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Green’s function for thermopiezoelectric plates with holes
of various shapes
Q.-H. Qin

Summary Thermoelectroelastic problems for holes of various shapes embedded in an infinite
matrix are considered in this paper. Based on Lekhnitskii’s formalism, the technique of con-
formal mapping and the exact electric boundary conditions on the hole boundary, the the-
rmoelectroelastic Green’s function has been obtained analytically in terms of a complex
potential. As an application of the proposed function, the problem of an infinite plate con-
taining a crack and a hole is analysed. A system of singular integral equations for the unknown
temperature discontinuity and the discontinuity of elastic displacement and electric potential
(EDEP) defined on crack faces is developed and solved numerically. Numerical results for stress
and electric displacement (SED) intensity factors of the crack-hole system are presented to
illustrate the application of the proposed formulation.
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1
Introduction
The widespread use of piezoelectric materials in structural applications has generated renewed
interest in the thermoelectroelastic behaviour. In particular, information on thermal stress
concentrations around material or geometrical defects in piezoelectric solids may have wide
applications in composite structures. For orthotropic elastic plates with rectangular openings,
some research has been done in [1, 2]. The results were based on the Lekhnitskii’s formalism
[3], and represent only approximate solutions due to the mathematical difficulties involved.
The stress field for an anisotropic elastic plate with holes of various shapes subjected to
remote uniform mechanical loading was investigated in [4] on the basis of the Stroh formalism
and complex conformal mapping. For plane piezoelectric material subjected to a uniform
remote load, the electroelastic solutions for a piezoelectric plate with an elliptic hole or an
inclusion have been investigated in [5, 6]. As for Green’s functions in piezoelectric materials, a
contour integral representation of the piezoelectric Green’s functions was developed using
transform techniques [7]. More recent studies regarding Green’s functions in piezoelectric
solids can be found in [8-12]. In the literature, however, there is very little work concerning
thermoelastic Green’s function. Thermoelastic Green’s function for a two-dimensional problem
of an infinite anisotropic plate subjected to a temperature discontinuity along the axis x, = 0
has been investigated in [13]. Later on, thermoelectroelastic Green’s functions for bimaterial
problems as well as for an elliptic hole embedded in an infinite plate were presented in [14, 15],
respectively. Recently, a study in [16] on Green’s functions for a polygonal hole in an infinite
piezoelectric plate has shown that the corresponding transformation is not single-valued, and a
simple approach was presented to treat this problem.

The present paper is a continuation of our previous work [16]. A unified form of thermo-
electroelastic Green’s functions is presented for an infinite thermopiezoelectric plate with
various openings subjected to thermal loading. The loading may be a point heat source and a
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temperature discontinuity. The Green’s functions developed are used to derive the thermo-
electroelastic solution for interactions between a crack and a hole embedded in an infinite
thermopiezoelectric plate. Numerical results for SED intensity factors are presented to verify
the effectiveness of the proposed formulation.

2
Preliminary formulations

2.1

Basic equations

As in [16, 17], we effect a plane strain analysis, where the material is transversely isotropic and 407
coupling between in-plane stresses and in-plane electric fields takes place. For a cartesian

coordinate system x;x,x3, choose the x;-axis as the poling direction. The plane strain consti-

tutive equations are expressed in the matrix form as

o1 cu c2 O 0 e €11 11
022 cz ¢ 0 0 e 29 V22
012 = 0 0 C33 €13 0 2¢1, — 0 0 s (2)
D1 0 0 €13 —Ki11 0 —El 0
D, ey ep O 0 —K22 —E, 29

or, inversely, as

H; = pijhj ; (3)
&1 fu fiz O 0 j235 o1 011
€2 fiz fn O 0 P2 022 022
20 p= | 0 0 fiz pis 0 o1 o+ 0 0, (4)
—E; 0 0 J 4% _ﬁll 0 D, 0
—E, pa pn O 0 —Bn D, o)

where aij, &ij, Dj and E; are stress, strain, electric displacement and electric fields respectively, cij
is elastic stiffness, f,-j elastic compliance, ejj and pij are piezoelectric constants, Kij and ﬂij
dielectric permittivity, g, and 4, pyroelectric constants, y; and o;; piezothermal and thermal
expansion constants, H; and h; are heat intensity and heat flux, k; and Pij the coefficients of
heat conductivity and heat resistivity, 6 the temperature change.

