
Green's function for thermopiezoelectric plates with holes
of various shapes

Q.-H. Qin

Summary Thermoelectroelastic problems for holes of various shapes embedded in an in®nite
matrix are considered in this paper. Based on Lekhnitskii's formalism, the technique of con-
formal mapping and the exact electric boundary conditions on the hole boundary, the the-
rmoelectroelastic Green's function has been obtained analytically in terms of a complex
potential. As an application of the proposed function, the problem of an in®nite plate con-
taining a crack and a hole is analysed. A system of singular integral equations for the unknown
temperature discontinuity and the discontinuity of elastic displacement and electric potential
(EDEP) de®ned on crack faces is developed and solved numerically. Numerical results for stress
and electric displacement (SED) intensity factors of the crack-hole system are presented to
illustrate the application of the proposed formulation.
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1
Introduction
The widespread use of piezoelectric materials in structural applications has generated renewed
interest in the thermoelectroelastic behaviour. In particular, information on thermal stress
concentrations around material or geometrical defects in piezoelectric solids may have wide
applications in composite structures. For orthotropic elastic plates with rectangular openings,
some research has been done in [1, 2]. The results were based on the Lekhnitskii's formalism
[3], and represent only approximate solutions due to the mathematical dif®culties involved.
The stress ®eld for an anisotropic elastic plate with holes of various shapes subjected to
remote uniform mechanical loading was investigated in [4] on the basis of the Stroh formalism
and complex conformal mapping. For plane piezoelectric material subjected to a uniform
remote load, the electroelastic solutions for a piezoelectric plate with an elliptic hole or an
inclusion have been investigated in [5, 6]. As for Green's functions in piezoelectric materials, a
contour integral representation of the piezoelectric Green's functions was developed using
transform techniques [7]. More recent studies regarding Green's functions in piezoelectric
solids can be found in [8±12]. In the literature, however, there is very little work concerning
thermoelastic Green's function. Thermoelastic Green's function for a two-dimensional problem
of an in®nite anisotropic plate subjected to a temperature discontinuity along the axis x2 � 0
has been investigated in [13]. Later on, thermoelectroelastic Green's functions for bimaterial
problems as well as for an elliptic hole embedded in an in®nite plate were presented in [14, 15],
respectively. Recently, a study in [16] on Green's functions for a polygonal hole in an in®nite
piezoelectric plate has shown that the corresponding transformation is not single-valued, and a
simple approach was presented to treat this problem.

The present paper is a continuation of our previous work [16]. A uni®ed form of thermo-
electroelastic Green's functions is presented for an in®nite thermopiezoelectric plate with
various openings subjected to thermal loading. The loading may be a point heat source and a
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temperature discontinuity. The Green's functions developed are used to derive the thermo-
electroelastic solution for interactions between a crack and a hole embedded in an in®nite
thermopiezoelectric plate. Numerical results for SED intensity factors are presented to verify
the effectiveness of the proposed formulation.

2
Preliminary formulations

2.1
Basic equations
As in [16, 17], we effect a plane strain analysis, where the material is transversely isotropic and
coupling between in-plane stresses and in-plane electric ®elds takes place. For a cartesian
coordinate system x1x2x3, choose the x3-axis as the poling direction. The plane strain consti-
tutive equations are expressed in the matrix form as

hi � kijHj ; �1�

r11

r22

r12

D1

D2

8>>>><>>>>:

9>>>>=>>>>; �
c11 c12 0 0 e21

c12 c22 0 0 e22

0 0 c33 e13 0
0 0 e13 ÿj11 0

e21 e22 0 0 ÿj22

266664
377775

e11

e22

2e12

ÿE1

ÿE2

8>>>><>>>>:

9>>>>=>>>>;ÿ
c11

c22

0
0
g2

8>>>><>>>>:

9>>>>=>>>>;h ; �2�

or, inversely, as

Hi � qijhj ; �3�

e11

e22

2e12

ÿE1

ÿE2

8>>>><>>>>:

9>>>>=>>>>; �
f11 f12 0 0 p21

f12 f22 0 0 p22

0 0 f33 p13 0
0 0 p13 ÿb11 0

p21 p22 0 0 ÿb22

266664
377775

r11

r22

r12

D1

D2

8>>>><>>>>:

9>>>>=>>>>;�
a11

a22

0
0
k2

8>>>><>>>>:

9>>>>=>>>>;h ; �4�

where rij; eij;Dj and Ej are stress, strain, electric displacement and electric ®elds respectively, cij

is elastic stiffness, fij elastic compliance, eij and pij are piezoelectric constants, jij and bij
dielectric permittivity, g2 and k2 pyroelectric constants, cij and aij piezothermal and thermal
expansion constants, Hj and hj are heat intensity and heat ¯ux, kij and qij the coef®cients of
heat conductivity and heat resistivity, h the temperature change.

Equations (3) and (4) constitute a system of six equations in thirteen unknowns. Additional
equations are provided by the elastic equilibrium and Gauss' law

h1;1 � h2;2 � 0; r11;1 � r12;2 � 0; r12;1 � r22;2 � 0; D1;1 � D2;2 � 0 ; �5�
where commas indicate partial differentiation, and the absence of heat sources, body forces and
free electric volume charges has been assumed. The following relations are also valid:

h;i � ÿkijh;j; e11;22 � e22;11 ÿ 2e12;12 � 0; E1;2 ÿ E2;1 � 0 : �6�

Having formulated the thermoelectroelastic problem, we look for a solution to (3)±(6) sub-
jected to given loading and boundary conditions. To this end, the well-known Lekhnitskii stress
functions U and induction function W satisfying the foregoing equilibrium equations are
introduced as follows:

r11 � U;22; r22 � U;11; r12 � ÿU;12; D1 � W;2; D2 � ÿW;1 : �7�
Inserting Eq. (7) into Eq. (4), and later into Eq. (6), we have

L4U ÿ L3W � ÿa11h;22 ÿ a22h;11; L3U � L2W � ÿk2h;1 ; �8�
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where

L4 � f22
o4

ox4
1

� f11
o4

ox4
2

� �2f12 � f33� o4

ox2
1ox2

2

;

L3 � p22
o3

ox3
1

� �p21 � p13� o3

ox1ox2
2

; L2 � b22

o2

ox2
1

� b11

o2

ox2
2

:

�9�

Since this is a linear problem, solutions to Eqs. (8) are assumed to consist of the sum of
particular solutions, Up and Wp, and homogeneous part, Uh and Wh, as

U � Up � Uh; W � Wp �Wh ; �10�

where Uh and Wh will satisfy

L4Uh ÿ L3Wh � 0; L3Uh � L2Wh � 0 : �11�
A general solution to Eqs. (11) has been well-documented elsewhere [5, 17]. The results are as
follows:

Uh � 2Re
X3

k�1

Uhk�zk�; Wh � 2Re
X3

k�1

vkUk�zk� ; �12�

where `Re' stands for the real part of the complex function, and

zk � x1 � lkx2; Uk�zk� � U 0hk�zk�; vk � ÿ
�p21 � p13�l2

k � p22

b11l
2
k � b22

; �13�

while lk are three complex roots (with positive imaginary parts) satisfying the following
characteristic equations:

f11b11l
6 � �f11b22 � f33b11 � 2f12b11 � p2

21 � p2
13 � 2p21p13�l4

� �f22b11 � 2f12b22 � f33b22 � 2p21p22 � 2p13p22�l2 � f22b22 � p2
22 � 0 : �14�

Thus, through the use of the following relations:

eij � 1

2
�ui;j � uj;i�; Ej � ÿu;j ; �15�

where ui and u are elastic displacement and electric potential, respectively, the EDEP and SED
can be expressed as

uh � 2 Re�AU�z��; P1h � ÿ2 Re�BPU0�z��; P2h � 2 Re�BU0�z�� ; �16�
where

uh � fu1 u2 ugT
h ; P1h � fr11 r12 D1gT

h ; P2h � fr12 r22 D2gT
h ; �17�

U�z� � fU1�z1�U2�z2�U3�z3�gT; P � diag�l1 l2 l3� ; �18�

A �
p1 p2 p3

q1 q2 q3

t1 t2 t3

24 35; B �
ÿl1 ÿl2 ÿl3

1 1 1
ÿv1 ÿv2 ÿv3

24 35 ; �19�

with

pk � f11l
2
k � f12 ÿ p21vk; qk � f12lk �

f22

lk

ÿ p22vk

lk

;

tk � ÿ�p13 � b11vk�lk ;

