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Abstract

We apply a Convolutional Neural Network (CNN) to two different numerical text representations of news articles

for binary classification from the SatiricLR dataset. Benchmarking against a simple CNN, we experiment with network

depth by employing different methods to reduce input parameter space whilst simultaneously increasing the number of

convolutional layers. We empirically evaluate each experiment and present competitive results over previous accuracy

on the SatiricLR dataset.

1 Introduction

Text classification has various forms, we explore a prevalent and readily applicable form, providing semantic
labels (categories) given a textual input (e.g. a news article). This problem of text categorisation has been
studied for decades [7], and has benefited from advances in the wider NLP field. This includes greater study
in text representation as vectors, imperative for many ML methods including the neural networks utilised
in the present work. Without a numerical vector representation, at present there is no way of handling text
input [16]. Initial algorithms targeting categorisation involved purely the use of statistics and vector space
distances, including Rocchio’s algorithm and a Naive Bayes approach [7, 11].

A prominent representation method is the text-frequency inverse document-frequency (TF-IDF) method,
though not often applied to a neural network based models due to its lack of word-based embeddings as a
weighted bag of words [3]. For neural networks, a key method of representing text has been the word2vec
approach [19]. This approach uses a shallow linear neural network to learn text representations that provide
a vector based word embedding and has seen popular use in NLP [3].

In the present work both of the above methods are explored. We further build upon previous work by
the author exploring the problem of text categorisation using neural networks. In this instance, we reduce
the number of classes into a binary problem: satire or non-satire, using the SatiricLR dataset. Whilst this
may appear to simplify the task, the individual class is arguably more complex. Satire is often distinguished
by selective use of figurative language and mimicry of actual news but with implied humour, hence the
reduction in the number of categories [2].

Recent work has shown the success of applying CNNs to text, building upon their success in computer
vision [13], [15]. By applying CNNs to text, we are able to better capitalise upon textual structure [17],
including feature detection of names [4] and effective character-level features (e.g. verb suffixes) [23]. We
investigate this in the context of satire detection by empirical analysis of various CNNs in their application
to humour detection.

2 Method

2.1 Dataset

The binary classification consists of 3411 labels for 3411 articles. Almost half (1705) of the articles are
non-satirical, sourced from the online mediums of Reuters, CNET, and CBS News. The 1706 remaining
satirical articles are taken from Daily Currant, DailyMash, and other outlets [8]. Political, entertainment
and technology articles are drawn with similar numbers for each subtype, the distribution is provided in
Table 1. To generate the test set we randomly sample 1/7 of the articles, maintaining a roughly equal

Table 1: Distribution of articles within the SatiricLR dataset.
Satire Non-Satire Total

Politics 545 574 1119
Entertainment 557 578 1135
Technology 604 553 1157
Total 1706 1705 3411

distribution between satire and non-satire articles. For each article, only the core text was extracted: titles
and metadata including authorship and publication dates have been removed.
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2.2 Representations

To process the textual input, it is necessary to represent the text in vector form. Despite success with
character-level encodings [26], [14], in the context of satire it seems appropriate to keep with convention and
encode words [18]. However, before embedding, there are some variations in document size, to resolve this
we apply zero padding, i.e. zero vectors will act as substitute words appended to the end of documents,
padding each document up to the maximum length document for fixed input size into the networks. We
then tokenise the document and generate both a TF-IDF representation and a word vector embedding using
the GloVe model. Finally, in both representations we preserve stop words punctuation marks, as they have
previously provided a feature with high correlation to humour [6].

2.2.1 TF-IDF

A key difficulty in processing language is representation of text and words. In this case of SatiricLR, the
sheer prevalence of certain words (e.g. profanity and negativity) in certain posts often indicates the article
type. This suggests a standard bag of words (BoW) approach is suitable, but this approach can be improved
with incorporation of frequency information based on the bag of words representation [1].

Utilising inverse-frequency over the interval [0, 1] intuitively provides better outcomes (i.e. emphasises
the commonality of words by weighting them relative to other words). Consider groups that are indicated
not by common words, such as ‘the’, but rather by a diverse number of unusual words (e.g. pop-culture
references typical of satirical analogies). By taking a word’s frequency within its text, we can determine its
use and relevance to the article, but by multiplying it by its inverse document frequency, we are able to gain
information of frequency in relation to the entire corpus of words in the SatiricLR set. Hence, words that
are characteristic to a group will not result in a low inverse-document frequency that results in a negligible
weighting, whereas words which do appear in every document will, e.g. English determiners (‘the’, ‘this’
etc.). This TF-IDF representation, which first builds a bag of words and converts via a transform, follows
the below formula in (1)

TF-IDF(d, t) = tf(t)idf(d, t)

idf(d, t) = log
( N + 1

df(d, t) + 1

) (1)

where df(d, t) provides the number of documents in which t appears, tf(t) its within document frequency. A
key consequence of this representation is the size of the input, each sentence will be converted into an array
of float values as opposed to a space-efficient binary indexing that is common in NLP (see [21]).

