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In this work, a fundamental-solution-based hybrid finite element method is presented for modeling mixed-mode 

cracks in two-dimensional (2D) isotropic elastic media. In the method, a double-variable hybrid functional for 

each element is formulated to derive element stiffness equation in terms of nodal displacements, which includes 

line integrals along the element boundary only. The element interior displacement field is approximated using a 

linear combination of displacement fundamental solutions at different source locations, while the independent 

element frame displacement field is approximated by one-dimensional shape function interpolation. To correctly 

model the behavior of crack-tip displacement, the discontinuous quarter-point crack-tip singular hybrid element 

formulation is developed, so that crack tip stress intensity factors can be easily evaluated by the near-tip dis- 

placement method. Three numerical examples of internal cracks in 2D elastic domains are presented to show the 

efficiency of the proposed method. 
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. Introduction 

Analysis of crack stability and propagation plays a central role in

ngineering to assess structural safety [1–3] and typically it requires the

ccurate determination of stress intensity factors (SIFs) [4–6] , which in

urn relies on the modeling of stress and displacement fields near crack

ip. Williams [7] in his original work revealed that the displacement

eld varies as r 1/2 in the vicinity of the crack-tip, while the stress and

train fields are r − 1/2 singular at the crack tip, where r is the radial

istance from the crack tip, which is measured in the local coordinates

 

⌢ 
𝑥 1 , 

⌢ 
𝑥 2 ) defined at the crack tip, as depicted in Fig. 1 . 

Usually, in order to represent the complex displacements and stresses

n the vicinity of crack tip, simulation technologies using some numeri-

al methods such as finite element methods (FEM) [8,9] and boundary

lement methods (BEM) [10,11] have to be employed. However, the

onventional interpolating polynomials don’t contain the terms related

o the r 1/2 and r − 1/2 variations of crack-tip displacements and stresses.

hus, the singularity of stresses cannot be reflected by the interpolat-

ng polynomials, although the displacements can be adequately mod-

lled by refined meshes around the crack tip [12] . To overcome this,

he isoparametric quarter-point elements have been defined by placing

he midpoint node at the quarter point for the implementation of FEM

13–15] and BEM [16–19] . These works showed that the quarter-point

lements have the capability to model exactly inverse square-root singu-
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arity of the stresses near the crack tip. However, the accuracy of results

s strongly related to the mesh density, especially in FEM, although the

EM can conveniently achieve the domain element discretization for a

pecific complex mechanical problem. In contrast to the FEM, the BEM

ses the boundary integral equation to reduce computational time. But

t is difficult to deal with problems including multiple subdomains, be-

ause extra equations are required to enforce the continuity of adjacent

ubdomains. 

This paper presents an alternative simulation strategy for modeling

D cracks and subsequent SIF computation. The essence of the present

pproach is a mesh discretization of cracked domain using n -sided

 n ≥ 3) hybrid finite elements which utilize a complete set of fundamen-

al solutions of the governing partial differential equations originated

t different source points as basis functions for approximating element

nterior displacement and stress fields [20] , instead of T-complete solu-

ions in Trefftz finite element [21–24] . Along the element boundary, the

tandard isoparametric quadratic approximation is assumed for the ele-

ent frame displacement. To capture the stress singular behavior in the

icinity of crack tip, the quarter-point singular interpolation along ele-

ent boundary is employed. The present hybrid finite element formula-

ion can be regarded as the combination of FEM and BEM and has some

nherent advantages: (1) the quality of results is element size indepen-

ent and is strongly related to the element interior interpolation mode

25] , (2) only integration along the element boundary has to be carried
st 2019 
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Fig. 1. Schematics of coordinate system at crack tip. 

Fig. 2. Schematic of a finite domain containing internal cracks. 
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Fig. 3. Schematic of an internal crack. 
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ut, which allows the use of standard quadrature rules, and thus effec-

ively reduces the dimension of the calculation by one [25,26] , (3) ar-

itrary n -sided elements are allowed for domain discretization [27,28] ,

3) unified basis functions are employed for field interpolation in all

 -sided elements, rather than that in FEM, (4) in special cases the fun-

amental solutions can fulfill boundary conditions of defects as well so

hat hybrid superelements, i.e. super hole element [20] , super discontin-

ous load element [29] , super graded element [30] , super fiber element

31] , etc., can be constructed to enclose defects so that the meshing and

omputing efforts around defects can be simplified. 

The paper is arranged as follows. The mathematical formulation of

he problem is given in Section 2 . The hybrid finite element formulation

nd its crack implementation are presented in Section 3 . The computa-

ion of SIFs is described in Section 4 . Numerical results are presented in

ection 5 and finally some conclusions are drawn in Section 6 . 

