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Abstract. This report implemented three versions of neural networks, including simple three-layer network, an auto-

associative network with share weight, and a convolutional network to classify handwritten digits. The second 

version of the implementation identify and reduced the noisiest patterns from the training dataset and produced a 

better result than the first version. The best result was produced by the third version of the implementation, the 

convolutional neural network. However, both second and third version was not being able to increase the 

performance of the neural network to the desired level, which may cause by the insignificance of the noisy data and 

the compression of the original dataset for auto-associative network and convolutional network respectively.  
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1 Introduction 

1.1 Dataset Selection 

 

Digit recognition is one of the most common data set for machine learning. The dataset used in this report is the optical 

recognition of handwritten digits data set (Alpaydin & Kaynak, 1998) which contain 64 dimensions and 10 classes from 

0 to 9. This dataset was used to experiment linear programming boosting (Demiriz, Bennett, & Shawe-Taylor, 2002) 

and new algorithm of approximate maximal margin classification (Gentile, 2001).  

 

There are three reasons to choose the optical recognition of handwritten digits dataset. Firstly, it contains 5620 

instances, which can provide relatively enough training data to train the network. Secondly, it has been pre-processed 

and generalized into matrixes of 8x8, which only provide 64 attributes for every instance, so there is no need to process 

images before training and the training speed will increase because of the reduction of the input size. The final reason is 

that this dataset has been used in many papers, so there will be enough comparison for the result. 

1.2 Problem and Modelling 

The main focus of this report is to determine whether the auto-associate network with share weight method or the 

convolutional neural network can perform a better result on classification dataset.  

 

Demiriz et al.’s paper shown there is a huge gap in accuracy between with noise and without noise. Auto-associative 

network and shared weights are normally used to compress images (Gedeon, Catalan, & Jin, 1997), but it can also 

extract patterns from the data. Hence using the auto-associative network with share weight to pre-learn the data set 

while generalizing the data’s patterns. And then calculate the loss of every training patterns via the pre-learned auto-

associative network, which might distinguish the noisiest data and remove them to increase the performance of the 

neural network. 

 

The convolutional neural network is an important deep learning network that demonstrated a great capability for image 

classification problems (Yu, Jia, & Xu, 2017). In this report, the convolutional neural network was being used to 
classify the handwritten digits, which are compressed images. 

   

This report has implemented an auto-associative network with three concrete layers from classification network and 

three mirror layers to train on the input data with 64 dimensions. After certain epochs of training, the network will 

remove the mirror layers and concentrate on the training of concrete layers with 64 dimensions of inputs and 10 

dimensions of outputs. This report also implemented a convolutional neural network as the comparison with the auto-

associated network. 
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1.3 Analyse methods 

There are five methods were used in this report to evaluate the performance of the networks. The first one is the training 

accuracy. After every epoch of the training, the analyse program will calculate the accuracy of the network perform on 

the training dataset, which can examine the training result in real-time. However, only perform the accuracy analyse the 

training set is not enough to show the actual capacity of the network, because the network may be overfitting by the 

training and only recognize the training instead of generalizing the patterns of the data (Srivastava, Hinton, Krizhevsky, 

Sutskever, & Salakhutdinov, 2014). Hence, besides calculate accuracy on training data, the report also analysed the 

accuracy of testing data. The third analyse method is the loss. This method is especially important the regression 

network because it's the only way to show how much the regression network has learned. The fourth method is 

confusion matrix. This confusion matrix can easily show how much data was being misclassified. The last method is the 

training speed. This method is combined the first, second and the third method to calculate the increased speed of each 

of these figures. 

 
 

2   Method 
 

There are three versions of the network was implemented. The first version is built as a baseline to compare with the 

performance of the second and third version of the code. The second version of the code is based on the first version 

with the noisy data removal that distinguished by the auto-associated network with share weight. The third version is a 

simple convolutional neural network with one convolutional layer and one pooling layer. 

2.1   Data processing  

The first step is processing the data. Firstly, load the data via pandas. And then we only need to transfer the data into 

numeric because the data was already being processed into numbers and there are no characters in the data. Secondly, 

the pandas dataframe will be transferred into an array, which will be divided into x_array and y_array. Finally, the 

x_array and y_array will be wrapped by tensors and variables become the data that feed into the network. And the 

testing data have the same process. 

2.2   The first version of implementation: simple three-layer network 

The first version of the network is a simple three-layer neural network with 64 input neurons, 20 hidden neurons, and 10 

output neurons. There are three different optimizers was being used in the first version neural network, Stochastic 

Gradient Descent (SGD), Resilient Propagation (Rprop) (Riedmiller & Braun, 1993), which is an adaptive learning 

algorithm, and Adam algorithm (Kingma & Ba, 2015). And the loss function used in this network is the cross-entropy 

loss function, which is usually used in classification network. The accuracy of both testing and training was being 

defined as two functions, each of the functions will be called during every epoch of the training and storing the accuracy 

into two separate lists.  