As this representation is essentially a modified bag of words, we lose spatial information of adjacent words,
which reduces the applicability of a CNN. However, application of a CNN in this context may provide useful
information in regards to the nature of feature detection in a trained CNN model.

2.2.2 Skip-gram

This second representation is based on the word2vec model, specifically the GloVe negative skip-gram model
[20]. This model vectorises words by utilising a pretrained neural network to develop representations. In
contrast to the TF-IDF approach, the similarity between words is not disproportionately defined by the
frequency of the words. By using skip-gram method, vectors are more closely tied to their expected context
(in a defined window), which in theory provides the ability to determine patterns inherent in each word [19].
This provides useful prior information in the word embedding which should speed up and assist the training
of later neural network approaches. Whilst the GloVe model is still based on the occurrence counts of words,
in that it differs primarily by relying in co-occurrence probabilities, it learns the word representation by
developing much richer features via a shallow neural network approach, including name recognition. The
GloVe model used in the present work is trained on 1.6 billion tokens from Wikipedia 2014 plus the Gigaword
5 corpus containing 4.3 billion tokens. To facilitate fast training of our deep learning approach, we utilise
the 100-dimensional variation, which provides a more compact representation of words but at the cost of
representational power versus the 300 dimensional embedding. In any case, this representation is typically
less compact overall than the TF-IDF approach which is proportional to the vocabulary size as opposed
to the GloVe model which for each document is proportional to the number of tokens embedded as a 100
dimensional vector.

Not all words in the SatiricLR dataset are present in the pretrained vocabulary, in this instance we follow
[13] and randomly initialize their embedding - unknown words are treated as random noise. However, our
process differs, we take the 10 random existing word embeddings and produce a corresponding mean vector,
aiming to maintain similar variance. Where computational performance is not an issue, it seems better to
take a fixed number of most infrequent words in the document and then generate the mean vector. Ergo,
if the word is not in the vocabulary it seems best to assume it is uncommon and, hence, generate it from
uncommon word embeddings.

2.3 Model

We investigate two separate convolutional networks.
First, a Simple CNN over the text representation using 1D kernels of varying sizes grouped into layers is

used. The network consists of two convolutions, first a length 7 kernel with 256 filters is convolved over the
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input volume, followed by batch normalisation (BN), RReLU and Max Pooling with a kernel size and stride
of 2. A second convolution is applied but with a smaller length 3 kernel, in this instance depth reduction
occurs, applying only 128 filters. After applying BN and RReLU, the resultant volume is passed to a fully
connected layer which results in a binary output after softmax. This network provides fast computations
being relatively shallow whilst still allowing us to employ the benefits of convolutions (added contextual
information and shared weights).

Second, we extend the Simple model by increasing network depth and, thus, increasing representation
power. Though we wish to increase the number of input parameters and develop heirarchical abstractions
by increasing the depth, we wish to maintain similar GPU requirements: it should be able to train on a
single GPU within a day. With this in mind, we do not develop depth to the level of a 50-layer ResNet, and
further we design the model around the notion of one-dimensional textual input.

Deep CNNs for text classification have been developed in the past, ranging from 6 layers [26] to as much
as 29 layers [5]. Though [26] examined character-level text representation, the success in nearing state of the
art results with only small increases in network depth highlight that textual tasks do not necessarily require
the number of layers characteristic of image classification tasks. An experimental analysis of a variety of
sixteen-layer convolution models on both word and text representation provided improvements over six layer
or other ML approaches [15]. However, as the improvements were relatively minor, we take an intermediary
approach and utilise 8-convolution layers, each followed by BN and RReLU.

Simply increasing the number of layers without further optimisation is unlikely to assist. This is verified
by our suboptimal testing accuracy in Table 2, suggesting the network runs into the degradation problem
[9] as well as possibly requiring more epochs to train than possible within the constraints. In this network,
we extended the original network by simply adding convolutions intermediary convolutions with 256 filters
with kernel size 3.