Equations (3) and (4) constitute a system of six equations in thirteen unknowns. Additional
equations are provided by the elastic equilibrium and Gauss’ law

hig+hyy=0, ong+0122=0, 0121+02:=0, Dy;+D;=0, (5)

where commas indicate partial differentiation, and the absence of heat sources, body forces and
free electric volume charges has been assumed. The following relations are also valid:

hi=—kij0j, enxn+eénn—2e212=0 E,—E;=0. (6)

Having formulated the thermoelectroelastic problem, we look for a solution to (3)-(6) sub-
jected to given loading and boundary conditions. To this end, the well-known Lekhnitskii stress
functions U and induction function ¥ satisfying the foregoing equilibrium equations are
introduced as follows:

on=Uxp, on=Un, on=-Un Di=¥, D =-Y,. (7)

Inserting Eq. (7) into Eq. (4), and later into Eq. (6), we have

LU — L3V = —o1035 — 022011, LU+ LY = —/4,0, (8)
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where

ot o* ot
Ly :fzza—x%-Ffua—x%—f- (2f12 —|—f33)m ,

0’ o’ o? o (9)
Lszpzza—x?-i‘(Pn-l-Pm)W, Lz:ﬂna—x%‘i‘ﬂna_x% .

Since this is a linear problem, solutions to Egs. (8) are assumed to consist of the sum of
particular solutions, U, and ¥y, and homogeneous part, U, and ¥y, as

where U, and V), will satisfy
L4Uh—L3l}Ih:O, L3Uh+L2Th:0 . (11)

A general solution to Egs. (11) has been well-documented elsewhere [5, 17]. The results are as
follows:

3 3
Up=2Re Y  Unlzk), Wn=2ReY rzPxlz) , (12)
k=1 k=1

where ‘Re’ stands for the real part of the complex function, and

_ (P21 +P13)Hi + P2 (13)

Zk = x1 + X2,  Pr(zr) = U,’qk(zk), Lk = B ,u2 +B )
11 Mk 22

while y, are three complex roots (with positive imaginary parts) satisfying the following
characteristic equations:

fuBut® + (B + fisPiy + 2f12B1 +P§1 +P%3 + 2pipis)pt
+ (f2Pi1 + 2f12Pos + f33Pos + 202122 + 2P13p22) i + faPor + 15, =0 . (14)

Thus, through the use of the following relations:

1
&j =~ (uij + wji), E=—0;, (15)
2 J

where u; and ¢ are elastic displacement and electric potential, respectively, the EDEP and SED
can be expressed as

u, = 2Re[Ad(z)], I, = —2Re[BPP'(z)], II,, = 2Re[BP'(z)] , (16)
where
u, = {ul U ¢};€, Iy = {011 012 Dl};f, I, = {012 022 Dz};f s (17)
D(z) = {®1(21)Da(22) Bs3(25)} ', P = diagu, p, 115] (18)
p1 P2 P3 Tl
A= ql qz q3 s B = 1 1 1 s (19)
i fh I3 =X —X2 X3
with
fo  Po

2
k = JuMe + 12 — P21 Xks k= Jialg +
P =fuki +fiz — padi, Gk = St e L (20)

tk = — (P13 + P i



As for the particular solutions, they depend on the form of the known function 6 and can be
expressed in terms a complex potential @,(z;) as

0 = 2Re[®P,(z;)], u, =2Re[cPs(z)],

Ty, = —2Re[td®(z,)], Iy = 2Re[dP)(z,)] , .

where ¢ = {c; ¢ c3}T and d = {d; d, d3}T are two vectors associated with the materials con-
stants and well-documented in [17, 18]. For the sake of reference we list them below

a1+ a3 Tl + 63) (e + e13) B 11
c= 3 + e ens + tlexn V22 ) (22) 499
symmetric — (K11 + T°K22) 1)
TC33 €33 €13 0
d=|cp 710 TER |€C—< V2 p - (23)
€1 Tép —TK D

2.2

Conformal mapping

Since conformal mapping is a fundamental tool used to find complex potentials, the trans-
formation [16]

Zk = a(alkék + asz,Zl + €j1a3kCJk + ej1a4kC,:J> (k = 1, 2, 3, l’) s (24)
in which