. Problem statement 

Consider an isotropic homogeneous 2D elastic domain which con-

ains several internal cracks, as shown in Fig. 2 , in which the crack is

efined in terms of upper and lower faces Γ+ 
𝑐 

and Γ− 
𝑐 
, respectively. The

wo crack faces are geometrically coincident, i.e. the normal vectors

atisfy 𝐧 + 
𝑐 
= − 𝐧 − 

𝑐 
where 𝐧 + 

𝑐 
and 𝐧 − 

𝑐 
are the normals to Γ+ 

𝑐 
and Γ− 

𝑐 
, respec-

ively, as indicated in Fig. 3 . It is also assumed that the crack faces are

ree of external forces. 

With the assumption that the domain is free of body forces, the equi-

ibrium equations in the standard Cartesian coordinates ( x , x ) can be
1 2 
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ritten as 

 

T 𝛔( 𝐱) = 𝟎 (1)

here 𝛔( 𝐱) = [ 𝜎11 ( 𝐱) 𝜎22 ( 𝐱) 𝜎12 ( 𝐱) ] 𝑇 is stress vector consisting of

tress components 𝜎ij ( i,j = 1, 2) at a point x and L is the partial derivative

perator matrix 

 = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

𝜕 

𝜕 𝑥 1 
0 

0 𝜕 

𝜕 𝑥 2 
𝜕 

𝜕 𝑥 2 

𝜕 

𝜕 𝑥 1 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 
(2)

With the small deformation approximation, the strain can be given

y displacement derivatives to the spatial variable 

 ( 𝐱) = 𝐋𝐮 ( 𝐱) (3)

here 𝛆 ( 𝐱) = [ 𝜀 11 ( 𝐱) 𝜀 22 ( 𝐱) 𝛾12 ( 𝐱) ] 𝑇 is the strain vector and 𝐮 ( 𝐱) =
 𝑢 1 ( 𝐱) 𝑢 2 ( 𝐱) ] 𝑇 is displacement vector. 

In the linear elastic theory for isotropic homogeneous material, the

tress 𝝈 connects to the strain 𝜺 through a constant material matrix re-

ated to Young’s modulus E and Poisson’s ratio 𝜈

( 𝐱) = 𝐜𝛆 ( 𝐱) (4)

n which 

 = 

𝐸 

(1 + 𝜈)(1 − 2 𝜈) 

⎡ ⎢ ⎢ ⎢ ⎣ 
1 − 𝜈 𝜈 0 
𝜈 1 − 𝜈 0 
0 0 1 − 2 𝜈

2 

⎤ ⎥ ⎥ ⎥ ⎦ (plane strain) (5)

r 

 = 

𝐸 

(1 + 𝜈)(1 − 𝜈) 

⎡ ⎢ ⎢ ⎢ ⎣ 
1 𝜈 0 
𝜈 1 0 
0 0 1 − 𝜈

2 

⎤ ⎥ ⎥ ⎥ ⎦ (plane stress) (6)

Besides, the displacement ̄𝐮 and traction ̄𝐭 are prescribed on the outer

oundary portions Γu and Γt , respectively, that is 

 = �̄� , on Γ𝑢 
𝐭 = 𝐭 , on Γ𝑡 (7) 

here the boundary traction 𝐭 = [ 𝑡 1 𝑡 2 ] 𝑇 connects to the stresses by

he expression 

 = 𝐀𝛔 (8) 

n which 

 = 

[ 
𝑛 1 0 𝑛 2 
0 𝑛 2 𝑛 1 

] 
(9)

 i is the i th component of the unit outward normal n to the outer bound-

ry Γo , and Γu ∪Γt = Γo , Γu ∩Γt = ∅. 
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Fig. 4. Schematics of domain discretization by n -sided polygonal elements. 
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. Hybrid element formulation 

In the computation, the elastic solid with complex geometries is

rstly divided into a number of n -sided polygonal elements ( n ≥ 3).

ig. 4 shows an example of a polygonal mesh for a 2D solid, and it is

een that it is possible for the computing domain to consist of different

ypes of polygonal elements with different numbers of edges, as long

s they are geometrical compatible (no gaps and overlapping) on the

oundaries between adjacent elements. Once the domain discretization

s finished, we can introduce unified displacement approximations for

ll polygonal elements. As an example, let’s consider a typical polygonal

lement shown in Fig. 5 . It is assumed that the whole element domain

onsists of the interior domain Ωe and the boundary Γe . In the present

ybrid finite element formulation, different patterns of the displace-

ent field on the boundary and in the interior domain are respectively

ntroduced. 

