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Abstract

Artificial neural networks are universal function approximators which excel at classification and
regression methods. For many years neural networks have been used throughout the financial
industry and academia for modelling time series data. In this paper we design and implement
an neural network to predict the daily directional movement of the S&P/ASX 200. We compare
two techniques for selecting an optimal set of input features to include in the network. The first
technique measure neuron relevance by activity, and second technique optimises via a genetic
algorithm. Both techniques are shown to reduce the network size and improve predictive perfor-
mance, however the accuracy of the network generated by the genetic algorithm is far superior.
Overall, given a limited dataset, our final results do not compare with similar studies.

Keywords: Neural networks, Financial forecasting, Network size, Relevance, Genetic
Algorithms, Input features

1. Introduction

The efficient-market hypothesis (EMH) states that inefficiencies in asset prices are imme-
diately exploited to zero by market participants. Therefore asset prices completely reflect all
available information and any analysis of historical price data cannot be used to accurately pre-
dict future prices [1].

In reality, however, financial and economic forecasting has been explored by both academics
and industry for many decades. The underlying premise of forecasting is to find functions that
map historical inputs onto outputs that represent future outcomes. This implicitly assumes there
is some form of persistence in future prices [2].

Artificial Neural Networks (ANNs) are universal function approximators that can map any
nonlinear function [3]. Accordingly, ANNs are used for various classification and regression
methods. One specific application of ANNs is financial forecasting, specifically in the predicting
the movements for stock market indexes [4]. Financial time series are non-stationary, highly non-
linear and noisy. Accordingly, traditional forecasting methods are not acceptable in many cases.
ANNs capture non-linear relations and generalise input patterns therefore present a potential
solution [5].

In this paper we design and implement an ANN to predict the daily directional movement
of the S&P/ASX 200 (AXJO) index, where the AXJO index is a market-capitalisation weighted
stock market index of companies listed on the Australian Stock Exchange (ASX). Designing an
ANN is a highly subjective process, and involves much trial and error. This is particularly true
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in selecting the data requirements and hyperparameters of the network. A fundamental aspect of
this paper is to compare two techniques to select an optimal, yet simplified, input vector of our
model. The first technique, as introduced by Mozer and Smolensky, removes neurons from the
network by measuring relevance [6]. Whilst the second technique relies on a genetic algorithm
and fitness function. Thawornwong and Enke show that the performance of an ANN will actually
decline when irrelevant input features are included in a model [7]. Therefore, our objective is to
ensure that the input features included our model are relevant in order to obtain good predictive
results.

This paper is organised as follows. Section two describes the trained ANN and each of its
components. We then introduce the two techniques used to reduce and select the input features of
network. Section four provides the experimental results of our network with a comparison afore-
mentioned the aforementioned reduction techniques. Finally, section five presents our conclusion
and suggestions for further work.

2. The ANN Model

The ANN model used in this paper is a three-layer multilayer perceptron (MLP) network
consisting of an input layer, a hidden layer and an output layer. Such a network is capable of
approximating any function to a degree of required accuracy [8]. Consistent with traditional
approaches, our network applies the back-propagation (BP) algorithm to the train the ANN.
BP allows us to calculate the derivative of the loss function with respect to the weights of the
network, and then apply these gradients throughout the network, so as to converge the output
with target values. The inherent limitations of BP are that convergence can be slow and we may
be unable to escape local optima [9]. For the purpose of this paper, we accept these theoretical
limitations. In the following subsections, we highlight and describe the key parameters of our
network.

2.1. Data Description
In this paper, we aim to predict the daily directional movement of the ASX200. The dataset

used for our model is a combination of technical indicators calculated from the daily price move-
ment and volume statistics for the ASX200. To highlight fundamental relationships with other
markets, we have also included in our dataset technical indicators from the Dow Jones Industrial
Average which is a key equity index in the United States. The main technical indicators that we
use for each market are moving averages for one to five days.