�20�
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As for the particular solutions, they depend on the form of the known function h and can be
expressed in terms a complex potential Ut�zt� as

h � 2 Re�U0t�zt��; up � 2 Re�cUt�zt��;
P1p � ÿ2 Re�sdU0t�zt��; P2p � 2 Re�dU0t�zt�� ;

�21�

where c � fc1 c2 c3gT and d � fd1 d2 d3gT are two vectors associated with the materials con-
stants and well-documented in [17, 18]. For the sake of reference we list them below

c �
c11 � s2c33 s�c12 � c33� s�e21 � e13�

c33 � s2c22 e13 � s2e22

symmetric ÿ�j11 � s2j22�

24 35ÿ1 c11

sc22

sg2

8<:
9=; ; �22�

d �
sc33 c33 e13

c12 sc22 se22

e21 se22 ÿsj22

24 35cÿ
0

c22

g2

8<:
9=; : �23�

2.2
Conformal mapping
Since conformal mapping is a fundamental tool used to ®nd complex potentials, the trans-
formation [16]

zk � a a1kfk � a2kf
ÿ1
k � ej1a3kf

j
k � ej1a4kf

ÿj
k

� �
�k � 1; 2; 3; t� ; �24�

in which

a1k � 1

2
�1ÿ ilke�; a2k � 1

2
�1� ilke�; a3k � c

2
�1� ilke�; a4k � c

2
�1ÿ ilke� ;

�25�
with the understanding that l4 � s, will be used to map the contour of the hole on to a unit
circle in the f-plane, where eji � 0, if i � j; eji � 1, if i 6� j, 0 < e � 1, c and a are real
parameters and j is an integer. For a particular value of zk, it is shown that there exist 2j roots
for fk in Eq. (24); half of the roots are located outside the unit circle, the remaining are inside
the unit circle [16]. This indicates that the transformation (24) will be single-valued for j � 1
(ellipse) since only one root is located outside the unit circle. For j > 1, however, the trans-
formation (24) is multi-valued, as there are j roots located outside the unit circle. The question
is, which transformation should be chosen. This problem has been discussed in [16], and we
will omit those details here. As it was done in [16], we choose the root whose magnitude has a
minimum value among the j-roots. In a way similar to that in [16], the mapping of the hole
region, X0 (s. Fig. 1), can be written as

z � a�a1cf� a2cf
ÿ1 � ej1a3cf

j � ej1a4cf
ÿj� ; �26�

where z � x1 � ix2, and

a1c � 1

2
�1� e�; a2c � 1

2
�1ÿ e�; a3c � c

2
�1ÿ e�; a4c � c

2
�1� e� ; �27�

2.3
Boundary conditions
Consider an in®nite thermopiezoelectric plate containing a hole subjected to a line temperature
discontinuity h0 and a line heat source h�, both located at ẑt � x10 � sx20. The contour of the
hole is represented by (s. Fig. 1)

x1 � a�cos w� cej1 cos jw�; x2 � a�e sin wÿ cej1 sin jw� ; �28�
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where w is a real parameter. By an appropriate selection of the parameters e; j and c, we can
obtain various special kinds of holes, such as an ellipse �j � 1�, a circle (j � 1 and e � 1), a
triangle �j � 2�, a square �j � 3� and a pentagon �j � 4�.