.1. Intra-element displacement field 

Within the interior of element, the displacement field at arbitrary

eld point x is approximated by a linear combination of fundamental

olutions centered at series of source points x si ( i = 1, 2, …, m ) locating

utside the element domain ( x si ∉Ωe ), that is, 

 ( 𝐱) = 𝐍 𝑒 ( 𝐱) 𝐜 𝑒 , 𝐱 ∈ Ω𝑒 (10)

here 𝐜 𝑒 = [ 𝐜 1 T 𝐜 2 T ⋯ 𝐜 𝑚 T ] T is an unknown coefficient vector

not nodal displacement value) with size 2 ×m , and 𝐜 𝑖 T = [ 𝑐 1 𝑖 𝑐 2 𝑖 ] . The

isplacement kernel matrix 

 𝑒 ( 𝐱) = 

[
𝐍 1 ( 𝐱) 𝐍 2 ( 𝐱) ⋯ 𝐍 𝑚 ( 𝐱) 

]
(11)

ith 

 𝑖 ( 𝐱) = 

[ 
𝑈 ∗ 11 ( 𝐱, 𝐱 𝑠𝑖 ) 𝑈 ∗ 21 ( 𝐱, 𝐱 𝑠𝑖 ) 
𝑈 ∗ 12 ( 𝐱, 𝐱 𝑠𝑖 ) 𝑈 ∗ 22 ( 𝐱, 𝐱 𝑠𝑖 ) 

] 
, 𝑖 = 1 , 2 , … , 𝑚 (12)

n which the fundamental solution 𝑈 ∗ 
𝑙𝑘 
( 𝐱, 𝐱 𝑠 ) is the induced displacement

omponent at point x caused by the l -direction unit force at the source

oint x s and can be expressed as [10] 

 

∗ 
𝑙𝑘 

(
𝐱, 𝐱 𝑠 

)
= 

1 
8 𝜋𝐺(1 − 𝜈) 

[ 
( 3 − 4 𝜈) 𝛿𝑙𝑘 ln 

1 
𝑟 
+ 

𝜕𝑟 

𝑥 𝑙 

𝜕𝑟 

𝑥 𝑘 

] 
, 𝑙, 𝑘 = 1 , 2 (13)

In Eq. (13) , 𝑟 = 

√
𝑟 𝑘 𝑟 𝑘 with r k = x k − x sk . 𝛿lk denotes the Dirac func-

ion, and G = E /2/(1 + 𝜈) is the shear modulus. 

Generally, the locations of source points outside the element domain

an be pre-assigned to simplify the computing procedure (see Fig. 6 ),

nd in the present formulation, the locations of these source points are

hosen at a pseudo boundary which is geometrically similar to the actual

lement boundary Γe by 

 = 𝐱 + 𝛾( 𝐱 − 𝐱 ) (14)
𝑠 𝑏 𝑏 𝑐 
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here x s , x b , and x c represent the coordinates of source point, boundary

oint and centroid of the element, respectively. 𝛾 > 0 is a dimension-

ess parameter controlling the distance of source point to the element

oundary [32] . Besides, for the sake of simplicity, the number of source

oints outside the domain can be chosen to be same as that of nodes in

ractical computation. 

Correspondingly, the stress field can be obtained by substituting

q. (10) into the governing Eqs. (3) and (4) 

( 𝐱) = 𝐒 𝑒 ( 𝐱) 𝐜 𝑒 (15)

here 

 𝑒 ( 𝐱) = 

[
𝐒 1 ( 𝐱) 𝐒 2 ( 𝐱) ⋯ 𝐒 𝑚 ( 𝐱) 

]
(16)

ith 

 𝑖 ( 𝐱) = 

⎡ ⎢ ⎢ ⎣ 
𝑆 ∗ 111 ( 𝐱, 𝐱 𝑠𝑖 ) 𝑆 ∗ 211 ( 𝐱, 𝐱 𝑠𝑖 ) 
𝑆 ∗ 122 ( 𝐱, 𝐱 𝑠𝑖 ) 𝑆 ∗ 222 ( 𝐱, 𝐱 𝑠𝑖 ) 
𝑆 ∗ 112 ( 𝐱, 𝐱 𝑠𝑖 ) 𝑆 ∗ 212 ( 𝐱, 𝐱 𝑠𝑖 ) 

⎤ ⎥ ⎥ ⎦ , 𝑖 = 1 , 2 , … , 𝑚 (17)

n which the fundamental solution 𝑆 ∗ 
𝑙𝑘𝑗 

( 𝐱, 𝐱 𝑠 ) is the induced stress com-

onent at point x caused by the l -direction unit force at the source point

 s [10] 

 

∗ 
𝑙𝑘𝑗 

(
𝐱, 𝐱 𝑠 

)
= 

1 
4 𝜋( 1 − 𝜈) 𝑟 

[ 
( 1 − 2 𝜈) 

( 

𝜕𝑟 

𝑥 𝑙 
𝛿𝑘𝑗 − 

𝜕𝑟 

𝑥 𝑗 
𝛿𝑘𝑙 − 

𝜕𝑟 

𝑥 𝑘 
𝛿𝑗𝑙 

) 

− 2 𝜕𝑟 
𝑥 𝑙 

𝜕𝑟 

𝑥 𝑘 

𝜕𝑟 

𝑥 𝑗 

] 
, 

𝑙, 𝑘, 𝑗 = 1 , 2 (18) 