Prior to revealing our inputs to the model, preprocessing of the underlying data was required.
The key considerations during this stage were:

• Log returns were used to scale, detrend and normalise daily price changes. Logarithmic
transformations also convert multiplicative relationships into additive relationships which
are believed to simplify network training [10].

• The model uses lagged values of the dependent variable as a result of autocorrelation.

• Non-market days were ignored, as lagged indicators still hold for a given trading day.

The input dataset is a curated set of technical indicators based on adapted work previously
completed by Qui and Song [11]. A key criterion for the selection of indicators used were reviews
of prior research studies.
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The target output for the dataset is a binary value based on whether the log return for a given
trading day was negative or positive:

output(t) =

1 if ln(pricet/pricet−1) > 0
0 otherwise

In building our model we had 775 trading days of preprocessed data, from January 2014 to
February 2018. 70% of the dataset was used for training our model. The remaining dataset was
used for evaluation of the model, with 10% separated as out of sample to validate the final model.

2.2. Model Construction

The ANN that we are building is to be used for binary classification. Specifically, by provid-
ing an input vector for any given trading day, the model will predict an upward price movement
(1) or, a downward price movement (0). Our model contains three layers, which should be suffi-
cient in approximating the required function.

In terms of designing each layer, there is an infinite number of configurations for our ANN.
This issue is compounded by the fact that there are no set standards for selecting a configuration
based on the required use of the network.

The number of input neurons is contingent on the number and type of independent variables
selected in the mode. Similarly, the number of output neurons is based on the desired number of
output classes - so in our case, only one output neuron is required. That is, if the output value
rounds to one then the market is predicted to increase. Conversely is if the output value rounds
to zero then the market is predicted to decrease.

Determining the number of neurons in the hidden layer is a very important decision, but
equally challenging. We need to balance convergence and generalisation. If we have too many
neurons in our hidden layer the network will learn our training dataset, with no generalisation.
Generally, the solution to determining the optimal number of hidden layer neuron is via trial and
error. For our purpose, and given the constraints of this project, we simply apply a rule of thumb
by using:

hiddenneurons =
√

inputneurons × outputneurons × 2

Activation functions determine the output, or activity, of a processing neuron. Given the
nature of the underlying dataset, we require an activation function that adds non-linearity to the
model. As such, we use the sigmoid activation function given that it conveniently squashes
neuron output to a value between zero and one - which is in line with the target values of our
dataset.

2.3. Model Training

By training our model, we want to find the set of weights between neurons that minimise
the mean square error (MSE) of the model. Training via the BP algorithm is affected by many
parameters such as the number of epochs, learning rates and momentum rates. Whilst there are
no set standards for selecting these parameters, for the purpose of this study, we have used the
following hyperparameters in order to derive our results:
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Parameter Value
Epochs 10000
Learning Rate 0.05
Momentum Rate 0.01
Loss Function Mean Square Error

Table 1: ANN Selected Hyperparameters

3. Input Pruning

Despite having a curated set of preprocessed independent variables to develop our ANN,
there is no guarantee of optimality. We have 18 input features, meaning there are 218 different
combinations for the input vector. Thawornwong and Enke show that the performance of an
ANN for financial time series prediction declines when irrelevant features are included in the
model due to interactions between these features [7]. Therefore want to ensure that the combi-
nation of features used in our final model are relevant in order to obtain good predictive results.
Furthermore, the more complex an ANN is, the longer it will take to train and over-fitting may
potentially also occur. Accordingly, it is important to design an ANN that has reduced complex-
ity and includes only the most relevant inputs [5]. In this vein, we introduce the following two
techniques for input feature selection:

3.1. Neuron Relevance
The underlying premise of this reduction technique is to remove inputs deemed irrelevant

by some measure. The measure we use is adapted from the work of Mozer and Smolensky
[6], whereby the measure of neuron relevance (ri) is based on calculating how well a network
performs with a neuron compared to without the same neuron, where performance is measured
by a loss function. We respectively define neuron activity and output below, where for each
neuron i we attach a coefficient αi which represents the attentional strength of a neuron’s output:

a j = ϕ(Σ(w jioi))

o j = α ja j

We can now toggle the attentional strength of the neuron to turn it on or off, in order to
calculate relevance:

ri = E(αi = 0) − E(αi = 1)

