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Abstract. A back-propagation neural network was trained on the Steel Plate Faults dataset and the resulting 
model was observed to have a better classification accuracy than other models constructed using the same 
dataset. In order to acquire this improved accuracy, the neural network had to be constructed with an 
estimated guess of the hyper-parameters based on trial and error. An evolutionary algorithm was 
implemented to obtain an optimized set of hyper-parameter values. However, the results of the evolutionary 
algorithm suggested that the generated model required a large number of hidden neurons. To further 
optimize the classification model, a technique called distinctiveness, which is a process that will identify 
hidden neurons that do not contribute any significant functionality to a neural network model was 
implemented. This paper will discuss how neural networks can be optimized by implementing genetic 
algorithms and pruning using distinctiveness without compromising on the classification accuracy.  
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1 Introduction 

Back-propagation neural networks are used extensively for various classification tasks because they can be 
implemented easily. However, one of the key design issues while implementing a back-propagation neural network is to 
find optimal values for parameters that would correctly classify a given input without overfitting the model on training 
data. These parameters primarily include number of hidden neurons, number of epochs and learning rate for training [3,4]. 
Usually values for these hyper-parameters are decided based on trial and error with the data that the classification task is 
working on. Although, most optimization algorithms update learning rates during training [5], an optimal learning rate 
helps to find the right balance between training time and convergence time of a neural network [15]. Number of epochs 
specify the amount of training required for the model. This must be selected carefully to avoid underfitting and overfitting. 
Overfitting can be avoided by defining an early stopping condition based on validation results [6]. As a result, the model 
will be trained until it fails the stopping condition on the validation set. This ensures that finding an optimal value for the 
number of epochs does not produce any significant impact to the learning of the network. Evolutionary algorithms can be 
used to find an optimal setting for the remaining hyper-parameters of a neural network on a given dataset. Consequently, 
a genetic algorithm was applied to obtain the best values for hyper-parameters such as the learning rate and the number 
of hidden neurons. Moreover, this paper will implement a classification model for the Steel Plate Faults dataset and 
discuss distinctiveness as a supplementary method to reduce the number of hidden neurons of the trained classification 
model. This technique is expected to further generalize the trained model and produce the least complicated neural 
network for classifying the data. 

 

1.1 Steel Plate Faults Dataset 

The steel plate faults dataset consists of 1941 instances of data that are each classified into one of 7 types of faults that 
can occur on steel surfaces [2]. These defects are namely, Pastry, Dirtiness, Scratch, Stains, K-Scatch, Bumps and Other. 
The dataset has 27 features that are used by the network to identify steel plate faults. A classification model that can 
classify defects in steel plates can be put to significant use in the manufacturing industry. This would reduce the amount 
of inspection required by humans that takes place in such companies. With a model that can detect defects on steel plate 
surfaces, a lot of human labor involved with the process can be reduced. 
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1.1.1 Preprocessing Raw Data 

Correlation helps to identify the relation between two features in a data space [8]. On computing correlation of all input 
features of the dataset, it was identified that a pair of input features, namely Y_Minimum and Y_Maximum, were 
positively correlated with each other with correlation value of 0.999997, which could be rounded to 1. This means that 
these two input features were almost completely identical to each other (Figure 1) and removing one of these features 
would not significantly impact the quality of the dataset. Moreover, input features TypeOfSteel_A300 and 
TypeOfSteel_A400 were found to be perfectly negatively correlated with each other, that is, these features have a 
correlation value of -1.0 (indicated in Figure 1). This indicates that the presence of one feature directly accounts for the 
absence of the other. On further inspection, it was clear that the 2 features represented the type of steel and since there 
were only 2 types of steel, removing one of the features would make no difference to the dataset.  

 
 
Furthermore, since all of the data points had varying ranges of values for each input feature, an essential preprocessing 

step for the dataset was to normalize these values to a scale of 0 to 1. This was implemented by linearly squashing all the 
input feature values of the data space. In theory, this would ensure that all input features would be given equal importance 
during the classification process [9]. 