Then, the caused traction distribution on the element boundary can

e given by 

( 𝐱) = 𝐐 𝑒 ( 𝐱) 𝐜 𝑒 (19)

here 

 𝑒 ( 𝐱) = 𝐀 𝐒 𝑒 ( 𝐱) (20)

.2. Element frame displacement field 

Although the intra-element fields developed above satisfy the gov-

rning equations of elasticity, the continuity requirement of the dis-

lacements on the common interface from the adjacent elements is not

aken into consideration. In order to enforce such conformity, the dis-

lacement field ̃𝐮 defined along the element boundary Γe can be written

s 

̃
 ( 𝐱) = �̃� 𝑒 𝐝 𝑒 , 𝐱 ∈ Γ𝑒 (21)

here �̃� 𝑒 denotes the interpolation matrix relating the element bound-

ry displacement �̃� to the nodal displacement vector d e , and 

̃
 𝑒 = 

[
�̃� 1 �̃� 2 ⋯ �̃� 𝑝 

]
(22) 

 𝑒 = 

[
𝐝 1 𝐝 2 ⋯ 𝐝 𝑝 

]T 
(23) 

For the n -sided element with n edges and p nodes, if there are three

odes on each edge for crack simulation, we have p = 2 n . For such case,

he isoparametric quadratic interpolation scheme has to be employed.

or example, when the boundary point x locates on the i th edge ( i = 1,

, …, n − 1), 

̃
 2 𝑖 −1 = 

[ 
�̃� 1 ( 𝜉) 0 
0 �̃� 1 ( 𝜉) 

] 
, ̃𝐍 2 𝑖 = 

[ 
�̃� 2 ( 𝜉) 0 
0 �̃� 2 ( 𝜉) 

] 
, 

̃
 2 𝑖 +1 = 

[ 
�̃� 3 ( 𝜉) 0 
0 �̃� 3 ( 𝜉) 

] 
, ̃𝐍 𝑗 = 

[ 
0 0 
0 0 

] 
( 𝑗 ≠ 2 𝑖 − 1 , 2 𝑖 , 2 𝑖 + 1) (24) 

n which �̃� 𝑖 ( i = 1,2,3) stands for the standard shape functions in terms

f natural coordinate 𝜉 ∈ [ − 1, 1] as defined in Fig. 7 and can be found

n most of textbooks on finite/boundary element methods [8,10] , i.e. 

̃
 1 = − 

𝜉( 1 − 𝜉) 
, �̃� 2 = 1 − 𝜉2 , �̃� 3 = 

𝜉( 1 + 𝜉) 
(25)
2 2 
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Fig. 5. Displacement approximations for hybrid finite element. 

Fig. 6. Schematics of location and quantity of source points. 
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Specially, when the point x locates on the n th edge, 

̃
 2 𝑛 −1 = 

[ 
�̃� 1 ( 𝜉) 0 
0 �̃� 1 ( 𝜉) 

] 
, ̃𝐍 2 𝑛 = 

[ 
�̃� 2 ( 𝜉) 0 
0 �̃� 2 ( 𝜉) 

] 
, 

�̃� 1 = 

[ 
�̃� 3 ( 𝜉) 0 
0 �̃� 3 ( 𝜉) 

] 
, ̃𝐍 𝑗 = 

[ 
0 0 
0 0 

] 
( 𝑗 ≠ 2 𝑛 − 1 , 2 𝑛 , 1) (26)

Simultaneously, for the isoparametric quadratic boundary of inter-

st, the Cartesian coordinate x is also related to the natural coordinate

, as indicated in Fig. 8 , in a parametric form 

( 𝜉) = �̃� 𝑒 𝛅𝑒 , 𝐱 ∈ Γ𝑒 (27)

here 𝛅𝑒 = [ 𝐱 1 𝐱 2 ⋯ 𝐱 𝑝 ] T is the vector consisting of nodal coor-

inates x ( i = 1, 2, ⋅⋅⋅, p ). 
i 

270 
.3. Extended potential 

Having the independently defined intra-element displacement field

nd element frame displacement field for a particular element e , the

ollowing hybrid functional Πme is defined to establish a link between

he two types of fields associated with the element e [20,33] 

𝑚𝑒 = 

1 
2 ∫Ω𝑒 𝛔

T 𝛆 dΩ − ∫Γ𝑡 𝑒 𝐭 
T �̃� dΓ + ∫Γ𝑒 𝐭 

T ( ̃𝐮 − 𝐮 )dΓ (28)

here Γ𝑡 = Γ𝑡 ∩ Γ𝑒 represents the element traction boundary. 