The hole surface is assumed to be free of tractions and also kept at zero heat ¯ux. Besides, on
the boundary of the hole the normal component of electric displacement and the electric
potential are continuous. Therefore, we have the following boundary conditions:

h! 0; P! 0 ; �29�
at in®nity

hn � ÿh1 sin x� h2 cos x � 0;

r1 � 0; r2 � 0; Dn � ÿe0
ouc

on
; u � uc ;

�30�

on the hole boundary C (s. Fig. 1), and the conditionsZ
C

dh � h0;

Z
C

d# � ÿh� ; �31�

for any closed curve C enclosing the point f�t where n stands for the normal to the hole
boundary, x is an angle shown in Fig. 1, r1 and r2 are the rectangular cartesian components of
the surface traction, Dn is the normal component of the surface electric displacement, e0 is
the dielectric constant of vacuum, superscript ``c'' indicates the quantity associated with the
hole medium, and # is a heat-¯ux function.

The analysis to follow requires the boundary conditions (30) to be expressed in terms of the
complex potentials Ui (i � 1; 2; 3; t). It is easy to show that

oF

ox1
� 2 Re

X3

i�1

Ui�zi� � d2Ut�zt�
" #

� ÿ
Z s

0

r1 ds ; �32�

oF

ox2
� ÿ2 Re

X3

i�1

liUi�zi� � sd2Ut�zt�
" #

� ÿ
Z s

0

r2 ds ; �33�

w � 2 Re
X3

i�1

viUi�zi� � d3Ut�zt�
" #

� ÿ
Z s

0

Dn ds : �34�

Fig. 1. Geometry of a particular hole (a � 1; e � 1;
j � 4; c � 0:1)
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The substitution of Eqs. (32)±(34) into the conditions (30) yields

2 Re
X3

k�1

Uk � d2Ut

( )
� 0; 2 Re

X3

k�1

lkUk � sd2Ut

( )
� 0;

2 Re
X3

k�1

vkUk � d3Ut

( )
� ÿe0

Z s

0

ouc

on
ds; 2 Re

X3

k�1

tkUk � c3Ut

( )
� uc ;

�35�

where s is arc length of C. Noting that for an analytic function

of �x1 � ix2�
on

� ÿi
of �x1 � ix2�

om
; �36�

where m stands for the tangent to the hole boundary (s. Fig. 1), Eq. (35)3 can be further
simpli®ed as

2 Re
X3

k�1

vkUk � d3Ut

( )
� 2 Refie0F�z�g ; �37�

where

uc � F�z� � F�z� : �38�
Thus, the key task is to ®nd an appropriate form of Uk �k � 1; 2; 3; t� satisfying the conditions
(31) and (35), which will be treated in the coming section.

3
Green's function for thermoelectroelastic hole problems

3.1
The thermal potential Ut�zt�
Based on the conformal mapping described above and on the concept of perturbation presented
in [19], the general solution for temperature and heat-¯ux function can be assumed in the form

h � 2 Re�U0t�zt�� � 2 Re�f0�ft� � f1�ft�� ; �39�
# � ÿ2 Re�ikU0t�zt�� � ÿ2 Re�ikf0�ft� � ikf1�ft�� ; �40�
where k �

������������������������
k11k22 ÿ k2

12

p
, while f0 represents the solution associated with the unperturbed

thermal ®eld, and f1 is the function corresponding to the perturbed ®eld of the plate. Using the
heat-¯ux function #, the heat ¯ux hi can be expressed as

h1 � ÿ#;2; h2 � #;1 : �41�
For a given loading condition, the function f0 can be easily obtained since it is related to
the solution of a homogeneous medium. When an in®nite plate is subjected to a line tem-
perature discontinuity h0 and a line heat source h�, both located at ẑt � x10 � sx20, the function
f0 can be chosen in the form

f0�ft� � q0 ln�ft ÿ f�t � ; �42�
where ft and f�t are related to the complex arguments zt and ẑt through the transformation
function (24), and q0 is a complex constant which can be determined from the condition (31).
The substitution of Eq. (42) into Eqs. (39) and (40), and later into Eq. (31), yields

q0 � h0

4pi
ÿ h�

4pk
: �43�

Thus, the boundary condition (30)1 requires that
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f1�ft� � �q0 ln fÿ1
t ÿ �f

�
t

ÿ �
: �44�

The function Ut in Eq. (35) can, thus, be obtained by integrating the functions f0 and f1 with
respect to zt, which leads to