 
The dataset represented its output classes with 7 columns where each column corresponds to one of the 7 faults and 

every instance of the dataset had a 1 in exactly one of the 7 columns. However, this results in a very sparse output matrix 
since only a fraction of the input instances corresponds to a single output class. To rectify this and to handle multi-class 
classification, these columns were abstracted into a single column with class labels mapped from 0 to 6.  

Figure 1: Correlation of input features of Steel Plates Faults dataset (Green indicates a complete positive 
correlation and Blue indicates a perfectly negative correlation) 
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1.2 Back Propagation Neural Network 

After preprocessing the data, there were 25 input features and 7 output classes. As a result, a standard two-layer back-
propagation neural network was implemented with 25 input neurons and 7 output neurons. The model was trained 
separately with both normalized and unnormalized data and as expected, feeding normalized input data resulted in a better 
classification accuracy. Since the data corresponds to a multi-class classification task, better results were observed on 
applying SoftMax to the output of the neural network before computing the cross-entropy loss of the output neuron. This 
technique works best for the task because SoftMax computes values (ranging from 0 to 1) for each of the 7 output classes 
and assigns the maximum value to the predicted class [10]. Cross entropy loss will then detect the loss generated due to 
incorrect classifications on the training set.  

 
The training data was split into 4 batches and the model was trained on each of these batches iteratively. This is 

equivalent to a mini-batch training process since the model’s error and weights were computed and updated only after 
each batch was presented to the network [11]. It was observed that the model trained faster in this manner as opposed to 
the pace of training when the entire dataset was provided as a whole. 

 
The resilient back-propagation (Rprop) optimizer was observed to over-fit the training data and as a result fails in 

predicting testing data accurately. This may be since the algorithm sets individual learning rates for each weight in the 
network without momentum and this may cause the network to learn the training data extremely well. The model was 
also trained using a stochastic gradient descent optimizer and it was observed that this caused the model to reach 
convergence at an extremely slow pace. If training data is fed into the network in meaningful order, stochastic gradient 
descent (SGD) is known to take time to converge because the gradients would be biased [12, 13]. However, the data was 
shuffled before training and hence this could not have slowed the convergence pace. The Adam optimizer was eventually 
used since this optimizer gave the best results in terms of accuracy. Adam, short for Adaptive Moment Estimation, 
computes adaptive learning rates for each parameter along with momentum [5]. Thus, it was preferred since it did not 
noticeably over-fit on the training data and brought the model to convergence at a faster pace than SGD. A sigmoid 
activation function was applied on output of the hidden layer. Optimum values for hyper-parameters such as learning rate 
and number of hidden neurons were discovered using genetic algorithms, which will be discussed in Section 2. 
 

1.2.1 Early Stopping and Evaluation 

The dataset was shuffled randomly before splitting into train and test sets. The train set was constructed by extracting 
80% of the data and the rest was allocated for the test set. An early stopping condition was implemented by additionally 
splitting the training data into train and validation sets. Thus, the data was split into train, validation and test sets, in the 
form of 60/20/20. After training for 300 epochs, validation accuracy was computed. For every subsequent epoch, if 
validation accuracy reduced consistently for 80 consecutive epochs, the training was stopped and the network with the 
highest validation accuracy was selected. On an average, the model seemed to train well with 1000 epochs set as the 
maximum. A lower number of epochs (values less than 300) would cause the model to under-fit on the training data. 
Early stopping further ensured that an optimal value for the number of epochs was not a requirement for effective training 
of the neural network. 

 
Having implemented a two-layer back propagation network, it was observed that the testing accuracy kept fluctuating 

on a wide range for various splits of the dataset. This occurred because the train-test splits were random and the model 
was trained on only one split of train and test data. Moreover, since the number of instances in the dataset were relatively 
small, a "bad" split of the dataset could force the neural network to learn poorly. A bad split, in the context of this dataset, 
means that the training set could have noisy data, the presence of outliers or could also be an extremely optimistic 
representation of the test set. It also could mean that the training data may not have a good representation of a particular 
class since most of the class's instances have been partitioned into the test set. To obtain a more reliable estimate of the 
general accuracy of the final model, 10-fold stratified cross validation was implemented. 10-fold stratified cross validation 
splits the entire data into 10 subsets with each subset having an almost equal representation of all output classes [14]. 
These subsets are then used to construct 10 separate models in which each model would be trained with one of the ten 
subsets as testing data and the remaining as training data. As a result, each of the ten subsets would be used for testing 
exactly one of the models. The average of the testing accuracies obtained from the ten different models was reported as 
the final prediction accuracy. This result provided a better generalization of the model’s accuracy on new and unseen 
data. Moreover, the entire dataset was used for both training and testing. However, as this was a computationally 
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expensive process, the number of folds were reduced to 3 while constructing the models to evaluate fitness in the genetic 
algorithm, which is discussed in the next section. 

