
CLASSIFYING INCOME POTENTIAL

FROM THE ADULT DATASET:

COMPARING DIFFERENT UNDERSTANDING

AND PREPROCESSING DATA
Hongzheng He

Research School of Computer Science, Australian National University

u6342036@anu.edu.au

Abstract. Adult dataset has 48842 instances and 15 attributes. The last one is the qualitative attribute which is called

‘income’ in the code. My job is to predict each adult’s income potential and classify them according to the

quantitative attributes. There are different methods and thoughts about the raw data (Reducing the training set,

normalizing, stratified sampling and deal with the categorical columns) influencing the final predicting results which

will be shown and compared in this paper. Some methods can improve the neural network but some are not

absolutely can, and the best result is better than those shown in the paper for the same dataset I choose (Vidya, Sejal

and Ronit).

1. Introduction
1.1 Dataset
The dataset I choose is the adult dataset, also called "Census Income" dataset. There are 48842 instances with 14
quantitative attributes and 1 qualitative attribute which all clearly describing its meaning. 14 quantitative attributes:
'age', 'workclass', 'fnlwgt', 'education', 'education-num', 'marital-status',' occupation', 'relationship', 'race', 'sex', 'capital-
gain', 'capital-loss', 'hours-per-week', 'native-country'. Qualitative attribute: 'income'. ‘income’ has two values which is
‘<=50k’ (less or equal to 50k/yr) and ‘>50k’ (more than 50k/yr). The quantitative attributes are the features and the
qualitative attribute is the target.
There are 9 attributes are ‘string’ within raw data: ‘workclass’, ‘education’, ‘marital-status’, ‘occupation’, ‘relationship’,
‘race’, ‘sex’,’ native-country’ and ’income’ which are must be converted to numeric in order to let network learn. Thus,
each different value of these attributes is arranged as a number. Particularly, ‘<=50k’ ‘income’ is 0 and ‘>50k’ is 1. The
related code is shown below:
#convert string to numeric, income:<=50K: 0, >50K: 1

category_col =['workclass', 'race', 'education','marital-status', 'occupation','relationship', 'sex', 'native-country','income']

for col in category_col:

 b, c = np.unique(data[col], return_inverse=True) data[col] = c

The reason I choose this dataset is there is an easy-understanding classification target: predicting the income and
classify it into two groups based on the learning on the quantitative attributes. The quantitative attributes varying from
different aspects and can be handled with different ways which can increase the differences of preprocess methods.
1.2 Model
The model is a two-layers neural network with 50 hidden neurons as one hidden layer with 1000 epochs. At first,
Stochastic Gradient Descent (SGD) is chosen as the optimizer but the result of confusion matrix (fig.1) and the output
(fig.2) of each epoch is weird as shown below:

Remark.2 Loss and accuracy are calculated every 50

epochs during the network training. The accuracy means

the ratio of the correctly predicted targets to the total

targets. The accuracy should increase in ideal situation.

I think more data should be lied on the diagonal so the matrix seems to be wrong. And the accuracy stays still so there
may be an overfitting condition. Therefore, I choose Rprop optimizer and the result seems to be fine.
According to the paper (L.K. Milne1..., 1995), the raw data always need to be preprocessed to get better predication
result. Cumulative histogram enhancement technique (Richards, 1986) is used in the paper (L.K. Milne1..., 1995) which
can scale the data to improve the learning effect.

2. Method
2.1 Deleting the incomplete data
After observing the raw data, it’s found that there are many instances with incomplete data: 1836 instances with
incomplete ‘workclass’ (5.64%), 1843 instances with null ‘occupation’ (5.66%) and 583 instances with null ‘native-
country’ (1.79%). These incomplete data will influence the network learning accuracy and waste the learning time.
Therefore, deleting the incomplete data is necessary. Fortunately, the incomplete data in adult dataset are not too many,
otherwise, the network learning few data is unreliable. In this way, either only the relative complete data is used or the
data should be collected again. The related code is shown below:
#check the incomplete data

col_names = data.columns

num_data = data.shape[0]

for c in col_names:

 num_non = data[c].isin(["?"]).sum()

 if num_non > 0:

 print (c) print (num_non) print ("{0:.2f}%".format(float(num_non) / num_data * 100)) print ("\n")

#delete the incomplete data

data = data[data["workclass"] != "?"] data = data[data["occupation"] != "?"] data = data[data["native-country"] != "?"]

2.2 Normalize
After observing the raw data, the range of each attribute can be much different. In order to avoid the attributes with
large range influence overwhelmingly on the learning process than the attributes with little range and make the
computing on learning easier, normalizing the data is a useful and powerful method. The related code is shown below:
for column in data:

 # only normalizing the features

 if column != 'income':

 data[column] = data.loc[:, [column]].apply(lambda x: (x - x.min()) / (x.max()- x.min()))

2.3 Stratified sampling
In the above steps, training set and testing set are respectively chosen random 80% and 20% data. But it’s possible that
more data belonging to one class are chosen than another class which makes the network learn much feature of one

Fig.1 Confusion matrix of the trained neural network with

SGD optimizer.

