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➤ Visual servo control: Automatic positioning of a robotic system using data
derived from a camera system.

➤ PBVS: Position based visual servo. The control problem is solved using
classical state space representation of the system. Visual data is used as
sensor input to a state-estimator that provides state-estimates for the
feedback loop.

➤ IBVS: Image based visual servo. The robot kinematics are mapped into
feature kinematics in image space. The control task is posed directly as
stabilisation of observed features.

➤ Dyanmic IBVS. Image based control of a dynamical system

ż = v Kinematics
v̇ = g(z, v, u) Dynamics
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Outline of talk

Part I: Some motivation and perspectives

Part II: A short sharp review of classical IBVS

Part III: Dynamic IBVS for a flying brick.

Part IV: Conclusions.

This talk gives only a very narrow path through the field of visual servo control.

There is a large literature in classical visual servo control and IBVS in particular.

There is not much literature on IBVS for dynamical systems.
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Part I: A Typical Aerial Robotic System

Sensor systems:
Inertial Measurement Unit (IMU)

angular rates @ 70Hz
accelerometers @ 70Hz
magnetometers @ 70Hz

Fused to provide attitude @ 70Hz
Camera

image features. @ 10-20Hz
optic flow. @ 10-20Hz
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Motivation against Classical Estimation and Control

The mapping from sensor measurement to state is highly non-linear. The
dynamics of the vehicle are non-linear. Sensor noise is often highly correlated

due to platform vibration.

&

The closed-loop bandwidth of the vehicle (required for disturbance rejection)
demands the full bandwidth of sensor measurements. There is no spare

bandwidth for a smoothing filter.

⇓
Designing a filter to fuse all sensor readings into a full state-estimate is difficult.
Filters designed on extensions of linear methods tend to be highly sensitive and

unreliable.
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Motivation for sensor based control

➤ No dynamic lag in measurement process.

➤ In many applications, the sensitivity of the sensor to error and the required
precision of the closed-loop match.

➤ For task-based missions defined in the sensor domain there is minimal
requirement for calibration of sensor systems.

Sensor based control is highly reliable and has extremely good robustness
properties

However, representing the system dynamics in the sensor domain can lead to
highly non-linear control design problems.
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Part II: Classical Visual Servo Control
1. An ensemble of visual features s ∈ Rn are

extracted from each image.
2. The visual error is

s̃ = s− s∗.

where s∗ denotes the desired image
configuration.

3. The visual kinematics are

d

dt
s̃ =

∂s

∂z

dz

dt
= L(s, z)ż

Where the pose of the camera is z = (R, ξ).

L(s, z) =
∂s

∂z
Image Jacobian

IObserved features
{s1, . . . , s4} in red
IGoal features
{s∗1, . . . , s∗4} in green.
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Classical IBVS control design

Linearising control law for a fully actuated kinematic system:

v = ż := −
(
L(s, z)TL(s, z)

)−1
L(s, z)T s̃

Leads to the linearised image feature dynamics

d

dt
s̃ = −L(s, z)

(
L(s, z)TL(s, z)

)−1
L(s, z)T s̃

Close to the goal z = z∗ + ξ, s = s∗ + η and η ≈ L(s∗, z∗)ξ.

L(s∗, z∗)ξ̇ ≈ −L(s∗, z∗)
(
L(s∗, z∗)TL(s∗, z∗)

)−1
L(s∗, z∗)TL(s∗, z∗)ξ

⇒ ξ̇ ≈ −ξ
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Naive Dynamic IBVS
Consider a simple dynamical system

ż = v Kinematics

v̇ = g(z, v, u) Dynamics

The velocity v is not directly measured.

Try using the visual error flow ˙̃s as a sensor based velocity measurement

˙̃s := L(s, z)v, v =
(
L(s, z)TL(s, z)

)−1
L(s, z)T s̃

Sensor domain system dynamics

d

dt
s̃ =˙̃s Kinematics

d

dt
˙̃s =

∂L(s, z)

∂s
˙̃s +

∂L(s, z)

∂z

(
L(s, z)TL(s, z)

)−1
L(s, z)T s̃

+ L(s, z)g(z,
(
L(s, z)TL(s, z)

)−1
L(s, z)T s̃, u) Dynamics
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Problem with Naive dynamic IBVS

d

dt
˙̃s =

∂L(s, z)

∂s
˙̃s +

∂L(s, z)

∂z

(
L(s, z)TL(s, z)

)−1
L(s, z)T s̃

+ L(s, z)g(z,
(
L(s, z)TL(s, z)

)−1
L(s, z)T s̃, u)

➤ Sensor domain dynamics depend on the unmeasured state variable z. In
practice, sensor variables depend on unknown depth.

➤ The system is simply too non-linear for common mortals to understand.

➤ Overparameterisation of data leads to undesired local equilibrium in closed
loop system.
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Part III: A specific example in Aerial Robotics:

dynamic IBVS for a flying brick

ξ̇ = RV

mV̇ = −mΩ×V + F

Ṙ = RΩ×,

IΩ̇ = −Ω×IΩ + Γ.

The exogenous force and torque are
denoted F and Γ. ���������
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Visual features
ITarget consists of an ensemble of point
targets on a flat target plane.
IUse a spherical projection of visual data

pi =
Pi

|Pi|
=

1

ri
Pi.