2 Genetic Algorithm for hyper-parameter optimization 

Genetic algorithms are used extensively to solve hard optimization problems since they are guaranteed to converge 
eventually to the global minima [16]. As discussed earlier, finding a perfect optimal value for hyper-parameters such as 
learning rate and number of hidden neurons requires a brute-force trial and error approach. This was simplified by 
implementing a genetic algorithm to compute these values for the model. The fitness values for the proposed genetic 
algorithm was the 3-fold validation accuracy obtained on each individual model. The population size of the genetic 
algorithm was set to 10 and the size of each DNA was two. This was because the objective of the genetic algorithm was 
to find optimal values for learning rate and number of hidden neurons. Also since learning rate is a floating point value 
and the number of hidden neurons is an integer, the DNA was a mixed type representation consisting of a float and an 
integer value. The initial population was randomly selected for values of learning rate ranging from 0.01 to 0.002, and 
number of hidden neurons ranging from 50 to 1000. Prior experimentations on the model trained with the dataset, 
indicated that values out of the ranges had a degrading effect to the training performance of the neural network.  

 
Since genetic algorithms are not proven to have an upper-bound on runtime, the number of generations was limited to 

15. Moreover, the algorithm was implemented to terminate if the best value does not change for two consecutive 
generations. This form of an early stopping technique will guarantee that the model will stop training after it has 
discovered a good solution. Proportional selection (roulette wheel selection technique), which selects individuals based 
on a probability distribution proportional to fitness was implemented. This selection technique was used with replacement 
to ensure that better individuals had a higher chance of being selected from the current population. Furthermore, an elitist 
selection approach was adopted to force the genetic algorithm to converge to a good solution faster. This means that the 
best candidate of each generation was exempted from the selection process and used in the new population for generating 
new offspring. This also confirms that the best candidate will be bypassed to the next generation’s population. A uniform 
crossover technique was implemented with a crossover rate of 0.8. A crossover rate indicates a probability of the 
proportion of couples that would be picked for mating. This rate was set to 0.8 to ensure that a good proportion of 
individuals in the next generation is obtained by combining features of individuals of the current generation. In genetic 
algorithms, mutation introduces genetic diversity to the population. Random mutation, which changes genes randomly in 
chromosome, was implemented as the mutation technique for the genetic algorithm discussed in this paper. Mutation rate 
indicates the proportion of random genetic information that will introduced to the new population. A larger mutation rate 
will allow the population to explore the search space well and this is preferred during the start of the genetic algorithm. 
However, as the algorithm proceeds and begins to find good solutions, a lower mutation rate would ensure that these 
solutions are preserved and exploited further. As a result, a mutation rate that decreases with respect to the number of 
generations that have been completed was implemented. 

 

3 Distinctiveness 

3.1 Inspiration to implement pruning 

The results from the genetic algorithm indicated large values of hidden neurons for good results on the training. 
However, this value can be further reduced to obtain a better generalization of the trained model. A good generalization 
will indicate that the network uses the ideal number of interconnections, processing units and memory required to 
represent weights. Lowering the number of hidden neurons will also ensure that the network does not over fit on the 
training data. As a result, the next goal was to find the minimal number of hidden neurons required to build a model that 
is well suited for the classification task. In order to obtain that, hidden neurons that do not provide any significant help in 
classification must be pruned out of the network. In other words, it was necessary to implement a method that identifies 
hidden neurons that are replicas of other hidden neurons and removes them from the network. The method must also 
identify neurons that dissimilar from other hidden neurons and eliminate such neurons as well. There are many pruning 
techniques to reduce the number of hidden neurons, namely badness, sensitivity, distinctiveness and so on [7]. However, 
distinctiveness aligns more closely with the requirements of this model and hence, the main focus of this paper will be to 
employ distinctiveness with an aim to find the optimal number of hidden neurons for this classification task. 
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3.2 Distinctiveness 