𝑒 
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Fig. 8. Geometric interpolation on a specific edge. 
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Performing integration by parts of Eq. (28) and then applying the

aussian theorem to it result in 

𝑚𝑒 = 

1 
2 

[ 

∫Γ𝑒 𝐭 
T 𝐮 dΓ − ∫Ω𝑒 ( 𝐋 

T 𝛔) T 𝐮 dΩ
] 

− ∫Γ𝑡 𝑒 𝐭 
T �̃� dΓ + ∫Γ𝑒 𝐭 

T ( ̃𝐮 − 𝐮 )dΓ

(29) 

The intra-element displacement field satisfies the governing equa-

ions of elasticity and therefore the domain integration in Eq. (29) van-

shes. The remaining terms are 

𝑚𝑒 = − 

1 
2 ∫Γ𝑒 𝐭 

T 𝐮 dΓ − ∫Γ𝑡 𝑒 𝐭 
T �̃� dΓ + ∫Γ𝑒 𝐭 

T �̃� dΓ (30)

Substituting Eqs. (10) , (19) and (21) into Eq. (30) , the hybrid func-

ional (30) is rewritten in terms of the undetermined coefficient c e and

he nodal displacement d e as 

𝑚𝑒 = − 

1 
2 
𝐜 𝑒 T 𝐇 𝑒 𝐜 𝑒 − 𝐝 𝑒 T 𝐠 𝑒 + 𝐜 𝑒 T 𝐆 𝑒 𝐝 𝑒 (31)

ith 

 𝑒 = ∫Γ𝑒 𝐐 𝑒 
T 𝐍 𝑒 dΓ

 𝑒 = ∫Γ𝑒 𝐐 𝑒 
T �̃� 𝑒 dΓ

𝐠 𝑒 = ∫Γ𝑡 𝑒 �̃� 

T 
𝑒 ̄
𝐭 dΓ (32) 

hich can be further converted into integrals related to the single vari-

ble 𝜉, that is 

 𝑒 = ∫
1 

−1 
𝐐 𝑒 

T 𝐍 𝑒 𝐽 Γ( 𝜉)d 𝜉

 𝑒 = ∫
1 

−1 
𝐐 𝑒 

T �̃� 𝑒 𝐽 Γ( 𝜉)d 𝜉

𝐠 𝑒 = ∫
1 

−1 
�̃� 

T 
𝑒 ̄
𝐭 𝐽 Γ( 𝜉)d 𝜉 (33) 

In Eq. (33) , 𝐽 Γ( 𝜉) is the boundary Jacobian, which can be evaluated

y the transformation Eq. (27) of x and 𝜉, i.e. 

 Γ( 𝜉) = 

√ ( 

𝜕 𝑥 1 
𝜕𝜉

) 2 
+ 

( 

𝜕 𝑥 2 
𝜕𝜉

) 2 
(34)

The stationary value of Πme in Eq. (31) with respect to c e and d e 

ields the following relations 

𝜕 Π𝑚𝑒 
𝜕 𝐜 𝑒 T 

= − 𝐇 𝑒 𝐜 𝑒 + 𝐆 𝑒 𝐝 𝑒 = 𝟎 

𝜕 Π𝑚𝑒 
𝜕 𝐝 T 

= 𝐆 𝑒 
T 𝐜 𝑒 − 𝐠 𝑒 = 𝟎 (35) 
𝑒 

271 
rom which the optional relationship between c e and d e , and the element

tiffness equation can be respectively given by 

 𝑒 = 𝐇 𝑒 
−1 𝐆 𝑒 𝐝 𝑒 (36) 

 𝑒 𝐝 𝑒 = 𝐠 𝑒 (37) 

here 

 𝑒 = 𝐆 𝑒 
T 𝐇 𝑒 

−1 𝐆 𝑒 (38) 

s the element stiffness matrix, which keeps symmetric in practice. 

Assembling symmetric element stiffness matrix for each element and

mposing the specific displacement constraints lead to an algebraic sys-

em of equations, which can be solved for determining the nodal dis-

lacements. This procedure is the same as that in the traditional finite

lement method [8,34] . Subsequently, the coefficient c e can be evalu-

ted by Eq. (36) . Then the displacements and stresses at any point in

he element can be evaluated by Eqs. (10) and (15) . 

. Calculation of stress intensity factors 

The task of interest in fracture analysis is the calculation of stress

ntensity factors which are local parameters to determine whether the

racks propagate. The most common methods for evaluating the SIFs are

he J-integral method and the near-tip displacement method [35–37] .

he latter is much preferred in practice since the displacement calcu-

ation in most of numerical methods is straight forward and requires

ery little calculation [12,16,17] , and hence the near tip displacement

ethod is employed in this study to evaluate the SIFs for mixed-mode

rack problems. 