IFrom geometry one has

ri =
d

cos(αi)

d is height of camera from target plane,
αi is angle of observed target from target
plane normal.

ξ

η

ri

Pi

B

αi

X

Y

d

Y

Z

X

Z
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Feature Kinematics
Image point kinematics

ṗi = −Ω×pi+
(
I3 − pip

T
i

)
cos(αi)

V

d
.

Image feature

q :=
n∑

i=1

pi ∈ R3

Feature kinematics

q̇ = −Ω×q −Q
V

d(t)
,

where

Q =
i=n∑
i=1

cos(αi)πpi.

−Ω×p

V

Ω

S

−V
r

r

P

ṗ = −Ω×p− πp
V
r

−πp
V
r

Note that Q > 0 is positive definite and Ω× is skew-symmetric.
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Image Error Kinematics

Goal vector q∗ (inertial data)

q̇∗ = −Ω× q∗.

Image error

δ := q − q∗.

The image error kinematics are

δ̇ = −Ω×δ −QW

Where W denotes the feature velocity

W =
V

d(t) feature velocity
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Measuring Optic Flow

The visual velocity measure that is used is the feature velocity

W (t) =
V (t)

d(t)

The feature velocity can be obtained by differentiating the image feature

W = −Q−1 (q̇ + Ω× q) = −Q−1

 n∑
i=1

ṗi + Ω× q



If the target plane is highly textured then the integrated optic flow over the
whole target plane is

W = κ
∫
S2

lower

(ṗ + Ω×p) dp Average Optic Flow
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Feature dynamics

Differentiate W to compute the feature dynamics

Ẇ =
V̇

d
−

V ḋ

d2

= −Ω×W + W 〈W, η〉+
1

d(t)

F

m

Where

ḋ = −〈η, V 〉 = −d〈η, W 〉

Image based representation of full dynamics

δ̇ = −Ω×δ −QW Kinematics

Ẇ = −Ω×W + W 〈W, η〉+
F

md
Dynamics

ḋ = −d〈η, W 〉 Depth Kinematics
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Adaptive control for high frequency gain with integrable

dynamics

Let d̂ be an internal controller state with dynamics

˙̂d = −d̂〈η, W 〉

these dynamics act like virtual depth dynamics

Then

d

dt

(
d̂

d

)
=

˙̂d

d
−

d̂ḋ

d2
= −

d̂〈η, W 〉
d

+
d̂d〈η, W 〉

d2
= 0

Integrating this relationship over time one obtains

d̂(t)

d(t)
= a =

d̂(0)

d(0)

where a is an unknown constant depending on the error between true depth
d(0) and the initial estimate d̂(0).
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Image kinematics for the flying brick

Image based representation of full dynamics

δ̇ = −Ω×δ −QW Kinematics

Ẇ = −Ω×W + W 〈W, η〉+ a
F

md̂(t)
Dynamics

˙̂d = −d̂〈η, W 〉 Virtual Depth Kinematics

➤ The gain a is an unknown high frequency gain.

This will be dealt with using an adaptive parameter estimation.

➤ The virtual depth dynamics are an additional dynamic state in the control
design. The role is to invert the time-varying response of true depth d(t)

so that the adaptation can be undertaken in the space of initial conditions.
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Adaptive control design

Let ρ = 1/a and let ρ̂ be an estimate for ρ = 1/a.

Let k, c, λ > 0 be positive gains.

Let ε = W − kδ.

The control algorithm is computed according to the following dynamics

˙̂d(t) = −d̂〈η, W 〉, d̂(0) = d̂0,

˙̂ρ := −λ〈U, ε〉, ρ̂(0) = 1,

U := Qδ −W 〈W, η〉 − kQW − cε,

F (t) := ρ̂md̂(t)U,
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Convergence results

Define the Lyapunov function

L =
1

2
|δ|2 +

1

2
|ε|2 +

a

2λ
|ρ̃|2

Then, the closed-loop trajectory exists for all time and satisfies

d(t) > 0

and

d

dt
L = −kδTQδ − c|ε|2.

The error terms δ, ε are convergent to zero and the system is globally
asymptotically stable to ξ∗ for initial conditions d(0) > 0. The parameter
estimate error is convergent ρ̃ → const..
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Simulation - State evolution
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Simulation - State trajectories
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Simulation - Visual data
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Evolution of internal controller state
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Simulations - Evolution of Lyapunov function
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Part IV: Conclusions

➤ Very careful choice of visual features.

➤ Spherical projection

➤ Averaging of image data into a single image feature such that the
image Jacobian is square.

➤ Use the most robust direct measure of optic flow that can be computed.

➤ Dynamic inversion of unknown depth dynamics in controller structure to
reduce adaptive estimation of unknown depth to an estimation of unknown
initial conditions.

➤ Constructive non-linear control design.

There is still a long way to go in developing practical dynamical IBVS
algorithms.

Dynamic IBVS. 11 November 2005 30



Work presented was undertaken in collaboration with

PETER CORKE
Senior Principal Research Scientist,

Autonomous Systems Laboratory Director,
Robotics.,

CSIRO ICT Centre, Brisbane.

TAREK HAMEL
Professor, I3S-CNRS,

Nice-Sophia Antipolis, France.

Dynamic IBVS. 11 November 2005 31