Distinctiveness is the process of identifying indistinct neurons in a neural network model [7]. Distinctiveness can be 
determined by computing angles between every pair of hidden neuron vectors in the data space [7]. If the angle of a pair 
of hidden neurons is below a certain threshold, both the hidden neurons are concluded to be similar to each other in terms 
of functionality. Moreover, if the angle is more than another given threshold, the hidden neurons are contradictory to each 
other, which means that one neuron complements the other neuron’s functionality. In both cases, removing at least one 
of the hidden neurons from the pair of hidden neurons will ensure that the network only has distinct neurons. As a result, 
this process helps to reduce the computational complexity of the network. By implementing this approach, the network 
will also classify results faster because it will have lesser neurons to process in each forward pass [7]. This will, in effect, 
ensure that each hidden neuron in the network will be performing a unique function and thus maximizes its utility.  
 

3.3 Implementation 

Since the neural network model was implemented with a large number of hidden neurons, it was necessary to identify 
weak and indistinct hidden neurons and remove them. In theory, this would ensure that the overall accuracy remains the 
same while the complexity of the model reduces. In order to implement distinctiveness, the output activations of the 
hidden layer were scaled from -0.5 to 0.5. This ensures that the computed angles lie between 0 degrees to 180 degrees 
[7]. Angles were computed for all pairs of hidden neurons in the network. All angles less than 15 degrees and more that 
165 degrees were identified as similar or dissimilar hidden neuron pairs, respectively [7]. Neurons with lower index values 
in pairs that had angles less that 15 degrees were added to a list to be pruned from the network. Alternatively, both neurons 
in pairs having an angle greater than 165 degrees, were also added to the same list. It was observed that removing pairs 
of neurons with angles in between 15 and 165 degrees would results in a degraded performance of the neural network 
model. This indicates that such neurons provide significant functionality to the neural network for the classification task 
discussed. Further experiments with pruning showed that removing the indistinct neurons after training resulted in some 
loss of functionality of the trained model. This could suggest that while neurons that are pruned out of the model were 
not distinct to the network, they still provided some assistance to the classification task. As a result, some training must 
be done on the neural network after pruning to allow other neurons in the network to learn functions that might have been 
eliminated as a consequence of pruning. This also meant that pruning had to be implemented towards the end of training 
to ensure that irrelevant neurons were identified accurately. If pruning were implemented on a partially learned network, 
the accuracy of the results obtained from distinctiveness would suffer. 

 

4 Results and Discussion 

 
The evolutionary algorithm was successful in identifying optimal values for learning rates and numbers of hidden 

neurons. It was observed that the algorithm would select learning rates equivalent to 0.5 (+/-0.1). Similarly, the number 
of hidden neurons selected by the algorithm would always be more than 300, which is a significantly large value. Since 
this approach was computationally expensive, the models of each individual chromosome was trained with 3-fold cross 
validation. However, after obtaining results from the genetic algorithm, the final neural network model was trained with 
a 10-fold cross validation, along with pruning implemented towards the end of the training process. The genetic algorithm 
was also observed to generally converge to a good solution in a generation between the 6th and 10th generations. 

 
The optimized neural network model had an aggregated testing accuracy of approximately 75%. As discussed earlier, 

pruning the model based on distinctiveness after the training was completed resulted in a lower testing accuracy of 
approximately 74%. This may have occurred because the hidden neurons that were removed might have been providing 
some useful information to the model. The network was later pruned once at the 300th epoch, to allow the model to learn 
characteristic patterns that might have been eliminated as a result of pruning. The 300th epoch was selected for pruning 
since the network was observed to have completed at least 60% of learning by this epoch. Figure 2 compares the historical 
loss during the training process for the two cases that pruning was implemented. First, after training and second, at the 
300th epoch. As expected, it can be seen that there was a slight increase in loss after pruning the network in both cases. 
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However, if the model is pruned at a certain point during the training process, it then recovers from this loss quickly with 
further training. Pruning the model in this manner resulted in a generalized testing accuracy of 76%, which is similar to 
the accuracy of the model with 600 neurons.  

