 instances that is represented with 20 attributes. The 

features represent detected lesion and other information of anatomical part of image-level descriptor [1]. All 20 input 

attributes provided were important and crucial for the successful classification of instances. The target associated with 

the dataset is to predict whether a given instance can be considered as a Diabetic Retinopathy or not.    

  

As the dataset contained only 2 classes to predict and is balanced, various techniques such as clustering abundant 

instances to handle imbalanced data-sets and multiple classes could be ignored. The dataset could be easily identified as 

a balanced one with a nearly 1:1 ratio for both diabetic retinopathy and non-diabetic retinopathy targets.  One of the 

challenges involved in pre-processing of the dataset was to normalize the values. Values of features were very distributed 

making it mandatory to normalize in order to avoid ill-conditioning of the model [7].  Furthermore, not having a row 

indicating the feature names made it complicated to access each row by name.    
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Data was loaded into a data-frame, which was then processed to avoid potential anomalies.  In the DRD dataset, values 

of various features ranged from -2 to 345. Such huge distributions of values would result in additional weightage given 

to features with higher values. Normalization and standardization are two widely used methods to handle such cases [10]. 

The normalization procedure restricts values to a [0, 1] range and this was used to rescale the data.   

  

Also, the columns of the dataset did not have labels. A row was added to name each column as Fi (where i indicates 

the column index). Adding a labelled row enabled to easily access and identify all columns. The first column of the dataset 

represents the quality of the image, where 0 suggests bad quality and 1 indicates good quality. As data inferred from a 

bad image could possibly disrupt the learning of the model, all four instances with 0 values in image quality were stripped.    

  

Data was formatted into 20 columns, where the first 19 represents the input features and the last column represents 

the target values. All of the 19 input feature columns were normalized.  Normalizing the target column did not make 

sense in a classification problem since the model requires the exact class labels.  

   

2.2  Model  

A back-propagation neural network was implemented.  The network was designed with an input layer, 1 hidden layer 

and an output layer. The number of hidden layers could be altered to fit the dataset. More number of hidden layers 

generally improves the accuracy. However, this can result in a surge of test errors and an increased number of 

computations [11].    

  

The number of hidden units was initialized to 500, which can be dynamically pruned using various techniques 

(discussed later in report).  When the number of hidden units was set to 500, the input layer became a matrix of size 

19x500 and the output layer matrix of size 500x1 (since it is a binary classification problem).  

 

  

Fig. 1.  Structure of model, D_in is 19, H is 500 and D_out is 1.    

   

Two other factors that are important for a good design of a neural network model is the learning rate and the number 

of epochs. In a model where stochastic gradient decent is used for optimization, the learning rate parameter tells the model 

how far to move the weights for a batch [12]. If learning rate is low, the training becomes more reliable since there is a 

lesser chance to miss minima but, will be computationally more expensive as more iterations are required for the model 

to converge. On the other hand, if the learning rate parameter is set to a high value, the training will be less reliable and 

easy on computational resources.    

   

Epochs represent the number of forward and backward passes of all instances. This means that one epoch consists of 

the process of feeding input to the network, predicting output, computing gradients, and updating the weights. A large 

number of epochs improves the training accuracy. However, similar to learning rate, such accuracy comes at the cost of 

computational resources. Additionally, more number of epochs could also result in the creation of an over-fitted model.  

  

 

2.2.1 Implementation of mini-batch     

The initial implementation was done by considering the entire training dataset at one for the number of given epochs.  

Mini-batch is the process of splitting the dataset into small batches to calculate the error in a batch than as a whole [3].   
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towards a robust convergence avoiding local minima [3].  

  

  

With 5 mini-batches With entire set of instances 

  

Fig. 2. Accuracy scores with and without mini-batch training. 

Accuracies are plotted against each set of validation set used. 