As depicted in Fig. 1 , the near-tip displacement fields 
⌢ 
𝑢 1 and 

⌢ 
𝑢 2 at

oint ( r, 𝜃) in the local coordinates ( 
⌢ 
𝑥 1 , 

⌢ 
𝑥 2 ) are related to stress intensity

actors K I,II and can be written as [4,7] 

 

𝑢 1 = 

K I 
4 𝜇

√ 

𝑟 

2 𝜋

[
(2 𝜅 − 1) 𝑐𝑜𝑠 𝜃

2 
− cos 3 𝜃

2 

]
+ 

K II 
4 𝜇

√ 

𝑟 

2 𝜋

[
(2 𝜅 + 3) 𝑠𝑖𝑛 𝜃

2 
+ sin 3 𝜃

2 

]
+ 𝑂( 𝑟 ) 

 

𝑢 2 = 

K I 
4 𝜇

√ 

𝑟 

2 𝜋

[
(2 𝜅 + 1) sin 𝜃

2 
− sin 3 𝜃

2 

]
− 

K II 
4 𝜇

√ 

𝑟 

2 𝜋

[
(2 𝜅 − 3) cos 𝜃

2 
+ cos 3 𝜃

2 

]
+ 𝑂( 𝑟 ) (39) 

here 𝜇= E /2/(1 + 𝜈) is shear modulus, 𝜅 = 3 − 4 𝜈 for plane strain and

= (3 − 𝜈)/(1 + 𝜈) for plane stress. 

Specially, when 𝜃 = ± 𝜋, that is, the point locates on the upper and

ower faces, the relative normal displacement Δu n and tangential dis-

lacement Δu t at r (see Fig. 9 ) can be given by 

𝑢 𝑛 = 

⌢ 
𝑢 2 ( 𝑟, 𝜋) − 

⌢ 
𝑢 2 ( 𝑟, − 𝜋) = 

K I 
𝜇

√ 

𝑟 

2 𝜋
( 𝜅 + 1 ) 

Δ𝑢 𝑡 = 

⌢ 
𝑢 1 ( 𝑟, 𝜋) − 

⌢ 
𝑢 1 ( 𝑟, − 𝜋) = 

K II 
𝜇

√ 

𝑟 

2 𝜋
( 𝜅 + 1 ) (40) 

rom which the stress intensity factors K I,II can be calculated as 

K I = 

𝜇

1 + 𝜅

√ 

2 𝜋
𝑟 
Δ𝑢 𝑛 

 II = 

𝜇

1 + 𝜅

√ 

2 𝜋
𝑟 
Δ𝑢 𝑡 (41) 

Moreover, because the near-tip displacements are normally evalu-

ted in the global coordinates ( x 1 , x 2 ) for the implementation of the

resent hybrid finite element method, the displacement transformation

s needed for the case of inclined crack, as displayed in Fig. 10 . If the
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Fig. 9. Singular quarter-point elements at crack tip. 

Fig. 10. Correlation between the global and local coordinates for inclined crack 

problem. 
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f  
ngle of crack inclination is represented by 𝜙, the correlation between

he global and local displacements can be written as 

 

⌢ 
𝑢 1 
⌢ 
𝑢 2 

] 

= 

[ 
cos 𝜙 sin 𝜙
− sin 𝜙 cos 𝜙

] [ 
𝑢 1 
𝑢 2 

] 
(42)
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Obviously, the accuracy of the SIFs depends on the quality of rep-

esentation of the asymptotic displacement and stress fields. To capture

he u ∼ r 1/2 displacement behavior and the 𝝈 ∼ r − 1/2 stress behavior

n the vicinity of the crack tip, the singular quarter-point crack-tip el-

ment is employed in this work. This singular quarter-point crack-tip

lement can be achieved by using three-node edges with midside nodes

hifted from central positions to quarter-side positions [14,38] , as in-

icated in Fig. 9 . The length l of the quarter-point element at crack-tip

see Fig. 9 ) is generally assumed to be l / a = 1/10 in the practical com-

utation, according to the suggestion of Blandford et.al. [18] , where a

s the half crack length. For such singular controlling case, the displace-

ent and geometric approximations expressed by the shape functions

n Eq. (25) along an element edge, i.e. consisting of nodes i, j, k , can

e found in Fig. 11 . Besides, the general 4-sided transition elements are

llocated around the singular 3-sided elements to achieve regular mesh

onfiguration in the near-tip region over which the crack is sensed. 

. Numerical results and discussion 

To demonstrate the accuracy and efficiency of the proposed formu-

ation, three numerical examples have been taken into consideration to

valuate stress intensity factors, involving the centered crack, inclined

rack and two inclined cracks. Moreover, in all cases, finite plate is sub-

ected to a uniform tension in one direction. 

.1. A central crack in a finite plate 

The first example is a finite plate with a central crack under uni-

orm tension 𝜎0 = 30 MPa perpendicular to the crack line ( Fig. 12 ). The
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Fig. 11. Singular quarter-point approximation near crack tip. 

Fig. 12. The finite plate with a horizontal central crack under uniform tension. 

Fig. 13. Computational model for the horizontal centered cracked plate. 
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idth and height of the plate are 2 b = 200 mm and 2 h = 400 mm, respec-

ively. The crack length is a . The material properties of plate are Young’s

odulus E = 210 GPa and Poisson’s ratio 𝜈 = 0.25. Under plane stress

tate, the reference solution for this problem is given by Tada et al. as

39] 

 

Tada 
I = 𝜎0 

√
𝜋𝑎 

√ 

sec 
(
𝜋𝑎 

2 𝑏 

)
(43) 

Owing to the symmetry, only a quarter of the plate is modeled, as dis-

layed in Fig. 13 , and the corresponding symmetric displacement con-

traints are applied on the two symmetrical edges. 