 

Chart 2.1 Version 1 accuracies with SGD as optimizer 
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The chart 2.1 has shown the accuracy on both testing and training set of the first layer. After around 600 of epochs, the 

increased speed on both accuracies start to drop, and both accuracies have reached over 90%. After 2600 of epochs, the 

training accuracy reached 96.23% and the testing accuracy reached 93.92%. And the testing confusion matrix in table 

2.2 shows that the neural network can classify the data in a reasonable range, without very extreme errors.  

 

372 0 1 0 2 0 0 0 0 1 

0 368 4 1 0 0 1 1 8 6 

0 0 375 2 0 0 1 0 1 1 

0 0 1 378 0 5 0 1 1 3 

0 5 0 0 365 0 7 1 5 4 

1 0 3 1 0 363 0 0 1 7 

0 3 0 0 1 0 373 0 0 0 

0 2 1 1 4 0 0 377 0 2 

2 16 0 1 6 5 1 0 347 2 

2 8 0 5 8 1 0 9 3 346 

 

Table 2.2 Version 1 testing confusion matrix 

 

The Rprop optimizer has significantly boosted the speed of the training as shown in the chart 2.3. With the Rprop 

optimizer, the accuracy has reached the first version’s level with only 50 epochs. However, the training accuracy has 
reached 99.9% and the testing accuracy remains basically the same as the first version’s accuracy. The big gap between 

the accuracies indicates there is an overfitting problem. Adding more training data will be an efficient way to address 

the overfitting issue. However, there is no more data to train, so in order to solve the overfitting problem, other methods 

must be adopted.  

 

 

Chart 2.3 Version 1 accuracies with Rprop optimizer 

 

 

The Rprop indeed boosted the speed of the training, however, the testing accuracy is basically the same as SGD. Adam 

optimizer on the other hand, not only boosted the speed of the training, it also slightly increased the accuracy on the 

testing dataset. The chart 2.4 shows the training and testing accuracies when using Adam as the optimizer. 
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Chart 2.4 Version 1 accuracies with Adam optimizer 

2.3   The second version of implementation: auto-associative network with share weight 

The auto-associative network with share weight has been used to compress images (Gedeon, Catalan, & Jin, 1997).  

An assumption of distinguishing and remove the noisy patterns via the auto-associative network will increase the testing 

accuracy and mitigate the overfitting problem have been made. To verify the assumption, the report implemented an 

auto-associated neural network with share weight to training with the pattern as both input and output. 

 

A new three-layer auto-associative network with share weight was being implemented. The first layer is the input layer, 

with 64 input neurons as same as the first and the second version. The second layer is the hidden layer, it contains 10 

neutrals. The third layer is the mirror input layer with 64 output neurons. The diagram 2.5 indicated how the network 

was structured. 

 

 

 

 

 

 

The training process has divided into two stages. The first stage is to treat the full three-layer network as a regression 

network and feed the input data into the input layer and use the MSE loss function to calculate the loss. In this stage, the 

network will extract the pattern of the data. After the first stage, the network will run through all the patterns and 

produce a list of loss for every pattern. The list of losses will be sorted, and these noisiest data (with the highest loss) 

will be deleted from the training dataset. The remaining data will be used to train the simple three-layer neural network 

same as the first version with Adam optimizer.  

 

Diagram 2.5 Version 3 network 
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In the first stage, the report has tried to use different optimizers to reduce the loss. And the chart 2.6 showed the loss 

reduction process. 

 

 

Chart 2.6 Version 2 first stage losses with share weight 

 

 

 

 

It can be seen when using the SGD and Rprop as the optimizer, the loss is significantly unstable, and the numbers at the 

valley are around 2.90 and 5.97 respectively. The Adam optimizer, on the other hand, can produce much stabler losses 

and the numbers are lower than both SGD and Rprop with only around 1.78. Therefore, the best choice for the first 

stage is Adam optimizer. 

 

To implement the share weight in PyTorch, after defined every layer in the network model, extract the weight between 

input layer and hidden layer and call its "t" function to get the tensors of the weights. After that, wrap the tensors with 

Parameters object and assign them to the mirror input layers as weight. This operation will connect the weight of mirror 

layer and the weight of concrete layer. This is the implementation of the weight sharing in PyTorch. 

 

 

 

Chart 2.7 Version 2 first stage losses with share weight 

 

 

In the first stage, when the loss drops to under 2, which is basically the bottom of the loss valley, the program will start 

to calculate the loss of every training patterns and the result is showed in the Chart 2.7. It is clear that there are small 

range of data that are significantly noisier than other data. For example, from around row number of 3500, the loss of 

patterns has a considerable increase, and this set of patterns is the part that will be removed. 