 

2.2.2 Implementation of distinctiveness   

  

Determining the exact number of hidden neurons by looking at a data set is a close to impossible task.  There is no 

method to clearly identify and determine an exact number of hidden units for an optimal network [13].   Various 

techniques such as relevance, contribution, sensitivity, distinctiveness and badness has been used to prune neural networks 

[15].  Of the aforementioned techniques, this paper will discuss the distinctiveness technique. The method of 

distinctiveness is applied by determining the similarity between each hidden unit with all other hidden units. Based on 

the results of distinctiveness, the network is then pruned to remove the redundant hidden neurons [15].   

  

As suggested by T.D. Gedeon [15], in order to prune vectors of hidden units, an angular separation of up to 15° could 

be considered similar and those with over 165° can be considered complimentary.  The same approach was employed in 

my model and comparisons were done with the cosine values of angle rather than angle itself.  This form of pruning 

resulted in a network with fewer hidden neurons. Since only similar hidden neurons were removed, no further training on 

the pruned network was required [2].    

  

There was no dip or increase in accuracy after neurons were removed. Although there were noticeable differences in 

values for each validation unit, the average values of all validation units persisted at around 72%.  

   

2.2.1 Implementing early stopping  

As mentioned earlier, determining the number of epochs was a challenging task. Though the accuracy of the model 

should improve with higher number of epochs, it turned out to produce a model that overfits on training data. Hence, 

halting the learning of the network before it began overfitting was essential.   

  

 

 

 

 Fig. 4. Effect of various epoch values [16]  

  

  



4    

One way to prevent overfitting due to a large number of epochs is by employing a technique known as early stopping. 

In early stopping, the network stops training when it has stopped improving.  In the created model, for every epoch after 

the 200th epoch, a check is made to verify whether the errors flatten out and the learning is stopped when it does.   

  

    

Accuracy with 1000 epochs Accuracy with Early Stopping 

 

Fig. 5. Accuracy scores for various epochs training. 

Accuracies are plotted against each set of validation set used. 

 

2.2.3 Implementation of Genetic Algorithm   

Genetic algorithms (GA) are a heuristic search and optimization technique inspired by natural evolution [18]. One of 

the major advantages of genetic algorithm based optimization is that the chances of falling in local minima are greatly 

minimized.  

 

Until now, the hyper-parameters used were figured out by manually trying out different combination of values and also 

with the help of domain knowledge. However, it is a significantly difficult task to manually try out all permutation of 

hyper-parameters.  In situations like this, optimization using genetic algorithms are beneficial. To find the best set of 

hyper-parameters, we create models the random combination of hyper-parameters, select the best values and then process 

those further.  

 

The entire process follows the natural selection process of reproduction. Similar to natural selection, we mutate, 

reproduce and create new offspring’s of the best/fittest chromosomes.  Each permutation of hyper-parameters is known 

as chromosomes and each attribute, a gene. The process is represented in the flowchart below.   

 

 

 
Fig. 6. Process: Genetic Algorithm [18] 

 

From the flowchart, it is clear that an approach where we select the best parameters, mutate and reproduce them, and 

repeat the whole process again would lead to a better solution. There are several ways to determine how a chromosome 

can be deemed good, the scoring measure is known as fitness and the method for finding fitness, the fitness function. This 

paper uses the accuracy of the model as the fitness function. More attributes such as computational cost could also be 

considered, however, is ignored in this paper to keep the discussion simple.  

 



 

The number of hidden-units, epochs, learning-rate, no of batches to be split into, and the optimization algorithm was 

the attributes/genes in a chromosome. Initially, the population is created by randomly picking values for each gene in a 

chromosome. Each chromosome is then evaluated and the fitness function is recorded. Then, the selection process where 

the best chromosomes are selected is done. These selected chromosomes are used to create more offsprings and mutate. 

As shown in the figure, this whole process of selection-mutation-breeding is repeated. Each repeating step is known as a 

generation. 

 

In this paper, a chromosome is created with 5 genes, number of hidden layers, number of epochs, no of batches to be 

split, learning rate and the optimizer to be used. The population size is initialised with 200 to generate a wide permutation 

of values. After the first iteration, the size is reduced to 10 and maintained at 10 for all the following generations. For 

implementing crossover, uniform crossover is used as it is regarded to be a better choice than one-point and two-point 

crossover techniques in optimization. Also, random mutate and rank based selection is used for mutation and selection 

procedure. 3 chromosomes are selected in each generation for breeding and mutation.  

