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a b s t r a c t

A regularized method of moments based on the modified fundamental solution
of the Helmholtz equation is proposed in this article. The regularized method
of moments uses the origin intensity factor technique which is free of mesh and
integration to deal with the singularity at origin of the basis function. Thus,
the time-consuming singular integration can be avoided. In addition, the non-
uniqueness at internal resonance is also fixed using the constructed modified
fundamental solution. In comparison with the traditional method of moments,
the regularized method of moments can reduce the computational time by half,
while the stability and accuracy stay about the same. Numerical experiments
demonstrate that the regularized method of moments can accurately and efficiently
compute the radar cross section of perfect conducting scatter in all frequency
ranges.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Efficiently computing the radar cross section (RCS) [1] of the perfect conducting scatter is a hot topic
in fields of computational electromagnetics [2]. Among computational methods reported in the literature,
the method of moments (MOM) [3] is the most widely used method for electromagnetic problems. However,
the traditional MOM would suffer the deficiencies of singularity at origin and non-uniqueness at internal
resonance. In general, the singular integration is applied to deal with the singularity at origin of the
fundamental solution. The electric field integral equation (EFIE) is combined with the magnetic field integral
equation (MFIE) to fix the non-uniqueness at resonance frequency, i.e., the combined field integral equation
(CFIE) [4]. However, both the two strategies would significantly increase the computing cost [5]. As is known
to all, the matrix of the MOM is fully populated. Therefore, how to evaluate the RCS by the MOM with
lower amount of calculation is a key task for computational electromagnetics.
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In this letter, a regularized method of moments (RMOM) is constructed to accurately evaluate the RCS
of perfect conducing scatter. In the RMOM, a modified fundamental solution of the three-dimensional
(3-D) Helmholtz equation [6] which satisfies the radiation condition at infinity is constructed to fix the
non-uniqueness at internal resonance. Compared to CFIE, the computational cost of the RMOM is reduced
almost by half. As demonstrated in the subsequent examples, the RMOM can accurately generate the unique
solution at any specified frequency. Furthermore, the origin intensity factor (OIF) technique [7–9] which
is free of mesh and integration is used to deal with the singularity at origin of the modified fundamental
solution. Therefore, the time-consuming singular integration is also avoided.

2. The regularized method of moments for electromagnetic scattering problems

The scattered electric field of a perfect conducting scatter is evaluated by the following equation

E
S = iωA − ∇Φ, (1)

where E
S is the scattered electric field, A the magnetic vector potential, Φ the scalar potential, and ω the

ngular frequency. A bar over a variable represents that variable is a vector.
The perfect electric conductor (PEC) boundary condition is expressed as

− E
I

tan = (iωA − ∇Φ)tan, (2)

where the subscript tan represents the tangential component. E
I is the incident electric field. k = ω

√
µε =

π/λ, where k is the wave number, λ the wavelength. µ = 4π × 10−7 and ε = 8 . 854187817 × 10−12 are the
permeability and the permittivity of the surrounding free space.

In the RMOM, the RWG vector basis function fn is used as the test function. With the symmetric product
efinition ⟨

f, g
⟩

=
∫

S

f · gds, (3)

he interpolation matrix of the RMOM satisfies⟨
E

I
, fm

⟩
= −iω

⟨
A, fm

⟩
+

⟨
∇Φ, fm

⟩
(4)

by testing Eq. (2) with fn, where fn is the RWG vector basis function [3] associated with the nth edge as
epicted in Fig. 1,

fn(r) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ln

2A+
n

ρ+
n , r ∈ T +

n

ln

2A−
n

ρ−
n , r ∈ T −

n

0, otherwise

and ∇S · fn =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ln

A+
n

, r ∈ T +
n

− ln

A−
n

, r ∈ T −
n

0, otherwise

. (5)

he last term of Eq. (4) satisfies the following relationship⟨
∇Φ, fm

⟩
= −

∫
S

Φ∇S · fmdS. (6)