1 . 1 . b4 . Y .
A = 5(1 —iwe), axy = 5(1 +ie), ax = 5(1 +ie), ag = 5(1 —ie) ,

(25)

with the understanding that y, = 7, will be used to map the contour of the hole on to a unit
circle in the {-plane, where eji =0, if i =j; ei =1, ifi#j,0<e<1,yand a are real
parameters and j is an integer. For a particular value of z, it is shown that there exist 2j roots
for {; in Eq. (24); half of the roots are located outside the unit circle, the remaining are inside
the unit circle [16]. This indicates that the transformation (24) will be single-valued for j = 1
(ellipse) since only one root is located outside the unit circle. For j > 1, however, the trans-
formation (24) is multi-valued, as there are j roots located outside the unit circle. The question
is, which transformation should be chosen. This problem has been discussed in [16], and we
will omit those details here. As it was done in [16], we choose the root whose magnitude has a
minimum value among the j-roots. In a way similar to that in [16], the mapping of the hole
region, & (s. Fig. 1), can be written as

z=a(a + axl " + epasl + epasl7) (26)

where z = x; + ix,, and

N[

(1—e), as;==(1—e), ar==(14+e), (27)

N =

1
alc:E(1+e)7 aye =

2.3

Boundary conditions

Consider an infinite thermopiezoelectric plate containing a hole subjected to a line temperature
discontinuity 0, and a line heat source h*, both located at z; = x;9 + 7x3. The contour of the
hole is represented by (s. Fig. 1)

x1 = a(cos Y + yej cos jif), x; = a(e sin Y — yej sin jif) , (28)
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Fig. 1. Geometry of a particular hole (a=1, e=1,
Q j=4, y=0.1)

where  is a real parameter. By an appropriate selection of the parameters e,j and 7, we can
obtain various special kinds of holes, such as an ellipse (j=1), acircle j=1and e=1), a
triangle (j = 2), a square (j = 3) and a pentagon (j = 4).

The hole surface is assumed to be free of tractions and also kept at zero heat flux. Besides, on
the boundary of the hole the normal component of electric displacement and the electric
potential are continuous. Therefore, we have the following boundary conditions:

h—o0, -0, (29)
at infinity
h, = —h; sin w + hy cos w = 0,

00~ (30)

01=0, 0,=0, D":_S(]@n’ ® =0,

on the hole boundary I (s. Fig. 1), and the conditions

/d@:@o, /dﬁ:—h* , (31)
C C

for any closed curve C enclosing the point (; where n stands for the normal to the hole
boundary, o is an angle shown in Fig. 1, ¢; and o, are the rectangular cartesian components of
the surface traction, D, is the normal component of the surface electric displacement, &, is
the dielectric constant of vacuum, superscript “c” indicates the quantity associated with the
hole medium, and 9 is a heat-flux function.

The analysis to follow requires the boundary conditions (30) to be expressed in terms of the
complex potentials @; (i = 1,2,3,¢). It is easy to show that

3

OF s

— =2Re g D;(z;) + dy s (2 :—/ads, 32
ox, - ( ) 2 t( t)] ; 1 ( )
OF > s

o —zRe[ i(z) + iz | =~ [ ords (33)
0x2 i=1 0

3
Y =2Re [Z %iPi(zi) + d3D4(z;)
-1

:—/OSDnds . (34)



The substitution of Egs. (32)-(34) into the conditions (30) yields

3 3
2Re{z Dy —l—dzcbt} =0, 2Re{Zuk<I>k +rd2<1>t} =0,

k;l k=1 3 (35)
N a Cc
2Re{ZXk(Dk+d3¢z} = —80/ aids, 2Re{ztk(pk+c3d)t} — Q)C 7
k=1 o O k=1
where s is arc length of I'. Noting that for an analytic function
0 i ) i 411
f (%1 +1x2) _ f (%1 +ix2) ’ (36)

on om

where m stands for the tangent to the hole boundary (s. Fig. 1), Eq. (35)s can be further
simplified as

2 Re{i 1Pk + dgtbt} = 2Re{igF(2)} , (37)

k=1

where

¢° =F(z) + F(z) . (38)

Thus, the key task is to find an appropriate form of &, (k = 1,2,3,¢t) satisfying the conditions
(31) and (35), which will be treated in the coming section.