Ut�zt� � a1t q0F1 ft; f
�
t

ÿ �� �q0F2 fÿ1
t ;�f�t

ÿ �� �� a2t q0F2 ft; f
�
t

ÿ �� �q0F1 fÿ1
t ;�f�t

ÿ �� �
� ej1a3t q0F3 ft; f

�
t

ÿ �� �q0F4 fÿ1
t ;�f�t

ÿ �� �� a4t q0F4 ft; f
�
t

ÿ �� �q0F3 fÿ1
t ;�f�t

ÿ �� �
; �45�

where

F1 ft; f
�
t

ÿ � � ft ÿ f�t
ÿ �

ln ft ÿ f�t
ÿ �ÿ 1

� �
; �46�

F2�ft; f
�
t � � �fÿ1

t ÿ f�ÿ1
t � ln�ft ÿ f�t � � f�ÿ1

t ln ft ; �47�

F3�ft; f
�
t � � �fj

t ÿ f�jt ��ln�ft ÿ f�t � ÿ 1� ÿ f�jt

Xj

n�1

1

n

ft

f�t

8>>: 9>>;n

; �48�

F4�ft; f
�
t � � �fÿj

t ÿ f�ÿj
t ��ln�ft ÿ f�t � � f�ÿj

t ln ft ÿ f�ÿj
t

Xjÿ1

n�1

1

n

f�t
ft

8>>: 9>>;n

: �49�

3.2
The electroelastic potentials Uk�zk�
It can be seen from Eq. (35) that the electroelastic potentials Uk�zk� should have the same order
as that of Ut�zt� in order to make the equality (35) be valid. Thus, possible forms of Uk�zk�
come from the partition of Ut�zt�. They are

f1�zk� � a

2
q0F1�fk; f

�
t � � q0F2�fk; f

�
t � � �q0F1�fÿ1

k ; �f�t � � �q0F2�fÿ1
k ; �f�t �

� �
� ej1ac

2
q0F3�fk; f

�
t � � q0F4�fk; f

�
t � � �q0F3�fÿ1

k ; �f�t � � �q0F4�fÿ1
k ; �f�t �

� �
;

f2�zk� � ilkb

2
ÿq0F1�fk; f

�
t � � q0F2�fk; f

�
t � � �q0F1�fÿ1

k ; �f�t � ÿ �q0F2�fÿ1
k ; �f�t �

� �
� iej1lkbc

2
q0F3�fk; f

�
t � ÿ q0F4�fk; f

�
t � ÿ �q0F3�fÿ1

k ; �f�t � � �q0F4�fÿ1
k ; �f�t �

� �
;

�50�

where the subscripts 1 and 2 are the indices for the different possible functions.
The electroelastic potentials Uk�zk� can thus be chosen as

Uk�zk� � f1�zk�qk1 � f2�zk�qk2 ; �51�
where qki are complex numbers to be determined from Eq. (35).

The substitution of Eqs. (45) and (51) into Eq. (35), yields

q11

q21

q31

8<:
9=; � 1 1 1

l1 l2 l3

t�1 t�2 t�3

24 35ÿ1 ÿd2

ÿsd2

d3 � ie0c3

8<:
9=; ; �52�

q12

q22

q32

8<:
9=; � l1 l2 l3

l2
1 l2

2 l2
3

l1t�1 l2t�2 l3t�3

24 35ÿ1 ÿd2

ÿsd2

d3 � ie0c3

8<:
9=;s ; �53�

where t�k � vk ÿ ie0tk:

4
Interaction between a crack and a hole
To illustrate the application of the proposed Green's functions, consider an in®nite piezo-
electric plate with a crack of length of 2c and holes of various shapes subjected to traction-
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charge t0 and heat ¯ux h0 on the crack faces. The central point of the crack is denoted by
z0

k � x10 � lkx20, and its orientation angle is denoted by a. The geometry of the con®guration of
the crack-hole system is shown in Fig. 2. The orientation of the crack may be arbitrary. The
mathematical statement of this problem can be stated more precisely as follows:

hn � h0; tn � t0 on crack faces ; �54�
hn � tn � 0 on the hole boundary ; �55�
hi � Pi � 0 i � 1; 2; at infinity : �56�

The boundary conditions (54) can be satis®ed by rede®ning the discrete Green's functions q0 in
Eq. (45) in terms of distributing Green's functions q0�n� de®ned along the crack line,
zt � z0

t � gz�t , ẑt � z0
t � nz�t , where z0

t � x10 � sx20, z�t � cos a� s sin a. In this case, the load
parameter q0, which has appeared in Sec. 3, should be taken as h0�n�=4pi. Enforcing the
satisfaction of the applied heat ¯ux conditions on the crack faces, a system of singular integral
equations for the Green's function is obtained as

1

p
Re

Z c

ÿc

1

gÿ n
� K0�g; n�

� �
h0�n�dn

� �
� ÿ 2h0

k
; �57�

where K0 is Holder-continuous along ÿc � n � c and given by

K0�g; n� � ÿz�t
1

zp

ozp

oft
ÿ 1

ft�1ÿ nt
�f
�
t �

" #
oft

ozt
; �58�

where

zp � a1t ÿ a2t

ftf
�
t

� a3t ÿ a4t

fj
tf
�j
t

 !Xjÿ1

k�0

fk
t f
�jÿkÿ1
t ; �59�

During the derivation of Eq. (57), the following relation has been employed:

ln�ft ÿ f�t � � ln�zt ÿ ẑt� ÿ ln zp ; �60�

For single-valued temperature around a closed contour surrounding the whole crack, the
following auxiliary condition has to be satis®ed:Z c

ÿc

h0�n�dn � 0 : �61�

Fig. 2. Geometry of a crack-hole system
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The singular integral Eq. (57) for the temperature discontinuity density, combined with
Eq. (61), can be solved numerically [20]. Since the solution for the function h0�n� has a square-
root singularity at both crack tips, it is more ef®cient for the numerical calculations by letting

h0�n� � H�n���������������
c2 ÿ n2

p ; �62�

where H�n� is a regular function de®ned in a closed interval jnj � c. Once the function H�n�
has been found, the corresponding SED can be given, from Eqs. (16) and (21), in the form

P1�g� � ÿ 1

2p

Z c

ÿc
Im BP f 0�1 zk� �


 �
q1 � f 0�2 zk� �


 �
q2

� �� sdU0� zt� �
� 	

h0�n�dn ; �63�

P2�g� � ÿ 1

2p

Z c

ÿc

Im B f 0�1 zk� �

 �

q1 � f 0�2 zk� �

 �

q2

� �� dU0� zt� �
� 	

h0�n�dn ; �64�

where

qi � q1i q2i q3if gT; f zk� �h i � diag f z1� �f z2� �f z3� �� � �i � 1; 2� ; �65�

f�1 zk� � � a

2
F1 fk; f

�
t

ÿ �� F2 fk; f
�
t

ÿ �ÿ F1 fÿ1
k ; �f

�
t

ÿ �ÿ F2 fÿ1
k ; �f

�
t

ÿ �� �
� ej1ac

2
F3 fk; f

�
t

ÿ �� F4 fk; f
�
t

ÿ �ÿ F3 fÿ1
k ; �f

�
t

ÿ �ÿ F4 fÿ1
k ; �f

�
t

ÿ �� �
;

f�2 zk� � � ilkb

2
ÿF1 fk; f

�
t

ÿ �� F2 fk; f
�
t

ÿ �ÿ F1 fÿ1
k ; �f

�
t

ÿ �� F2 fÿ1
k ; �f

�
t

ÿ �� �
� iej1lkbc

2
F3 fk; f

�
t

ÿ �ÿ F4 fk; f
�
t

ÿ �� F3 fÿ1
k ; �f

�
t

ÿ �ÿ F4 fÿ1
k ; �f

�
t

ÿ �� �
;