By expanding the induced surface currents J with

J =
N∑

Infn(r), (7)

n=1

2



J. Li, L. Zhang and Q.-H. Qin Applied Mathematics Letters 112 (2021) 106746

E

w

w
o

i
s

Fig. 1. RWG vector basis function.

q. (4) is reformulated as
ZI = V, (8)

here
Zmn = lm

[
−iω

(
A

+
mn · ρc+

m

2 + A
−
mn · ρc−

m

2

)
− Φ+

mn + Φ−
mn

]
, (9)

Vm = lm

(
E

+
m · ρc+

m

2 + E
−
m · ρc−

m

2

)
, E

±
m = E

I(rc±
m ), (10)

A
±
mn = µ

4π

∫
S

fn(r′)M±
m(r′)dS′ and Φ±

mn = 1
4πiωε

∫
S

∇′
S · fn(r′)M±

m(r′)dS′, (11)

In the MOM, the basis function is G = eikR/R, R = |r − r′| [10]. However, the MOM would fail at
internal resonance frequency due to the non-uniqueness of the solution. To remedy this drawback, the
RMOM constructs a modified fundamental solution of the 3-D Helmholtz equation as the basis function
as:

M = α
eikR

R
+ (1 − α)ei(kR−π/2)

R
= [α − (1 − α)i] eikR

R
, R = |r − r′| , (12)

here α ∈ [0, 1] is the shape parameter. The purpose of constructing the modified fundamental solution is to
vercome the non-uniqueness at internal resonance frequency without increasing the amount of calculation.

The modified fundamental solution would suffer singularity when R → 0. The RMOM uses the origin
ntensity factor technique given in Ref. [7] to deal with the singularity at origin of the modified fundamental
olution. The OIF of the RMOM is written as

G0 = − 1
kAi

N∑
j=1 ̸=i

⎡⎢⎢⎢⎢⎣
kG(xi, yj)

3∑
m=1

cos
(
k(yj

m − xi
m)

)
· ne(xi

m) · ne(yj
m)

−∂G(xi, yj)
∂ne(yj)

3∑
m=1

sin
(
k(yj

m − xi
m)

)
· ne(xi

m)

⎤⎥⎥⎥⎥⎦ Aj , ∀xi ∈ S, (13)

M0 = [α − (1 − α)i] G0, (14)

where ne(xi) =
(
ne(xi

1), ne(xi
2), ne(xi

3)
)

and ne(yj) =
(

ne(yj
1), ne(yj

2), ne(yj
3)

)
are the outer normal vector

at source point xi and observation point yj , respectively. Am is the area of range of influence of the mth

source point.
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Fig. 2. Normalized monostatic RCS for sphere.

After the unknown coefficient vector I is obtained, the far-field scattered electric field can be approxi-
ately computed by

E
S(r) ≈ [α − (1 − α)i] iωµeik|r|

4π |r|

∫
S

J(r′)e−ik|r′|·r̂dS′, (15)

here r̂ = r − r′/ |r − r′| ≈ r/ |r|, r′ and r represent the coordinate of source point and observation point,
espectively.

The radar cross section (RCS) is expressed as

σ3−D = lim
r→∞

4πr2
⏐⏐⏐ES

⏐⏐⏐2
/ ⏐⏐⏐EI

⏐⏐⏐2
or σdBsm = 10 lg(σ), (16)

. Numerical experiments

xample. Consider a perfect conducting sphere illuminated by an incident electric field E
I = (eikz, 0, 0).

he plane electric wave travels in the +Z direction with the electric field polarized along the X-axis. In this
tudy, the shape parameter of the RMOM is α = 0.5.