3
Green’s function for thermoelectroelastic hole problems

3.1

The thermal potential @, (z)

Based on the conformal mapping described above and on the concept of perturbation presented
in [19], the general solution for temperature and heat-flux function can be assumed in the form

0 = 2Re[®)(z,)] = 2Relfo(&) + (0] (39)
9 = —2 Re[ik®(z,)] = —2 Relikfy (L) + ikfi (5] (40)

where k = \/ki1ky, — k%,, while f; represents the solution associated with the unperturbed
thermal field, and f; is the function corresponding to the perturbed field of the plate. Using the
heat-flux function ¢, the heat flux h; can be expressed as

h] — —ﬁg, h2 — ﬁ71 . (41)

For a given loading condition, the function f; can be easily obtained since it is related to

the solution of a homogeneous medium. When an infinite plate is subjected to a line tem-
perature discontinuity 6, and a line heat source h*, both located at Z; = x;9 + Tx2, the function
fo can be chosen in the form

fO(Ct) = qoln({, — C:) ) (42)

where {, and (; are related to the complex arguments z, and 2, through the transformation
function (24), and g is a complex constant which can be determined from the condition (31).
The substitution of Eq. (42) into Eqgs. (39) and (40), and later into Eq. (31), yields

0y K

=4 ank

(43)

Thus, the boundary condition (30); requires that



[) =gIn( =) - (44)

The function @, in Eq. (35) can, thus, be obtained by integrating the functions f; and f; with
respect to z;, which leads to

®,(z;) = a1t [qoF1 (8, 8) + GoFe (C;la_j)] + ax[qoF2 ({0, &) + goFr (C{l,fi)}
+ ejlast[‘JOFs (Cta C:) + q0F4(C;1,Zf)] + Ay [%H(Cn Cf) + q,F3 (Ct_l, Zf)] ,  (45)

where
" F(6G) = (G- 0) I -¢) —1] (46)
Bl &) = (' =07 -0 + 47 (47)
. . j
B(t5) = (= it -5 - 1=/ 31 (2] (49
N oy o pri S ()"
R ) = (67 =G =) + G0t -7 3| (49)
n=1 t
3.2

The electroelastic potentials @ (z)

It can be seen from Eq. (35) that the electroelastic potentials @,(zx) should have the same order
as that of ®;(z,) in order to make the equality (35) be valid. Thus, possible forms of @(z)
come from the partition of ®;(z;). They are

filz) = 2 5 [00F1 (G &) + 90Fa (G ) + 3P (G ) + GoFa(G ' 7))

ejlay [q0F3(§k7 Z.:t) + q0F4(Ck7 Ct) + q0F3(Ck 7Ct) + qu4(Ck 7Ct)]

+
o llukb — -1 &% (50>

fZ(Zk) - [ qOFl(CbC )+q0F2(Ckv(t)+qu1(gk 7Z-:t) qOFZ(gk 7Ct)]

N 1611,[21,(17)/

[q0F3(é/k; &) — qoFa(, &) — ZIOF3(C1:1, ) + C_IOF4(C1:1; é;:)} )

where the subscripts 1 and 2 are the indices for the different possible functions.
The electroelastic potentials ®x(z) can thus be chosen as

Di(zx) = fi(zx) g + f2(2k)qk2 (51)

where gy; are complex numbers to be determined from Eq. (35).
The substitution of Eqs. (45) and (51) into Eq. (35), yields

-1

qn [1 1 1 —d,

a1 ¢ = |1 K H3 —td, ) (52)
q31 L tT l‘; t; d3 + i8063

q12 [ 151 Hy Hs ! —d,

an o= | K158 —tdy T, (53)
g3 |ty oty usty ds + ieocs

where t; =y, — igot.

4

Interaction between a crack and a hole

To illustrate the application of the proposed Green’s functions, consider an infinite piezo-
electric plate with a crack of length of 2¢ and holes of various shapes subjected to traction-



charge t; and heat flux hy on the crack faces. The central point of the crack is denoted by

2z = x19 + Hx20, and its orientation angle is denoted by «. The geometry of the configuration of
the crack-hole system is shown in Fig. 2. The orientation of the crack may be arbitrary. The
mathematical statement of this problem can be stated more precisely as follows:

h, =hy, t, =1, on crack faces , (54)
h, =t, =0 on the hole boundary , (55)
hi=1II; =0 i=1,2; at infinity . (56)