 

 
Since the Steel Plate Faults dataset has 1941 instances and the model was constructed with a significantly large number 

of hidden neurons, computing angles between every hidden unit output activation vector slowed down the training process 
since each hidden unit vector had 1941 values. As a result, this could be an inefficient approach to identify indistinct 
hidden neurons for larger datasets. 

 
For each fold in the 10-fold validation, a minimum of 10 neurons were identified as insignificant to the model for most 

values of hidden neurons selected by the genetic algorithm. This number of indistinct hidden neurons were almost the 
same for both cases; that is, when pruning was implemented at the 300th epoch and at the end of the training. Thus, neurons 
that would add to the complexity of the model could be safely removed without hampering the efficiency of the model.  

 
Researchers, Massimo Buscema, Stefano Terzi and William Tastle had implemented a back-propagation neural 

network using the steel plate faults dataset for their research and concluded that the neural network model had a weighted 
mean of 70.53% [1]. This value is significantly lower than the generalized testing accuracy of approximately 75% of the 
proposed model. This difference in accuracy may be due to the improvements in technology since 2010 and the use of 
sophisticated approaches for the implementation of my model. One such approach would be the utilization of the Adam 
optimizer, an optimization algorithm that was introduced years after their paper was published. As their paper has not 
covered details of their back-propagation neural network implementation, it is difficult to identify any other reason for 
the lower accuracy that they have reported. The researchers also compared the results of classification with a model they 
proposed and some other classification models [1]. Some of those classification model results for the dataset are reported 
in Table 1 along with the results for model discussed here (Back-Propagation – Distinctiveness). 

 
 

Model Weighted Aggregate (%) 

Back-Propagation – Distinctiveness 75.27 
Back-Propagation (Buscema et al.) 70.53 
SVM (Buscema et al.) 74.04 
KNN (Buscema et al.) 70.94 
Decision Tree (Buscema et al.) 73.11 
Meta-Consensus (Buscema et al.) 76.47 
Bayesian Linear Classifier (Buscema et al.) 64.97 

Figure 2: Training loss plotted when (a) pruning was implemented at the end of training and;  

(b) pruning was implemented after the 300th epoch 

Table 1: Classification results of various classifiers on the Steel Plate Faults dataset [1] 
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5 Conclusion and Future Work 

Overall, it was observed that a generalized neural network model could be constructed with the help of genetic 
algorithms for hyper-parameter optimization. Furthermore, distinctiveness could successfully identify hidden neurons in 
the network that do not provide any significant quality to the trained model. This makes it possible to begin training the 
network with a relatively high number of hidden neurons since distinctiveness can be employed to successfully prune 
weaker neurons out of the model. Pruning the network based on distinctiveness after the entire training was completed 
resulted in a slightly lower classification accuracy. It was observed that pruning towards the end of training gave the 
model an opportunity to retrain on the distinct hidden neurons for an enhanced testing accuracy. 

 
Applying a genetic algorithm for parameter optimization and calculating distinctiveness for all pairs of hidden unit 

output activation vectors of a model are both computationally expensive processes and will decelerate the training process. 
While a combination of these methods was a good start in terms of reducing network complexity and obtaining an 
optimized network, there are many more alternative approaches that can possibly produce the same (or even better) results 
without drastically affecting the training time of the neural network. Techniques such as memetic algorithms that are 
known to find good solutions faster could be adopted to optimize the neural network model. Furthermore, other 
approaches to prune the network such as badness or sensitivity must be investigated and implemented to analyze which 
pruning method works best for the classification task discussed in this paper.  

 
In future, the classification problem on the Steel plate faults dataset could also be solved by implementing various 

other machine learning classification algorithms, such as Support Vector Machine, for instance. Support vector machines 
are known to require fewer hyper-parameters, when compared to neural networks and are also guaranteed to find the 
global optimum for the classification problem at hand [17]. As a result, research can be extended to investigate the 
performance of SVMs on the dataset.  
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