Case 1. The normalized monostatic RCS for perfect conducting sphere is investigated by the RMOM as
lotted in Fig. 2. The Mie solution which is taken from Eq. (11–247) of Ref. [11] is expressed as

σ = λ2

4π

⏐⏐⏐⏐⏐
∞∑

n=1

(−1)n(2n + 1)
Ĥ

(2)′
n (ka)Ĥ(2)

n (ka)

⏐⏐⏐⏐⏐
2

. (17)

ig. 2 represents the lower half of a “Mie region” between the “Rayleigh region” and the “Optics region”. It
an be observed that there is in good agreement between the RMOM solution and the Mie solution.

Case 2. The non-uniqueness at internal resonance is investigated in this case. The Galerkin discretization
suffers the first spherical resonance at ka = 2.769 and the second spherical resonance at ka = 4.518. Fig. 3
epicts the bistatic RCS of a resonant sphere at ka = 2.769, where sphere radius a = 1 m. The degrees of
reedom (DOF) of the RMOM are 2794. In Fig. 3, the RMOM solution is compared to the EFIE solution
nd the Mie solution which are given in Ref. [4]. The monostatic RCS computed by the RMOM and the
elated computing data given in Ref. [12] are listed in Table 1 and Table 2, where ka = 2.769 and ka = 4.518,
espectively.

Figs. 3a and 3b are called horizontal and vertical polarization RCS, respectively. As expected, the EFIE
olution fails entirely at the spherical resonance frequency, while the RMOM solution is in good agreement
4
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Fig. 3a. Bistatic RCS for the conducting sphere at internal resonance ka = 2.768.

Fig. 3b. Bistatic RCS for the conducting sphere at internal resonance ka = 2.768.

Table 1
Resonant sphere monostatic RCS when ka = 2.768 (θ = 180◦).

Method Mie RMOM (α = 0.5) EFIE [12] CFIE (α = 0.5) [12]

σ/λ2(dB) −2.88 −2.97 −12.48 −3.07
ERROR 3.13% 6.60%

Table 2
Resonant sphere monostatic RCS when ka = 4.518 (θ = 180◦).

Method Mie RMOM (α = 0.5) EFIE [12] CFIE (α = 0.5) [12]

σ/λ2(dB) 2.68 2.63 5.53 2.66
ERROR 1.87% 0.75%

with the Mie solution. It is demonstrated that the RMOM successfully fixes the problem of non-uniqueness
at internal resonance frequency by using the modified fundamental solution as the basis function.

Case 3. The numerical efficiency of the RMOM is investigated. In this case, the frequency of incident wave
is 600 MHz. The experimental data of the normalized monostatic RCS by the RMOM, the finite element
method (FEM) [13–16] and the singular boundary method (SBM) [17–20] are listed in Table 3, where the
experimental data of the FEM and the SBM is taken from Ref. [21].
5
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Table 3
Normalized monostatic RCS by the FEM, the SBM and the RMOM.

FEM [21] SBM [21] RMOM

DOF Error CPU (s) DOF Error CPU (s) DOF Error CPU (s)

200 559 2.85% 313 3200 2.14% 49 3216 2.51% 17.86
380 008 1.96% 633 5000 1.69% 183 5010 1.57% 43.59

It is observed that the RMOM only requires less than half of the CPU time consumed by the SBM to
enerate the similar solution. In comparison with the FEM solution which is computed by the COMSOL,
he computing time of the RMOM is only its one tenth or even less.

. Conclusions

In this letter, a regularized method of moments is proposed to accurately evaluate the RCS for perfect
onducting scatter. The main purpose of the RMOM is to remedy two deficiencies of the MOM while
aintaining its efficiency and accuracy, i.e., the singularity at origin of the basis function and the non-
niqueness at internal resonance. The RMOM uses the OIF to deal with the singularity at origin of the
odified fundamental solution, which avoids the time-consuming singular integration. The RMOM uses

he modified fundamental solution as the basis function, which overcomes the difficulty of non-uniqueness
ithout increasing the computational and storage complexity. Experiments show that the RMOM can
ccurately evaluate the RCS for all frequency with much lower amount of cost of calculation and then the
PU time than those of the CFIE due to the application of the two proposed techniques.
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