�66�

U� zt� � � a1t F1 ft; f
�
t

ÿ �ÿ F2 fÿ1
t ; �f

�
t

ÿ �� �� a2t F2 ft; f
�
t

ÿ �ÿ F1 fÿ1
t ; �f

�
t

ÿ �� �
� ej1a3t F3 ft; f

�
t

ÿ �ÿ F4 fÿ1
t ; �f

�
t

ÿ �� �� a4t F4 ft; f
�
t

ÿ �ÿ F3 fÿ1
t ; �f

�
t

ÿ �� �
; �67�

Thus, the traction-charge vector on the crack faces induced by h0 is of the form

t0
n�g� � ÿP1�g� sin a�P2�g� cos a ; �68�

Generally, t0
n�g� 6� t0 on the crack faces jgj � c. To satisfy the condition (54)2 on the crack faces,

we must superpose a solution of the corresponding isothermal problem with a traction-charge
vector equal and opposite to t0

n ÿ t0

ÿ �
in the range jgj � c. The electroelastic solution for a

single dislocation of strength b0 in an in®nite plate with a hole is thus required. The solutions
have been given in the literature [16]. They are

P1�g� � ÿ 1

p
Im BP

1

fm ÿ f�m

� �
G� ÿ

X1
m�1

m fÿnÿ1
k


 �
EmG� ÿ Fm

�G�� �
" #( )

b0 ; �69�

P2�g� � 1

p
Im B

1

fk ÿ f�k

� �
G� ÿ

X1
m�1

m fÿmÿ1
k


 �
EmG� ÿ Fm

�G�� �
" #( )

b0 ; �70�

where

G� � �A
ÿ1

Aÿ �B
ÿ1

B
� �ÿ1

�A
ÿ1

; �71�

Ei � Pi ÿ Qi
�P
ÿ1
i

�Qi

� �ÿ1
E�i ÿ Qi

�P
ÿ1
i

�F
�
i

� �
; �72�

Fi � Pi ÿ Qi
�P
ÿ1
i

�Qi

� �ÿ1
F�i ÿ Qi

�P
ÿ1
i

�E
�
i

� �
; �73�
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Pi �
1 1 1
l1 l2 l3

v1i v2i v3i

24 35; Qi �
0 0 0
0 0 0
t�1 t�2 t�3

24 35 ; �74�

E�i �
0 0 0
0 0 0

b�1i b�2i b�3i

24 35; F�i �
ÿ�e1i ÿ�e2i ÿ�e3i

ÿ�e1i �l1 ÿ�e2i �l2 ÿ�e3i �l3

b��1i b��2i b��3i

24 35 ; �75�

in which, s. [16],

ekm � ÿ f�ÿm
k

m
; b�ki � vk ÿ

ie0 1� r4i
in

ÿ �
1ÿ r4i

in

tk

� �
eki; b��ki �

2ie0r2i
in

1ÿ r4i
in

�tk�eki ; �76�

rin �
������
1ÿe
1�e

q
for j � 1����

jcj�1
p

for j 6� 1 ,

(
�77�

Using Eqs. (68)±(70), the boundary condition (54)2 can be expressed by

1

p
Im

Z c

ÿc

BG�
gÿ n

� K0 g; n� �
� �

b0�n�dn

� �
� t0 ÿ t0

n�g� ; �78�

where

K0�g; n� � ÿB z�k
ozkp=ofk

zkp

ofk

ozk

� �
G� �

X1
m�1

m z�kf
ÿmÿ1
k

ofk

ozk

� �
EmG� ÿ FmG�� �

" #
; �79�

and z�j ; g and n are de®ned by

z�j � cos a� lj sin a ; �80�

zkp � a1k ÿ a2k

fkf
�
k

� a3k ÿ a4k

fj
kf
�j
k

 !Xj�1

m�0

fm
k f�jÿmÿ1

k ; �81�

Here K0�g; n� is a kernel function of the singular integral equations, and it is Holder-continuous
along ÿc � n � c.