The boundary conditions (54) can be satisfied by redefining the discrete Green’s functions g, in
Eq. (45) in terms of distributing Green’s functions go(¢) defined along the crack line,

2z =20 +nz}, 2, = 20 + £z;, where 20 = x50 + x50, 2} = cosa + tsina. In this case, the load
parameter ¢, which has appeared in Sec. 3, should be taken as 0y(&)/4ni. Enforcing the
satisfaction of the applied heat flux conditions on the crack faces, a system of singular integral
equations for the Green’s function is obtained as

413

wrel [ |2+ kit o) mceraz| = -2 (57)

where K, is Holder-continuous along —c¢ < ¢ < ¢ and given by

10z 1 of,
Ko(n,8) = =2} | ==t = ——=~| 2 58
0( ) t !Zp aCt Ct(l . étét)] azt ( )

where

a a &

*j—k—

e gt () S £

tor Gl ) =
During the derivation of Eq. (57), the following relation has been employed:
In({, =) =In(z, — 2,) —Inz, , (60)

For single-valued temperature around a closed contour surrounding the whole crack, the
following auxiliary condition has to be satisfied:

/w%ﬁﬁézo- (61)

(X105 %)

Fig. 2. Geometry of a crack-hole system
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The singular integral Eq. (57) for the temperature discontinuity density, combined with
Eq. (61), can be solved numerically [20]. Since the solution for the function 6y(&) has a square-
root singularity at both crack tips, it is more efficient for the numerical calculations by letting

(<)

where ©(&) is a regular function defined in a closed interval |¢| < c. Once the function @ (&)
has been found, the corresponding SED can be given, from Eqs. (16) and (21), in the form

90(5) = (62)

M) = —5- [ 1n{BR{{f) 200}, + {f(a0)au] + 22 Jou(E)de (63)
) = 5 [ (Bl @0)a, + (alen)) ] + a0 ) bon(@)de (64)
where

4= g @ 4}, (f(20) = dinglf(2)f () ()] (i=1,2) | (65)

falzk) = g [Fl (Cka Cr) + Fz(Ck, C:) —F (CI:I, 5:) — Fz(gl, 5:)}

S (B (60, 57) + FulGen ) — (6 8) — (G 6],

if1b . . (66)
faten) = 2[R (6,0) + Fa6o ) ~ B0 6) + RG]

+ PO R (G ) = FalGe ) + (68 — Fa(50E0)]
¢.(z) = au[F ((n ) = E(G0)] + ax[F2 (G0 ) = FU(GL )]

e [Fs (G ) = Fu(( O)] + au[Ba(6 6) = B (6 6] (67)
Thus, the traction-charge vector on the crack faces induced by Ay is of the form
t2(n) = —I,(n) sino + I,(n) cos o (68)

Generally, t (17) # to on the crack faces || < c. To satisfy the condition (54), on the crack faces,
we must superpose a solution of the corresponding isothermal problem with a traction-charge
vector equal and opposite to (5 — t) in the range |5| < c. The electroelastic solution for a
single dislocation of strength by in an infinite plate with a hole is thus required. The solutions
have been given in the literature [16]. They are

}bo ) (69)

Hz(l’]) = %Im{B |:<ﬁ>(;* - i m<£}:m_1>(EmG* - ch*)] }bo ) (70)

m=1

II(n) = —%Im{BP {<ﬁ>G* - i m<€]:n71><EmG* — F,G,)

m —1

where



1 1 1 0 0 O
Pi=lwm 1w |, Q=10 0 0 ) (74)
X Xo2i X3 S S
0 0 0 —ei; —&; —e3;
E:k = 0 0 0, Ff = | —eiill; —eyll, —esifi; , (75)
by by by bii bii bsi

in which, s. [16],

*x—m : 41 415
k . 180( +rm) s 21sor
erm = ————, bi. = —71’ ki, bii = txe s 76
fm - ki {){k - klews b =1 i k€ki (76)
= for j=1
rw =14 Vize 0 (77)
R for j#1,

Using Egs. (68)-(70), the boundary condition (54), can be expressed by

cimd [ Kot ou@raz ) =10 - ) (78)

T ¢
where
_ aka/agk Ok o m—1 0Lk
Ko(n.¢) = —BK LD IICT Zk><EmG*—FmG*>], (79

and z;, 1 and ¢ are defined by

z; = cosa+ psina (80)

Zkp = Ak —%-F (a *]> Zék gt (81)
k

Here Ko(#, £) is a kernel function of the singular integral equations, and it is Holder-continuous
along —c < ¢ <e.