 

With genetic algorithm, a new set of hyper-parameters were found. This new set of hyper-parameters were then used 

to generate a model and perform distinctiveness on. The accuracy of the new model increased from the previous high of 

72% to 74%. 

 

 

3 Results  

Results of the classification of DRD dataset was obtained by using k-Fold cross-validation approach.  The results are 

represented using confusion matrix. A confusion matrix is a technique to evaluate the results of a classification algorithm. 

The confusion matrix showcases how the trained model gets confused on new and unseen data when it makes predictions. 

Classification accuracy is also a good method to understand the performance of a classification model. However, it fails 

to analyse reasons for lower accuracy values. Results are explained in step-by-step order to highlight the improvements 

made by each approach.  

 

        

                  With 5 epochs With epoch number given by Genetic            

Algorithm 

Fig 7.  Confusion Matrix 

  

    

Early stopping of the number of epochs reduced the excessive computation by nearly 60%, when number of epochs 

was initialized to 1000. On an average with early stopping, only 400 epochs were used. Another implemented feature, 

distinctiveness, reduces the number of hidden neurons in network by about 10% when number of hidden units are 

initialized to 500.   

  

Changes to Learning rates, alters the performance of model. Best results were obtained when learning rate was set to 

0.001. Of the various optimization techniques including Stochastic Gradient Decent, Adam, RProp and Adamax, Adam 

optimizer gave most accuracy and was hence chosen. Adam optimizer is a variant of normal stochastic gradient decent 

with adaptive learning rates.  Learning rates are adapted based on the average first and second moment of gradient. 

 

With the usage of genetic algorithms, we could clearly identify the best set of hyper-parameters. The values of each 

gene, returned by genetic algorithm remained similar to the earlier estimates after implementation early-stopping, 

distinctiveness, and choice of Optimizer. 
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Hyper-

parameter/Gene 

Value  

Number of Hidden 

Neurons  

467  

Number of epochs  375 

Learning rate  0.00158 

Number of batches  3  

Optimizer Adam 

    

Table 1.  Result by Genetic Algorithm. 

  

From the result of genetic algorithm, it is clear that we can also remove the Early-stopping procedure. Though, the 

hidden neurons were determined using genetic algorithms, the concept of distinctiveness was used to further prune any 

neurons if possible. 

  

The implemented model fared well compared to the results of Ramaswamy et al [14]. With a back-propagation network, 

an accuracy of over 74% was consistently achieved by the model. Table 4 compares the results of the designed back-

propagation network model, which uses concepts of distinctiveness, with various machine learning models of 

Ramaswamy et al. The implementation of Genetic Algorithm enabled the best selection of hyper-parameters, thereby 

resulting in higher accuracies.  

  

  

Model  Accuracy  

Designed Model  74.8  

Deep-learning 

Model  

73.59  

Gradient Boosting 

Machines  

81.13  

Naïve Bayes 

Classifier  

63.45  

    

Table 2.  Comparison of result with that in Ramaswamy et al. 

  

 

 

 4  Conclusion and Future work  

The generated model gave decent performance on the DRD dataset. Usage of Genetic Algorithm to determine the 

hyper-parameters was found to be very effective. Also, techniques such as early-stopping, distinctiveness, and usage of 

minibatches were found to be effective. However, only testing with various other data-sets and producing similarly 

efficient results would let us conclude on the overall performance of implemented improvements.    

Though genetic Algorithm gave the best set of hyper-parameters, it was a computationally intensive process. Better 

techniques to understand the better value and randomize around those than generating completely random values can be 

considered a future project. Implemented technique of distinctiveness involves a significant computation of O(N2). An 

efficient algorithm of minimizing this complexity would be beneficial. Also, rather than the naïve approach of looking 

for dips in loss (by a counter variable), a more sophisticated implementation can be implemented.  
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