For single-valued displacements and the electric potential around a closed contour sur-
rounding the whole crack, the following conditions have also to be satis®ed:Z c

ÿc

b0�n�dn � 0 : �82�

As it was done previously, let

b0�n� � H�n���������������
c2 ÿ n2

p : �83�

Once the function H�n� has been found from Eqs. (78) and (82), the stresses and electric
displacement, Pn�g� � rnmrnnDnf gT in a local coordinate corresponding to the crack line, can
be expressed in the form

Pn�g� � 1

p
X�a�Im

Z c

ÿc

BG�
gÿ n

� K0�g; n�
� �

b0�n�dn

� �
; �84�

where the �3� 3�-matrix X�a�, whose components are the cosine of the angle between the local
coordinates and global coordinates, is in the form

415



X�a� �
cos a sin a 0
ÿsin a cos a 0

0 0 1

24 35 : �85�

Using Eq. (84), we can evaluate the stress intensity factors K� � KII ; KI ; KD� �T at the tips, e.g.
at the right tip n � c of the crack, by the following de®nition:

K� � lim
n!c�

�������������������
2p�nÿ c�

p
Pn�n� ; �86�

Combined with the results of Eq. (84), one then leads to

K� �
���
p
c

r
X�a�Im�BG��H�c� : �87�

5
Numerical examples
As an illustration, consider a piezoelectric ceramic (BaTiO3) plate with a crack of length 2c and
a square hole, comp. Fig. 2, in which x10 � 0; x20 � 3c; j � 3; e � 1; a � 1:8c and c � 0:2c.
The material properties of the plate can be found in [15] as

c11 � 150 GPa; c12 � 66 GPa; c22 � 146 GPa; c33 � 44 GPa;

a11 � 8:53� 10ÿ6 Kÿ1; a22 � 1:99� 10ÿ6 Kÿ1; k2 � 0:133� 105 NCÿ1 Kÿ1;

e21 � ÿ4:35 Cmÿ2; e22 � 17:5 Cmÿ2; e13 � 11:4 Cmÿ2; j11 � 1115 j0;

j22 � 1260 j0; j0 � 8:85� 10ÿ12 C2 Nÿ1 mÿ2 �=permitivity of the free space� :

�88�

Since the values of the coef®cient of heat conduction for BaTiO3 could not be found in the
literature, the values k22=k11 � 1:5; k12 � 0 and k11 � 1 W/mK are assumed.

Figure 3 shows the numerical results for the coef®cients of stress intensity factors bi versus
the crack orientation a, where bi are de®ned by

KI�B� � 1

k
h20c

�����
pc
p

c22b1�a�;

KII�B� � 1

k
h20c

�����
pc
p

c11b2�a�;

KD�B� � 1

k
h20c

�����
pc
p

g2bD�a� ;

�89�

Fig. 3. Coef®cients bi �i � 1; 2;D�, comp. Eqs. (89), vs crack orientation a
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Numerical results for such a problem are not yet available in the literature. For comparison, the
®nite element method (FEM) is used to obtain the corresponding results. In the FEM analysis,
the con®guration of a particular element mesh is shown in Fig. 4. It can be seen from Fig. 3 that
all the coef®cients bi �i � 1; 2;D� are not very sensitive to the crack orientation a, although
they slightly vary with it. It is also found from Fig. 3 that the numerical results obtained from
the two models (FEM and the proposed method) are in good agreement.

6
Conclusion
The problem of a hole embedded in a transversely isotropic piezoelectric solid subjected to
thermal and electroelastic loads has been addressed within the framework of in-plane electro-
elastic interactions. A uni®ed analytical thermoelectroelastic Green's function for the hole
problem has been derived through the use of the Lekhnitskii's formalism, conformal mapping
and exact electric boundary conditions. Using the solution developed, a system of singular
integral equations for the unknown temperature discontinuity and EDEP dislocation de®ned on
crack faces has been developed to study the interaction between a crack and a hole. Numerical
results of the SED intensity factors for an in®nite plate with one crack and a square hole are
presented to illustrate the application of the proposed formulation. The results show that all the
coef®cients bi �i � 1; 2;D� of the SED intensity factors are not very sensitive to the crack
orientation a, but slightly vary with it. It is also found that the numerical results obtained from
the two model (FEM and the proposed method) are in good agreement.
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