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Abstract. Adult dataset has 48842 instances and 15 attributes. The last one is the qualitative attribute which is called 

‘income’ in the code. My job is to predict each adult’s income potential and classify them according to the 

quantitative attributes. There are different methods and thoughts about the raw data (Reducing the training set, 

normalizing, stratified sampling and deal with the categorical columns) influencing the final predicting results which 

will be shown and compared in this paper. Some methods can improve the neural network but some are not 

absolutely can, and the best result is better than those shown in the paper for the same dataset I choose (Vidya, Sejal 

and Ronit). 

 

1. Introduction 
1.1 Dataset 
The dataset I choose is the adult dataset, also called "Census Income" dataset. There are 48842 instances with 14 
quantitative attributes and 1 qualitative attribute which all clearly describing its meaning. 14 quantitative attributes: 
'age', 'workclass', 'fnlwgt', 'education', 'education-num', 'marital-status',' occupation', 'relationship', 'race', 'sex', 'capital-
gain', 'capital-loss', 'hours-per-week', 'native-country'. Qualitative attribute: 'income'. ‘income’ has two values which is 
‘<=50k’ (less or equal to 50k/yr) and ‘>50k’ (more than 50k/yr). The quantitative attributes are the features and the 
qualitative attribute is the target. 
There are 9 attributes are ‘string’ within raw data: ‘workclass’, ‘education’, ‘marital-status’, ‘occupation’, ‘relationship’, 
‘race’, ‘sex’,’ native-country’ and ’income’ which are must be converted to numeric in order to let network learn. Thus, 
each different value of these attributes is arranged as a number. Particularly, ‘<=50k’ ‘income’ is 0 and ‘>50k’ is 1. The 
related code is shown below: 
#convert string to numeric, income:<=50K: 0, >50K: 1 

category_col =['workclass', 'race', 'education','marital-status', 'occupation','relationship', 'sex', 'native-country','income']  

for col in category_col: 

    b, c = np.unique(data[col], return_inverse=True)  data[col] = c 

The reason I choose this dataset is there is an easy-understanding classification target: predicting the income and 
classify it into two groups based on the learning on the quantitative attributes. The quantitative attributes varying from 
different aspects and can be handled with different ways which can increase the differences of preprocess methods. 
1.2 Model  
The model is a two-layers neural network with 50 hidden neurons as one hidden layer with 1000 epochs. At first, 
Stochastic Gradient Descent (SGD) is chosen as the optimizer but the result of confusion matrix (fig.1) and the output 
(fig.2) of each epoch is weird as shown below: 

Remark.2 Loss and accuracy are calculated every 50 

epochs during the network training. The accuracy means 

the ratio of the correctly predicted targets to the total 

targets. The accuracy should increase in ideal situation.  



        
 
 
 
I think more data should be lied on the diagonal so the matrix seems to be wrong. And the accuracy stays still so there 
may be an overfitting condition. Therefore, I choose Rprop optimizer and the result seems to be fine.  
According to the paper (L.K. Milne1..., 1995), the raw data always need to be preprocessed to get better predication 
result. Cumulative histogram enhancement technique (Richards, 1986) is used in the paper (L.K. Milne1..., 1995) which 
can scale the data to improve the learning effect. 
 
2. Method 
2.1 Deleting the incomplete data 
After observing the raw data, it’s found that there are many instances with incomplete data: 1836 instances with 
incomplete ‘workclass’ (5.64%), 1843 instances with null ‘occupation’ (5.66%) and 583 instances with null ‘native-
country’ (1.79%). These incomplete data will influence the network learning accuracy and waste the learning time. 
Therefore, deleting the incomplete data is necessary. Fortunately, the incomplete data in adult dataset are not too many, 
otherwise, the network learning few data is unreliable. In this way, either only the relative complete data is used or the 
data should be collected again. The related code is shown below: 
#check the incomplete data 

col_names = data.columns 

num_data = data.shape[0] 

for c in col_names: 

    num_non = data[c].isin(["?"]).sum() 

    if num_non > 0: 

        print (c) print (num_non) print ("{0:.2f}%".format(float(num_non) / num_data * 100)) print ("\n") 

#delete the incomplete data 

data = data[data["workclass"] != "?"] data = data[data["occupation"] != "?"] data = data[data["native-country"] != "?"] 

2.2 Normalize 
After observing the raw data, the range of each attribute can be much different. In order to avoid the attributes with 
large range influence overwhelmingly on the learning process than the attributes with little range and make the 
computing on learning easier, normalizing the data is a useful and powerful method. The related code is shown below: 
for column in data: 

    # only normalizing the features  

    if column != 'income': 

        data[column] = data.loc[:, [column]].apply(lambda x: (x - x.min()) / (x.max()- x.min())) 

2.3 Stratified sampling 
In the above steps, training set and testing set are respectively chosen random 80% and 20% data. But it’s possible that 
more data belonging to one class are chosen than another class which makes the network learn much feature of one 

Fig.1 Confusion matrix of the trained neural network with 

SGD optimizer.  

