
Deep Learning for a Classification Problem

in the Case Study of

Handwritten Digits Recognition

Zilu Su

Research School of Computer Science, Australian National University

u6342366@anu.edu.au

Abstract. Deep learning applied in the research of classification or regression problems are significantly

meaningful for machine learning. Two network models that were used for a classification problem are the key

factors in this research. Several methods were applied to evaluate and improve the performance of the model. The

achievement of this study shows the importance of selecting appropriate optimizers. In addition, it is found that

more complex model may not have better performance. The results of this research have reached a relatively

satisfying level. However, there are still several aspects of the future work being left, which should be given high

attention.

1 Introduction

The Modified National Institute of Standard and Technology (MNIST) database which is widely used for training and

testing in the area of machine learning, is a large database of handwritten digits (Wikipedia, 2018). The MNIST

contains the black and white images normalised to fit into a 28x28 pixel. It is a good database for both pattern

recognition and machine learning on real-world data without complex preprocessing and formatting (LeCun, Cortes, &

Burges, n.d.). The motivation of using this database is that it can help to recognise handwriting. The implementation of

the model for classifying handwritten digits is beneficial to make the recognition of letters and words such that a useful

handwriting recognition system can be established. The problem is about classifying a handwritten digit to its exact

value. Classification is implemented by the model of recurrent neural network (RNN) and bidirectional recurrent neural

network (BRNN). The investigations aim to evaluate which model performs better with higher accuracy and efficiency.

Therefore, the measures of classification accuracy and running time are taken into consideration.

Table 1. Information of the MNIST data sets

MNIST Data Sets Number

Training examples 60,000

Testing examples 10,000

Classes 10

Fig. 1. Sample images from MNIST test dataset

Source: Steppan’s own work

2 Methods

2.1 Data Pre-processing

The MNIST is easily accessed via the torchvision package, which consists of model architectures, popular datasets and

common image transformations for computer vision (torchvision, 2018). The data was loaded for batch processing.

mailto:u6342366@anu.edu.au

2.2 Bidirectional Neural Network

A long short-term memory recurrent neural network (LSTM) model was applied in this research. In addition to a

recurrent neural network which has a feedback connection from its output back to the input, LSTM contains the

memory blocks controlling the mechanisms of memorising and forgetting of contents. Furthermore, a bidirectional

neural network uses output neurons as the inputs to gain bidirectional weights. The basic concept of bidirectional LSTM

(BLSTM) is that presenting each training sequence forwards and backwards to two independent recurrent nets that are

connected to the same output layer. Hence, the network has both complete and sequential information about all points

before and after certain point in a given sequence (Zhang, Zheng, Hu, & Yang, 2015). This method was implemented to

compare the performance with that of the model without the bidirectional process in this study.

Fig. 2. Bidirectional RNN

Source: Wang, Hong, Soong, He, & Zhao

Define Bidirectional LSTM Model

class BRNN(nn.Module):

 def __init__(self, input_size, hidden_size,

 num_layers, num_classes):

 super(BRNN, self).__init__()

 self.num_layers = num_layers

 self.hidden_size = hidden_size

 self.lstm = nn.LSTM(input_size, hidden_size,

 num_layers, batch_first = True,

 bidirectional = True) #bidirectional

 self.fc = nn.Linear(hidden_size*2, num_classes)

"*2" for bidirection

 def forward(self, x):

 out, _ = self.lstm(x)

 out = out[:, -1, :]

 out = self.fc(out)

 return out

2.3 Optimizer Selection

Several optimizers are available to update the weights, such as Stochastic Gradient Descent (SGD), Momentum,

RMSProp, Adam, etcetera. Visualization of loss function in terms of these four optimizers can help to choose the most

appropriate one for the model. Here, the four optimizers are for the LSTM model with three epochs; and the learning

rate is equal to 0.001.
optimizer_SGD = optim.SGD(net_SGD.parameters(), lr=learning_rate)

optimizer_Momentum = optim.SGD(net_Momentum.parameters(),

 lr=learning_rate, momentum=0.8)

optimizer_RMSprop = optim.RMSprop(net_RMSprop.parameters(),

 lr=learning_rate, alpha=0.9)

optimizer_Adam = optim.Adam(net_Adam.parameters(),

 lr=learning_rate, betas=(0.9, 0.99))

2.4 Running Time

Recording running time is a good way to evaluate the efficiency of the models for classification. In this research, the

running time of the LSTM and the BLSTM for training were compared in order to analyse which model is more time-

saving.
starttime = datetime.datetime.now()

 train(epoch)

 endtime = datetime.datetime.now()

 print((endtime - starttime).seconds) # Compute time costs

3 Results and Discussion

The optimizer Adam was selected as the only optimizer for the results.