For single-valued displacements and the electric potential around a closed contour sur-
rounding the whole crack, the following conditions have also to be satisfied:

/_ “bo()dE =0 . (82)

c

As it was done previously, let

0(<)

2 — &

bo(f) = (83)

Once the function ©(&) has been found from Eqgs. (78) and (82), the stresses and electric
displacement, I1,,(17) = {Gum0umDy}" in a local coordinate corresponding to the crack line, can
be expressed in the form

1,00 = Lam [ |28 ko0, boerac) | m

c

where the (3 x 3)-matrix Q(«), whose components are the cosine of the angle between the local
coordinates and global coordinates, is in the form
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coso.  sino 0
Qo) = | —sinoe cosa 0| . (85)
0 0 1

Using Eq. (84), we can evaluate the stress intensity factors K* = (Ky;, Kj, KD)T at the tips, e.g.
at the right tip ¢ = c of the crack, by the following definition:

K" = lim /2n(¢ — o)1, (&) (86)

E—c

Combined with the results of Eq. (84), one then leads to

K* ~ \/gQ(oc)Im(BG*)@(c) . (87)

5

Numerical examples

As an illustration, consider a piezoelectric ceramic (BaTiOs) plate with a crack of length 2¢ and
a square hole, comp. Fig. 2, in which x;0 =0, x30 =3¢, j=3, e=1, a=1.8cand y = 0.2c.
The material properties of the plate can be found in [15] as

ci1 = 150 GPa, c1p = 66 GPa, Cypy = 146 GPa, c33 = 44 GPa,

o =853 x 108K}, 0, =1.99 x 108K, 1, =0.133 x 10°NC 'K !,

ey = —4.35Cm 2, ey =17.5Cm 2, e;3 = 11.4Cm 2, x; = 1115 ko,

Ky = 1260 %, Ko = 8.85 x 1072 C* N~ m™? (=permitivity of the free space) .

(88)

Since the values of the coefficient of heat conduction for BaTiO3; could not be found in the
literature, the values ky,/ki; = 1.5, k;; = 0 and kj; = 1 W/mK are assumed.

Figure 3 shows the numerical results for the coefficients of stress intensity factors f3; versus
the crack orientation o, where f; are defined by

Ki(B) = lhzoC\/ﬁ”/zzﬁl (o),

k
1
Ky (B) = Ehzocﬁy11ﬁz(“)> (89)
1
Kp(B) = %hzoc\/&gzﬁp(“) :
Present method
120 e Finite element method

02 : ! " L N L ! — }
o (deg.)

Fig. 3. Coefficients f8; (i = 1,2, D), comp. Egs. (89), vs crack orientation o
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Infinite elements

Infinite elements
Infinite elements
8¢

Infinite elements Fig. 4. A typical mesh for finite element analysis

Numerical results for such a problem are not yet available in the literature. For comparison, the
finite element method (FEM) is used to obtain the corresponding results. In the FEM analysis,
the configuration of a particular element mesh is shown in Fig. 4. It can be seen from Fig. 3 that
all the coefficients f8; (i = 1,2, D) are not very sensitive to the crack orientation «, although
they slightly vary with it. It is also found from Fig. 3 that the numerical results obtained from
the two models (FEM and the proposed method) are in good agreement.

6

Conclusion

The problem of a hole embedded in a transversely isotropic piezoelectric solid subjected to
thermal and electroelastic loads has been addressed within the framework of in-plane electro-
elastic interactions. A unified analytical thermoelectroelastic Green’s function for the hole
problem has been derived through the use of the Lekhnitskii’s formalism, conformal mapping
and exact electric boundary conditions. Using the solution developed, a system of singular
integral equations for the unknown temperature discontinuity and EDEP dislocation defined on
crack faces has been developed to study the interaction between a crack and a hole. Numerical
results of the SED intensity factors for an infinite plate with one crack and a square hole are
presented to illustrate the application of the proposed formulation. The results show that all the
coefficients f§; (i = 1,2, D) of the SED intensity factors are not very sensitive to the crack
orientation a, but slightly vary with it. It is also found that the numerical results obtained from
the two model (FEM and the proposed method) are in good agreement.
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