We optimise the model by dividing the layers into three groups of two convolutional layers. We have
reduced the layers slightly but we increase the width, this allows us to make better utilisation of GPUs [24].
After two convolutions with 256 filters, we add a residual connection using a standard identity mapping [9].
The residual mappings are of the form

yi = F (yi−1) + yi−1

I.e. we no longer model the intermediary output of yi = F (yi−1) which, despite theoretical equivalence in
context, proves to be an easier task experimentally. We utilise the standard highway path but with full
pre-activation as part of the identity mappings [10].

2.4 Training Procedure

Experimentally, high testing and training accuracy was achieved after a small number of epochs. Coupled
with computational constraints, we capped all experiments at 100 epochs, which is reasonable for a standard
GPU to compute relatively quickly.

A smaller learning rate is often desirable with deeper networks to prevent the gradient from exploding
[22], however due to the smaller number of epochs this must be coupled with the limited number of iterations.
We set the learning rate to 0.01 but add decay: at epochs 10, 30, and 60 the learning rate is reduced by
half, i.e. the final learning rate is 0.00125.

Following [12], we utilise SGD with a batch size of 16 in place of more complex optimisers due to the proven
generalising capabilities. Similarly, the experimental results in [25] demonstrate the proven performance of
RReLU in reducing overfitting and increasing overall accuracy, partially due to the ability to reduce the
possibility of dead units. Thus, we also employ RReLU in place of standard ReLU for all activations.

3 Results

Under the Simple CNN model, the GloVe approach provides relatively good results, but still below the
existing dataset best in [8]. As per Table 2, at 100 epochs the deep model is able to compete with the BoW
approach but fails to improve upon the result, however it is possible that further accuracy increases may
occur as partially suggested by the improving and changing loss in Figure 2. All models are able to minimise
error very quickly, in addition it appears possible that a well designed shallow network may actually provide
better results than a deep variation, given the limited dataset size and the absence of difficulties in achieving
reasonable test accuracy (i.e. avoiding the optimisation issues of depth but improving the design to increase
the accuracy on par with the Deep (Optimised) version).

Table 2: Summary of testing accuracy (after 100 epochs of training). A comparison of both text representations
and models are provided, each cell contains the Testing Accuracy (%) to two decimals.

GloVe TF-IDF
Simple 81.92% 71.34%
Deep (Unoptimised) 69.03% -
Deep (Optimised) 90.01% 60.13%
BoW (Means) [8] 93%

Table 2 shows that the GloVe representation provides an empirically superior prior to a TF-IDF represen-
tation. This suggests that TF-IDF is not suitable for CNNs as they are vocabulary based lacking contextual
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Figure 1: Error over 100 epochs for the Simple CNN approach using GloVe.

Figure 2: Error over 100 epochs for Deep (Optimised) approach using GloVe.

information such as word adjacency that GloVe provides. The Deep model performs considerably worse
under TF-IDF than its simple counterpart, this is possibly due to the large number of convolutions being
unable to extract features from the non-spatial representation, at least within the limitation of 100 epochs.
Ultimately, whilst all models fall below the previous best BoW approach, further computational power in
this case may lead to superior test accuracies. Whether clever CNN design can negate the need for increased
epochs in general is unclear.

4 Conclusion

We have shown that different text representations can materially affect accuracy when utilising CNNs for
text classification. However, though we have explored multiple text representations, there is a more fun-
damental consideration of processing that has been avoided. The characters that should be removed when
generating tokens is a tricky question, e.g. how to deal with quotation marks (e.g. treat as a separate token).
In our results, the binary text classification task proved achievable to high accuracy without requiring in-
tensive training (several hours on a normal GPU in many cases). Though producing higher input parameter
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space, the GloVe model is empirically a more suitable prior and comes at negligible extra computational cost
in most instances. Further improvements in design to the Simple CNN, including changing the optimiser
to RMSProp and utilising dropout, may prove beneficial in improving the test accuracy. It is clear from
all the network models that CNNs appear to have strong applicability to text based tasks, with careful
construction of text representation. Exploration of different CNNs designed for text (e.g. character-level
networks) to larger classification tasks without high accuracy results currently may be a useful test of this.
Finally, we note that the present dataset is still relatively small (compare to the nearly 20,000 articles in
the 20-newsgroups dataset), expanding the dataset by incorporating new sources and article varieties may
assist in highlighting the benefits of a deep learning approach given more training data.
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