The influence of the dimensionless parameter 𝛾 controlling the dis-

ance of source points to the element boundary is firstly considered for

he case of a = 10 mm. The computational model in Fig. 13 is meshed

y 89 hybrid elements including 6 hybrid 3-sided elements with singu-

arity controlling and 83 general hybrid 4-sided elements, as shown in

ig. 14 (a). The normalized SIF results by the present method are pre-

ented in Fig. 15 , from which it is observed that the parameter 𝛾 has a

arge range to produce stable results. In the following computation, the

arameter 𝛾 is chosen as 10, unless specifically stated. 

For various crack lengths, the SIFs are obtained by the present

ethod and listed in Table 1 . All the results are computed by using

 hybrid 3-sided singular elements to enclose the crack tip, as shown

n Fig. 14 . For the cases of a = 30 mm and a = 50 mm, total 57 and 56

ybrid elements are employed to model the computational domain, re-

pectively. It is found from Table 1 that the numerical results are in good

greement with the results determined by Eq. (43) . 

Additionally, the computational efficiency is compared between the

onventional finite element and the proposed hybrid finite element, un-

er the condition that the same mesh division and in the same computer

re used. Here, three mesh divisions, as shown in Fig. 14 , are consid-

red and the computational efficiency of each type of element is listed

n Table 2 , from which it is found that the present hybrid element in-

olved boundary integrals only is slightly faster than the conventional

nite element involved domain integral if the same number of Gaussian

uadrature points for each local coordinate direction are employed, i.e.

 Gaussian quadrature points are used for numerical integration along

ach side of the hybrid finite element, while 3 by 3 Gaussian quadra-

ure points are used for domain integration in each conventional finite
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Fig. 14. Meshes used for various crack lengths for the central crack problem: (a) a = 10 mm, (b) a = 30 mm and (c) a = 50 mm. 

Fig. 15. Influence of the dimensionless parameter 𝛾 to the normalized SIF for 

the case of a = 10 mm. 

Table 1 

Normalized mode I for various crack lengths 

in the central-crack problem. 

a / b 0.1 0.3 0.5 

𝐾 I ∕( 𝜎0 
√
𝜋𝑎 ) 1.014 1.071 1.204 

𝐾 Tada I ∕( 𝜎0 
√
𝜋𝑎 ) 1.006 1.059 1.189 

e  

l  

m  

s

Table 2 

Comparison of computational efficiency between the present hy- 

brid finite element and the conventional finite element. 

Mesh Hybrid finite element Conventional finite element 

Fig. 14 (a) 0.090079s 0.091346s 

Fig. 14 (b) 0.056074s 0.057004s 

Fig. 14 (c) 0.054671s 0.055768s 
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m  
lement. It is worth pointing out that the timer begins from the element

oop and ends after the global stiffness matrix is assembled, because the

ain difference of the two types of element is the production of element

tiffness matrix, as shown in Section 3 . 
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Moreover, the accuracy and convergence of the present hybrid ele-

ent is investigated through considering the case of a = 50 mm. In con-

rast to 𝐾 I ∕( 𝜎0 
√
𝜋𝑎 ) = 1.134 from the conventional finite element with

ame mesh division given in Fig. 14 (c), it is found that the present hy-

rid finite element can give better prediction 1.204. On the other hand,

8, 41, and 56 elements with 71, 144, 189 nodes are respectively used to

emonstrate the convergence of the present hybrid finite element. It is

bserved from Fig. 16 that the present hybrid finite element rapidly con-

erges from 1.225 to 1.204 when the number of nodes increases from 71

o 189. The maximum relative error to the exact solution is only 3.03%

roduced by using 71 nodes. 

Finally, different meshing strategies are discussed for illustrating the

exibility of the present hybrid finite elements. In addition to the mixed

lement meshing shown in Fig. 14 (c), the model with a = 50 mm is dis-

retized with 96 3-sided elements and 60 4-sided elements, respectively,

s indicated in Fig. 17 . It is found from that the normalized SIF is 1.201

or the pure 3-sided element discretization and 1.202 for the pure 4-

ided element discretization. These results are very close to that from

he mixed element discretization. 

.2. An inclined internal crack in a finite plate 

The second example is used to test the capability of the present

ethod for the mixed- mode loading which is achieved by a uniform
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Fig. 16. Influence of the dimensionless pa- 

rameter 𝛾 to the normalized SIF for the case 

of a = 50 mm. 