Fig.2 Loss and Accuracy on training set in epochs using 

neural network with SGD optimizer   

Remark.1 If the actual value equals to the predicted value, 

the value locating on diagonal will be added. So the 

number on the diagonal should be larger in ideal situation 

should  



class. As a result, it’s better to force the ratio of data belonging to each class to be the same, in my approach, 80% of 
both ‘<=50k’ and ‘>50k’ data are training set and the 20% as testing set. The related code is shown below: 
high_income = data[data['income'] == 1] 

low_income = data[data['income'] == 0] 

train_data = pd.concat([high_income.sample(frac=0.8, random_state=1),low_income.sample(frac=0.8, random_state=1)])  

test_data=pd.concat([high_income.sample(frac=0.2, random_state=1),low_income.sample(frac=0.2, random_state=1)]) 

2.4 Re-arrange data 
It’s not hard to find some raw data are too detailed, like 'marital-status' and ‘workclass’. I guess this may make the 
network to obtain too much useless different patterns. Then I tried to re-arrange these data to make them more simple 
and meaningful. For ‘marital-status’, 'Divorced', 'Never-married', 'Separated' and 'Widowed' all can be defined as ‘no 
married’. 'Married-AF-spouse', 'Married-civ-spouse' and 'Married-spouse-absent' can be defined as ‘married’. For 
‘workclass’, 'Self-emp-not-inc' and 'Self-emp-inc' can be defined as ‘inc’. 'Local-gov', 'State-gov' and 'Without-pay' can 
be defined as ‘gov’. The related code is shown below: 
data.replace(['Divorced', 'Married-AF-spouse', 'Married-civ-spouse', 'Married-spouse-absent', 'Never-married','Separated','Widowed'], 

             ['not married','married','married','married','not married','not married','not married'], inplace = True) 

data.replace(['Private', 'Self-emp-not-inc', 'Self-emp-inc', 'Federal-gov', 'Local-gov','State-gov','Without-pay', 'Never-worked'], 

             ['Private','inc','inc','gov','gov','gov','Without-pay','Never-worked'], inplace = True) 

 
3. Results and discussion 
Firstly, the comparisons of my different methods are shown in the fig.3 : 
 
 

 Testing 

Accuracy: 

Training time Testing time 

Raw data 
75.85 % 95.2651 Seconds 0.0505 Seconds 

Incomplete data deleted 
81.13 % 87.5845 Seconds 0.0444 Seconds 

Incomplete data deleted + Normalize 
85.25 % 97.2928 Seconds 0.0413 Seconds 

Incomplete data deleted + Normalize + 

Stratified sampling 
85.96 % 109.5549 Seconds 0.0443 Seconds 

Incomplete data deleted + Normalize + 

Stratified sampling + Re-arrange 

86.18 % 107.4504 Seconds 0.0417 Seconds 

  
 
It can be seen from the figure, deleting incomplete data can not only improve the testing accuracy but also decrease the 
training time which means deleting incomplete data can help network learn and save the time. Added normalizing, the 
testing accuracy is improved obviously which showing normalizing can help the network learning effect. On the other 
hand, the training time increases, in my opinion, there is no doubt normalizing costs more computing time. However, 
the testing time decreases, I think because the normalized data does help to save time but if the large size influences. As 
the figure shows, stratified sampling can help improve the accuracy but not much, I think it is because that the 
distribution of different target class data in this dataset is almost average, the benefit of stratified sampling is not 
obvious. About the re-arrange, there is improvement both in testing accuracy and training/testing time. Therefore, the 
data in adult dataset are truly too detailed.   
Next, the accuracy on testing set of neural network with two layers is 0.850 which is a little below than mine (0.862). 

Fig.3 Comparison on accuracy on testing set, training time and testing time of neural networks with different 

preprocess methods. 



The accuracy of other paper (Vidya, Sejal and Ronit) is shown below: 

 
 
In addition, after running multiple times, I find the outcome of my code will change but the overall tendency is almost 
as the same. Stratified sampling may not help sometimes, the figure.1 shows the best result I got.   
 
4. Conclusion and future work 
Different methods have been implemented and the results have been compared. Raw data from real-world can be hard 
to learnt by neural network, it’s necessary to preprocess the raw data. And better preprocess depends on better 
understanding about the data. Deleting incomplete data, normalize and re-arranging both can help improve the effect 
and effectiveness but re-arranging need to depend on specific dataset and attribute’s meaning.  
There are still many things need to improve, only two detailed categorical attributes are re-arranged but there are 
actually more. The cumulative histogram enhancement technique can be implemented to preprocess the data better. And 
the improvement between epochs is little, I believe there are some hidden connection can be removed to save time. 
Some kind of network reduction technique can be implemented, like finding the classes of excess units and removing 
them. (T.D. Gedeon & D. Harris, 1991)  
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