 

In the second stage, the simple three-layer neural network with Adam optimizer that same as the first version will be 

trained with the cleaned training dataset. The training and testing accuracies of the second stage are displayed in the 

Chart 2.8. 
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Chart 2.8 Version 2 second stage accuracies on cleaned training data 

 

As the data have shown, while the training accuracies have no visual changes, the testing accuracies have increased 

around 0.3. This means the auto-associative network indeed identified noisy data, and through remove these data, the 

performance of the network has increased a little bit. 

 

2.3   The third version of implementation: convolutional neural network 

The convolutional neural network as a type of deep learning network are commonly used to work with pictures. The 

dataset that this report has been working on is a picture problem, hence introduce CNN to train and classify on the 

dataset might have a better result than the previous networks.  

 

The implementation of the third version of the network is a one layer convolutional neural network with one 

convolutional layer, and one max-pooling layer, which is an important pooling algorithm for convolutional neural 

network (Nagi et al., 2011). The network has filters of size 5, patting of length 2, and stride of length 1, it also uses the 

ReLU as the activation function. After training with 1000 epochs, the testing accuracy has a significant increase 

compared with the first two versions of networks. As the result shown in chart 2.9, the best testing accuracy can reach 

almost 96%, which is the best result that this report achieved. 

 

 

Chart 2.9 Version 2 second stage accuracies on cleaned training data 

2.4   Methods of running the code 

The code of the implementations can run via python2.7 environment, which requires install packages including numpy, 

pandas, and torch. To run the first and second version of implementation, only need to put the data folder which contain 

optdigits.tra and optdigits.tes file within the same directory and run the command “python first-version.py” and “python 

third-version.py”. The second version contain two files, the “python second-version-share-weight.py” need to be run 

first and generate a txt file that contain the indexes of the patterns that need to be removed, and then run the “second-

version-simple-three-layer.py” file to train the neural network. 
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3   Result and Discussion 

This report has implemented three version of the code from the basic backpropagation classification network to auto-

associative network with share weight. And in the process, every version of the code has produced its accuracies on 

both testing and training dataset which are the most evaluation methods. To evaluate the work of this report, some 

comparisons with other published paper has been made. Demiriz, Bennett, and Shawe-Taylor(2002) have used the same 

dataset to examine the linear programming boosting by column generation. And they have achieved the testing accuracy 

of 95.10% with AdaBoost (Demiriz, Bennett, & Shawe-Taylor, 2002). In this report, the best testing accuracy achieved 

is 95.99%, which is higher than the result of the published paper.  

 

The second and the third version of the implementation both has improved the performance of the network in certain 

ways. The second version of the implementation of removal noisy data via auto-associative network and share weight 

method has slightly increased the testing accuracy from 95.10% in the first version to 95.49%. The second version of 

the code has slightly reduced the gap between the training accuracy and testing accuracy from 4.66 to 3.97. This means 

the auto-associative network indeed extracted the feature of the data and reduced some noisy data, in the meanwhile 

addressed a little bit of the overfitting problem. The third version of the implementation, the convolutional neural 

network has produced the best result with the testing accuracy of around 96%, and the gap between training accuracy 

and testing accuracy have dropped to 3.32. This means the convolutional neural network has the ability of address 

overfitting problem in this dataset.  

 

4   Conclusion and Future Work 

This report has experimented with multiple methods to boost the network’s performance. Under the structure of the 

simple back propagation network and limited data numbers, the best way to increase testing accuracy is to change the 

optimizer. To some extent, the auto-associative network with share weight can extract the data pattern and identify these 

noisy data that can be removed to increase the performance of the simple three-layer network. And the result has shown 

that the testing accuracies have indeed increased after the removal of these noisy data. The best result of this report is 

from the third version of the implementation, the convolutional neural network, however, the increase of the 

performance is still limited. Even with the best result, the gap between testing accuracy and training accuracy is still 
clear, which means even with CNN, the overfitting problem still exists. 

 

There are two guesses about why the auto-associated network and convolutional neural network did not perform as 

good as assumed. Firstly, the data noise might not the main cause of the overfitting problem, therefore, even erase these 

noisy patterns, the performance still not improve too much. Secondly, the reason why the convolutional neural network 

did not produce the desired result is that the dataset was being pre-processed, every pattern was being compressed from 

32*32 bitmaps into 8*8 data, which might have lost some valuable information that can significantly increase the 

performance of the convolutional neural network because convolutional neural network can extract information during 

the training process. 

 

For future work, it is necessary to consider new ways of using the ability of auto-associated networks to identify noisy 

data in the dataset, which can be quite useful in multiple scenarios including identify abnormal data of human health 

and do not limit to training neural networks. And the convolutional neural network may need more raw data to train 

instead of compressed data, which might easier for simple neural networks to train, but not for deep learning networks 

including the convolutional neural network. Hence the future work can systematically research the performance of 

convolutional neural network on compressed and non-compressed images. 
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