Fig. 17. Different meshing strategies for the model with a = 50 mm: (a) mixed element meshing, (b) 3-sided element meshing, (c) 4-sided element meshing. 
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o  

t  
ensile stress 𝜎0 = 1 applied at the ends of the plate with a central in-

lined crack, as displayed in Fig. 18 . The angle of inclination is 𝜙 with

espect to the global x 1 axis. Here, the geometric dimension of the plate

s set as 2 a = 1.2, b = 1 and h = 2. The plane strain is assumed for this

roblem with material properties E = 1.0 and 𝜈 = 0.3. 

Fig. 19 shows the mesh configurations for various angles of incli-

ation of crack. It is clearly seen that each crack tip is enclosed by

 singular hybrid 3-sided elements for all computations. Additionally,

43, 145, 146 and 163 general 4-sided elements are used for the hy-

rid finite element simulation when the angle of inclination is 15°, 30°,

5° and 60°, respectively. The mixed-mode SIF values for various an-

les of inclination are listed in Table 3 . The SIF results have been com-

ared with published results from literature [40,41] using conformal

apping (CMAP) approach and super singular element method (SSEM)
275 
espectively. The table shows that for every crack angle of inclination,

ood agreements on both K I and K II are observed for different solving

trategies. 

.3. Two inclined internal cracks in a finite plate 

Finally, a finite plate with two inclined cracks is considered, as de-

cribed in Fig. 20 . The geometric dimensions related to this problem

re h = 2, b = 1, a = 0.25 and d = 0.275. The angle of crack inclination is

= 60°. For the computational domain, the material properties are E = 1

nd 𝜈 = 0.3. 

Owing to the symmetry of the domain on the middle line, only half

f it is modeled, as shown in Fig. 21 . Under plane strain assumption,

he half-plate with one inclined crack is discretized with 16 singular
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Fig. 18. The finite plate with inclined central crack under uniform tension. 

h  

o  

𝜙  

i  

b  

t  

Fig. 20. The finite plate with two inclined internal cracks. 

S  

t  

C  

p  

o  
ybrid 3-sided elements enclosing the crack tips A and B. The number

f general 4-sided hybrid elements are 176 and 188 for the study of

= 30° and 𝜙= 45°, respectively. The mesh configurations for this two

nclined angles are depicted in Fig. 22 . This problem was also discussed

y Chen and Chang [42] , and Lu and Wu [16] , and their results revealed

hat the SIFs are almost same for Mode I and Mode II. Thus, only the
276 
IF solutions of Mode I at the two crack tips A and B are discussed in

his study. Table 4 compares the present SIF results with those from

hen and Chang [42] , and Lu and Wu [16] . As shown in Table 4 , the

resent results are closer to those from Lu and Wu [16] . Moreover, it is

bserved from the table that the SIFs become bigger as the inclination
Fig. 19. Mesh configurations for various 

angles of inclination: (a) 𝜙= 15°, (b) 𝜙= 30°, 

(c) 𝜙= 45° and (d) 𝜙= 60°. 
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Fig. 21. The computational model of the half-plate with one inclined internal 

crack. 

Table 3 

Normalized mixed-mode SIFs for a central inclined crack under uniform tension. 

𝜙 𝐾 I ∕( 𝜎0 
√
𝜋𝑎 ) 𝐾 II ∕( 𝜎0 

√
𝜋𝑎 ) 

Present Reference solutions 

[40,41] 

Present Reference solutions 

[40,41] 

15° 1.187 1.218 0.278 0.273 

30° 0.960 0.984 0.491 0.480 

45° 0.646 0.661 0.581 0.567 

60° 0.325 0.333 0.515 0.502 

Table 4 

Comparison of normalized stress intensity factor for various crack 

angles. 

𝜙 Present Lu and Wu [16] Chen and Chang [42] 

30° Tip A 0.993 0.981 0.487 

Tip B 0.855 0.846 0.516 

45° Tip A 0.603 0.596 0.513 

Tip B 0.525 0.520 0.557 

a  

o  

b

Fig. 22. Mesh configurations of the half-plate with one inclined internal crack 

for two angles of crack inclination: (a) 𝜙= 30° and (b) 𝜙= 45°. 
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ngle of crack becomes smaller. This can be attributed to the interaction

f two cracks. The smaller the angle 𝜙 is, the stronger such interaction

ecomes. 
277 
. Conclusions 

In this paper, the application of the hybrid finite element formulation

ith unified fundamental solutions as trial functions to crack problems

n linear elastic medium has been investigated. The present n -sided hy-

rid element is in conjunction with the quarter-point singularity control-

ing to construct the singular hybrid elements at the crack tip, which has

een proved very efficient to calculate the SIFs for mixed-mode crack

roblems of arbitrary geometry, as well as structures with multi-cracks.

he use of discontinuous quarter-point elements at the crack tips can

orrectly describe the r 1/2 behavior of the near-tip displacement. Nu-

erical results show very good agreement between the present method

nd published results. Further, it is demonstrated from the implementa-

ion of the present method that the present formulation can readily be

ncorporated into the standard FEM program framework. 
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