Table 2. Training time and testing accuracy (training epoch=4, batch size=1000)

Training Epoch (Batch Size=1000) 1 2 3 4

Training Time

(Seconds)

LSTM 93 90 87 87

BLSTM 268 266 267 263

Testing Accuracy

(%)

LSTM 76.89 90.61 94.46 95.81

BLSTM 80.22 90.00 94.14 94.95

Table 3. Training time and testing accuracy (training epoch=8, batch size=640)

Training Epoch (Batch Size=640) 1 2 3 4 5 6 7 8

Training Time

(Seconds)

LSTM 91 91 90 94 89 88 88 89

BLSTM 267 255 254 253 256 262 261 258

Testing Accuracy

(%)

LSTM 88.31 94.45 95.92 96.47 97.30 97.50 97.69 97.73

BLSTM 86.98 93.61 95.45 96.25 96.72 97.00 97.49 97.59

Table 4. Training time and testing accuracy (training epoch=12, batch size=500)

Training Epoch

(Batch Size=500)

1 2 3 4 5 6 7 8 9 10 11 12

Training

Time

(Seconds)

LSTM 97 94 93 96 92 93 97 92 93 92 93 97

BLSTM 266 265 266 265 266 272 277 271 269 270 274 264

Testing

Accuracy

(%)

LSTM 90.57 93.76 95.84 96.51 97.25 97.56 97.89 97.89 98.22 98.34 98.04 98.10

BLSTM 90.39 94.72 96.14 96.92 97.30 97.51 97.97 98.40 98.40 98.35 98.55 98.48

Table 2, 3 and 4 show that testing accuracy is related to the number of training epochs as well as the batch size. With

the increase of the number of training epochs and batch size, testing accuracy for both models was improved. Besides,

the training time of BLSTM is roughly three time as long as that of LSTM. The results indicate that BLSTM did not

perform better than LSTM as the proportions of the testing accuracy of them are similar. Conversely, LSTM saved more

time with a little bit higher testing accuracy than that of BLSTM.

A fairly standard model comprising two convolutional layers which are followed by two fully connected layers and a

softmax output layer with ten classes was used for the MNIST benchmark (the MNIST data without any transformation)

to evaluate Adam’s baseline performance. With a high value of accuracy, 99.63%, Adam performed pretty well without

synchronous training (Chilimbi, Suzue, Apacible, & Kalyanaraman, 2014). Compared with this result, what I have done

in this study still has a lot of room for improvement. Concerning the reason of this gap, convolutional neural networks

might perform better than LSTM. Therefore, for the next research, it is necessary to apply a convolutional model to

inspect whether there will be a new achievement.

In terms of the setting of hyperparameters, input size is 28 which is equal to the image size; and the number of classes

was set according to the digits from 0 to 9. Although the parameters for the number of layers (2), hidden size (128) and

the learning rate (0.001) seem reasonable, the idea that this is the best combination of the parameters cannot be proved.

Additionally, parameters also need to be considered in the part of optimizer selection. Regarding to the optimizers

Momentum, RMSprop and Adam, the parameters for attenuation are defined by momentum=0.8, alpha=0.9 and

betas=(0.9, 0.99), which have been showed above. Obviously, Figure 3 illustrates that Adam performed better

than RMSProp with lower loss from approximately the 60th step to the end. Undoubtedly, the advantage of Adam,

offset correction, makes the learning rate for its each iteration have a certain range, contributing to more stable

parameters. However, it is noteworthy that the values of loss of the optimizers, both SGD and Momentum, stay at the

worst level. The reason might be that the number of epochs (only 3) is quite small and the exact answer is supposed be

figured out in the future work.

Fig. 3. Loss of Four Optimizers

4 Conclusion and Future Work

This research aims to correctly classify handwritten digits into their corresponding classes. Long short-term memory

recurrent neural network and a bidirectional model were applied for the data sets. The findings show that the model

without bidirectional technique performed better with the relatively satisfying efficiency and accuracy. In future work,

the reason why bidirectional long short-term memory network did not have more strongly positive influence on the

training set should be analysed. Besides, more effective and efficient hyperparameters as well as the models that are

more time-saving with higher accuracy are supposed to be found through a deeper research. More importantly, graphics

processing unit will be expected to be implemented so that a better classification performance can be achieved.

References

Chilimbi, T. M., Suzue, Y., Apacible, J., & Kalyanaraman, K. (2014, October). Project Adam: Building an Efficient and Scalable

Deep Learning Training System. In OSDI (Vol. 14, pp. 571-582).

LeCun, Y., Cortes, C., Burges, J.C., C. (n.d.). The MNIST Database of Handwritten Digits. Retrieved from

http://yann.lecun.com/exdb/mnist/

MNIST database. (2018, May 23). Wikipedia, the free encyclopedia. Retrieved May 26, 2018, from

https://en.wikipedia.org/wiki/MNIST_database

Steppan, J. (2018). A few samples from the MNIST test dataset. Retrieved from

https://en.wikipedia.org/wiki/MNIST_database#/media/File:MnistExamples.png

Torchvision. (2018). Retrieved from https://pytorch.org/docs/master/torchvision/

Wang, P., Hong, Z., Soong, F.K., He, L., & Zhao, H. (2015). A Unified Tagging Solution: Bidirectional LSTM Recurrent Neural

Network with Word Embedding. CoRR, abs/1511.00215.

Zhang, S., Zheng, D., Hu, X., & Yang, M. (2015). Bidirectional long short-term memory networks for relation classification.

In Proceedings of the 29th Pacific Asia Conference on Language, Information and Computation (pp. 73-78).