Given the computational cost of calculating this relevance measure for every node in the
network, it is reduced to the following estimation:

r̂i = −
δE
δαi

where ∀ i ∈ network, αi = 1

It then follows, rather than calculating the integral of -δE/δαi between αi = 0 and αi = 1, we
simply evaluate the derivative at αi = 1 to compute r̂i. This estimation preserves the relation ri >
rj where neuron i is deemed to be of higher relevance to the model than neuron j.

Given αi is fixed, we can calculate estimated neuron relevance using BP. However, we need
to use a linear loss function because if we were to use MSE, the gradient will converge on zero
as error decrease and consequently r̂i will decrease as the error decreases. [6]
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As such, we use the following linear loss function in computing relevance:

E = ΣpΣ j(tp j − op j)

Finally we rank all input neurons by their respective r̂i values, the lowest ranked neuron is
then deemed to be least relevant to the model.

3.2. Genetic Algorithms

Genetic algorithms (GA) are used to stochastically search for optimal solutions to a given
problem. The central concept of a GA borrows from biological evolution, where aspects of a
solution are encoded into a chromosome which is then mapped to a performance measure. The
aim of the algorithm is to propagate the best performing chromosomes into ensuing generations
until a termination condition is reached.

In this paper we encode a set of input features into a chromosome in order to train an ANN,
and measure performance. Essentially we want to find the optimal subset of input features for our
model via a stochastic search guided by evolutionary concepts. We note that fitness is measured
by testing accuracy, therefore there is no guarantee that the final input vector will have necessarily
reduced in size, since the best performing model might in fact require all input features. The key
components of our GA are as follows:

• Genetic representation: We represent a chromosome as a binary array of length 18. Each
gene represents an input feature, so that if an allele is set to one, then the feature is included
in the model.

• Fitness function: We use the testing accuracy of the trained model to measure the fitness
of a chromosome.

• Selection: In propagating a next generation, we bias selection towards the most-fit chro-
mosomes; a form of elitism. This is achieved by skewing the probability that such chro-
mosomes are selected to be included in the following generation.

• Reproduction: We use a crossover rate of 0.9 and mutation rate of 0.5. Our crossover
method ensures that at least one parent is from the top quartile of fitness for the given
generation.

Figure 1 shows a high-level structure of the GA we used in building our ANN. The algorithm
produces 25 generations, each with a population of 75. In total, 1875 networks are trained
and tested. Whilst this is computationally expensive, it is still significantly more efficient than
searching the entire input space for optimality via brute force.
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Figure 1: Structure of GA used to build ANN [12]

4. Experimental Results and Comparison

In our first experiment, we constructed an ANN using input neuron relevance as a pruning
mechanism. We began with a complete input vector of 18 independent variables. Then after
training and testing each network with sampling, we reduced the input vector by removing the
least relevant input neuron - that is the independent variable with the lowest r̂i. To avoid potential
overfitting from stagnant neurons in the hidden layer, we calculated the number of neurons in
this layer dynamically based on formula noted in 2.2. Therefore as the number of input neurons
reduced, so to did the number of neurons in the hidden layer. By iteration, we continued this
process until there were no remaining input neurons. At this point, the model which achieved the
highest average accuracy on the test data was returned as the final model.