Fig.2 Loss and Accuracy on training set in epochs using

neural network with SGD optimizer

Remark.1 If the actual value equals to the predicted value,

the value locating on diagonal will be added. So the

number on the diagonal should be larger in ideal situation

should

class. As a result, it’s better to force the ratio of data belonging to each class to be the same, in my approach, 80% of
both ‘<=50k’ and ‘>50k’ data are training set and the 20% as testing set. The related code is shown below:
high_income = data[data['income'] == 1]

low_income = data[data['income'] == 0]

train_data = pd.concat([high_income.sample(frac=0.8, random_state=1),low_income.sample(frac=0.8, random_state=1)])

test_data=pd.concat([high_income.sample(frac=0.2, random_state=1),low_income.sample(frac=0.2, random_state=1)])

2.4 Re-arrange data
It’s not hard to find some raw data are too detailed, like 'marital-status' and ‘workclass’. I guess this may make the
network to obtain too much useless different patterns. Then I tried to re-arrange these data to make them more simple
and meaningful. For ‘marital-status’, 'Divorced', 'Never-married', 'Separated' and 'Widowed' all can be defined as ‘no
married’. 'Married-AF-spouse', 'Married-civ-spouse' and 'Married-spouse-absent' can be defined as ‘married’. For
‘workclass’, 'Self-emp-not-inc' and 'Self-emp-inc' can be defined as ‘inc’. 'Local-gov', 'State-gov' and 'Without-pay' can
be defined as ‘gov’. The related code is shown below:
data.replace(['Divorced', 'Married-AF-spouse', 'Married-civ-spouse', 'Married-spouse-absent', 'Never-married','Separated','Widowed'],

 ['not married','married','married','married','not married','not married','not married'], inplace = True)

data.replace(['Private', 'Self-emp-not-inc', 'Self-emp-inc', 'Federal-gov', 'Local-gov','State-gov','Without-pay', 'Never-worked'],

 ['Private','inc','inc','gov','gov','gov','Without-pay','Never-worked'], inplace = True)

3. Results and discussion
Firstly, the comparisons of my different methods are shown in the fig.3 :

 Testing

Accuracy:

Training time Testing time

Raw data
75.85 % 95.2651 Seconds 0.0505 Seconds

Incomplete data deleted
81.13 % 87.5845 Seconds 0.0444 Seconds

Incomplete data deleted + Normalize
85.25 % 97.2928 Seconds 0.0413 Seconds

Incomplete data deleted + Normalize +

Stratified sampling
85.96 % 109.5549 Seconds 0.0443 Seconds

Incomplete data deleted + Normalize +

Stratified sampling + Re-arrange

86.18 % 107.4504 Seconds 0.0417 Seconds

It can be seen from the figure, deleting incomplete data can not only improve the testing accuracy but also decrease the
training time which means deleting incomplete data can help network learn and save the time. Added normalizing, the
testing accuracy is improved obviously which showing normalizing can help the network learning effect. On the other
hand, the training time increases, in my opinion, there is no doubt normalizing costs more computing time. However,
the testing time decreases, I think because the normalized data does help to save time but if the large size influences. As
the figure shows, stratified sampling can help improve the accuracy but not much, I think it is because that the
distribution of different target class data in this dataset is almost average, the benefit of stratified sampling is not
obvious. About the re-arrange, there is improvement both in testing accuracy and training/testing time. Therefore, the
data in adult dataset are truly too detailed.
Next, the accuracy on testing set of neural network with two layers is 0.850 which is a little below than mine (0.862).

Fig.3 Comparison on accuracy on testing set, training time and testing time of neural networks with different

preprocess methods.

The accuracy of other paper (Vidya, Sejal and Ronit) is shown below:

In addition, after running multiple times, I find the outcome of my code will change but the overall tendency is almost
as the same. Stratified sampling may not help sometimes, the figure.1 shows the best result I got.

4. Conclusion and future work
Different methods have been implemented and the results have been compared. Raw data from real-world can be hard
to learnt by neural network, it’s necessary to preprocess the raw data. And better preprocess depends on better
understanding about the data. Deleting incomplete data, normalize and re-arranging both can help improve the effect
and effectiveness but re-arranging need to depend on specific dataset and attribute’s meaning.
There are still many things need to improve, only two detailed categorical attributes are re-arranged but there are
actually more. The cumulative histogram enhancement technique can be implemented to preprocess the data better. And
the improvement between epochs is little, I believe there are some hidden connection can be removed to save time.
Some kind of network reduction technique can be implemented, like finding the classes of excess units and removing
them. (T.D. Gedeon & D. Harris, 1991)

References:
1. Vidya Chockalingam, Sejal Shah, Ronit Shaw : Income Classification using Adult Census Data (publish time not
found)
2. L.K. Milne1, T.D. Gedeon1 and A.K. Skidmore2 : CLASSIFYING DRY SCLEROPHYLL FOREST FROM
AUGMENTED SATELLITE DATA: COMPARING NEURAL NETWORK, DECISION TREE & MAXIMUM
LIKELIHOOD (1995)
3. T.D. Gedeon & D. Harris : NETWORK REDUCTION TECHNIQUES (1991)