In the experiment, a network containing one input neuron is returned as the final ANN. This
single input feature was the lagged daily volume of the ASX200. The model achieved an average
test accuracy of 54.68%, and predicted 55.13% of price movements accurately in the out of
sample validation dataset. Per figure 2a, we see that testing accuracy declines after the first few
input neurons are removed, but then begins to improve at a greater rate after a critical value of
input neurons are removed. Concurrently, the MSE of the network steadily increases as input
neurons are removed. These results agree with our hypothesis that by removing irrelevant input
features, we can improve the generalisation of our model, and hence predictive performance.
Furthermore, we also see a significant improvement in training times for our smaller model.
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(a) Model accuracy (b) Model error

Figure 2: Experiment one: ANN using relevance to prune input neurons

In our second experiment, we constructed an ANN using a genetic algorithm to determine
the optimal subset of input features to use in our final model. Where the final model was taken to
be the network with the highest fitness value in the last generation. In the experiment, a network
containing 11 input features was returned as the final ANN. The network included input features
from all three markets and achieved an average test accuracy of 62.02%. The predictive accuracy
of the model, using the out of sample validation dataset, was 64.03%. Despite these good results,
we can see in figure 3, that the max and mean fitness measures of each generation remained
somewhat flat. However, given our elitist reproduction mechanisms, we expected that the fitness
measure would consistently increase throughout the generations.

Figure 3: Average and max fitness for each generation
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To determine a baseline, we trained an ANN using all 18 input features and achieved a test
accuracy of 53.45%. We observe that both experiments produced improved predictive results
and required less training time. The test accuracy of the network generated using input neuron
relevance (r̂i.), was marginally better than our baseline, at 55.13%. Conversely, the test accuracy
of the network generated using a GA, was significantly better than our baseline, at 62.02%.

Of interest, we note, that the single input feature included in our final model for experiment
one, is also included in the final set of input features as determined in experiment two. In an
indirect way, this validates r̂i as a measure of neuron relevance, but also indicates that the dif-
ference in performance between both experiments may be due to how different combinations of
input features interact with each other.

Despite the stronger theoretical underpinning of the r̂i calculation, our genetic algorithm pro-
duces an ANN with much better predictive results. That said, when comparing our GA generated
model against similar studies, the prediction accuracy underperformed, as can be seen in table 2.
There is no underlying consistency in any of input data, output data, and model structure across
each of these studies. Therefore identifying an exact cause of the performance discrepancy is
difficult, but we suspect it may relate to the limited size and representation of the data we have
used in this paper.

Studies Method Stock Market Accuracy (%)
Huang et al. [13] SVM Japan 75
Kara et al. [14] ANN Istanbul 75.74
Qui et al. [11] GA-ANN Hybrid Japan 81.27
Experiment 1 ANN and relevance Australia 55.13
Experiment 2 ANN and GA Australia 64.03

Table 2: Comparison of results with similar studies

5. Conclusion

In this study, our aim was to construct an ANN to predict the daily directional movement
of the ASX200. A key objective of this construction was to simplify the input features of the
model so as improve the relevance of the included inputs, and hence prediction performance.
Other benefits of this approach included efficient computation given a smaller network size and
potentially enhanced generalisation. We implemented two techniques to automatically determine
the optimal input features to include in our model. The first technique was neuron relevance as
proposed by Mozer and Smolensky [6], and the second was a GA. Both techniques improved
prediction accuracy and reduced the network size, however, the accuracy of the ANN generated
by the GA was far superior. Our final results were still below expected based on similar studies.

We believe there is the opportunity to improve the model, and by extension its performance.
The first opportunity would be to extend our GA to also tune the other hyperparameters of the
model, such as the number of neurons in the hidden later. This would potentially have a signif-
icant impact on accuracy. In our current GA implementation, we don’t see a consistent gener-
ational improvement as we would expect given our elitist approach. Accordingly, by extending
the chromosome to include aspects of other hyperparameters it might expand the search space to
allow for more a evident optimisation.

Secondly, since we have applied a naive approach to determining the number of neurons
in the hidden layer of our network there is an obvious opportunity to apply a relevance based
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reduction to the neurons in this layer. This will ensure a sufficient amount of neurons for learning,
but also prevent overfitting from having too many neurons.

Finally, our current implementation might be limited by the availability of data. Therefore,
there is an opportunity to grow the dataset and also review the full set of input features we have
determined. If the dataset were to grow excessively large, this may have significant impact on
the time requirement for our GA based approach.
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