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One of the fundamental challenges in engineering design of an elastic metamaterial is optimizing its structure in 

a fine but controllable geometry based on a performance criterion. In this study, the wave manipulation ability of 

the metamaterial is taken as the key criterion for the optimization of its unity structure governed by the chang- 

ing geometric parameters. The complete dispersion relationship of the metamaterial is set as the performance 

criterion which is acquired by scanning the wave vector k along the contour of the irreducible Brillouin zone in 

the reciprocal space for the unit cell and evaluating its eigenfrequency values in different eigenmodes. For the 

optimization algorithm, the Nelder–Mead method is programmed in the form of MatLab scripts incorporated with 

tailored parameter ranges to ensure geometric compatibility and a finite element analysis (FEA) solver for eigen- 

frequency evaluation. Parametric optimization is conducted for 100 iterations where promising convergence is 

observed. The optimized geometry is then compared to the initial in its performance. In all three case studies, 

including planar and spatial lattices, the optimized geometry showed superior properties and larger complete 

band gaps. The Nelder–Mead method is proved to be an effective tool for metamaterial optimization. 

1

 

s  

t  

t  

m  

l  

p  

d  

r  

a  

t  

g  

y  

t  

s  

c  

n  

e  

h  

i

y

 

t  

a  

w  

w  

v  

t  

s  

m  

r  

g  

s  

r  

m

 

b  

i  

i  

[  

c  

i  

c

h

R

0

. Introduction 

Over the past two decades, research on mechanical metamaterial

tructures has gained high level of interest from academics and indus-

rial stakeholders globally due to their capabilities to bring novel mul-

ifunctionalities. Some of the examples include locally resonant sonic

aterials [1] , soft metamaterials with negative Poisson’s ratio [2] , di-

ational elastic metamaterials [3] , ultra-lightweight lattices [4,5] , and

entamode mechanical metamaterials [6] . Elastic wave propagation un-

er local resonant is one in the main streams of mechanical metamate-

ial research. For instance, in 2007 Fokin et al. established a systematic

pproach to retrieve effective properties of a locally resonant metama-

erial made from a homogeneous fluid slab of material [7] ; in 2014 a

roup of researchers provided both theoretical and experimental anal-

sis on forming new three-dimensional metamaterial structures using

he principles of origami art [8] ; in 2016, Wang et al. [9] demonstrated

uccessful wave manipulation both theoretically and numerically by in-

orporating lateral local resonator in a traditional beam model. The ma-

ipulation can also be achieved by other methods. For example, Chang

t al. [10] demonstrated a pre-deformed Neo-Hookean material can be-

ave like a smart metamaterial and can be utilized to manipulate both

n-plane and anti-plane S-waves. 
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The geometrical arrangement of these metamaterials greatly affects

heir properties. Three-dimensional dilational structures, for instance,

re a family of mechanical metamaterials that display chirality through

ave refraction. An initial geometry, proposed by Buckmann et al. [3] ,

as specified with four independent geometrical variables. Strategically

arying these variables based on repeated performance tests gives po-

ential to parametrical optimization of its geometry. The structural de-

ign drew inspiration from an analogy to the previous electro-magnetic

etamaterial structure with coils and split-ring resonators arranged pe-

iodically to produce local resonance [11] . Following the discovery, a

roup of structures emerged with similar rotating arrangement of rods

urrounding a dense core which propelled the research on metamate-

ial structures and inspired scientists to seek more innovative vibration

odes that exhibits the property [12–14] . 

The metamaterial performance of these original designs can often

e optimized by manipulating the unit cell geometry. Traditionally this

s completed by a manually analytical approach specific to the design

tself, especially for 3D unit structures, which is not widely applicable

15,16] . In this work an automatic approach is established to numeri-

ally optimize the geometrical design. The approach is then examined

n three scenarios. The success in all scenarios indicates a general appli-

ability of this approach to various metamaterial design problems. 
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Table 1 

Corresponding formulation of each operation, where 𝛼, 𝛽, 

𝜎1 , 𝜎2 and 𝛿 are coefficients. In this study a standard con- 

figuration is used, where: 𝛼 = 1, 𝛽 = 2, 𝜎1 = 𝜎2 = 𝛿 = 1/2. 

Operation Formulation 

Reflection 𝒙 
𝑹 
= 

𝑛 ∑
𝑖 +1 

𝒙 
𝒊 
+ 𝛼

( 
𝑛 ∑
𝑖 +1 

𝒙 
𝒊 
− 𝒙 

𝑾 

) 
Expansion 𝒙 

𝑬 
= 

𝑛 ∑
𝑖 +1 

𝒙 
𝒊 
+ 𝛽

( 
𝑛 ∑
𝑖 +1 

𝒙 
𝒊 
− 𝒙 

𝑾 

) 
Outer-contraction 𝒙 

𝑶 𝑪 
= 

𝑛 ∑
𝑖 +1 

𝒙 
𝒊 
+ 𝜎1 

( 
𝑛 ∑
𝑖 +1 

𝒙 
𝒊 
− 𝒙 

𝑾 

) 
Inner-contraction 𝒙 

𝑰 𝑪 
= 

𝑛 ∑
𝑖 +1 

𝒙 
𝒊 
− 𝜎2 

( 
𝑛 ∑
𝑖 +1 

𝒙 
𝒊 
− 𝒙 

𝑾 

) 
Shrink x 

i , shrunk 
= x B − 𝛿( x i − x B ), i = 2, 3, …, n + 1 
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Fig. 1. Two-dimensional phononic crystal geometry. (For interpretation of the 

references to color in this figure, the reader is referred to the web version of this 

article.) 
On the other hand, the prosperity of mechanical metamaterial theo-

ies spawned various geometric designs and physical implementations.

any researchers have achieved promising outcomes using innova-

ive manufacturing methods to create composite structures that exhibit

etamaterial properties. In 2004, Yang et al. [17] pioneered the field by

abricating a three-dimensional phononic crystal with tungsten carbide

eads surrounded by water. Following these trials, more and more re-

earchers have made their own rendition of metamaterial manufacture

18–21] . However, most of these designs left room of improvement in

heir performance. And such could be easily achieved with structural

ptimization. 

Among structural optimization methods, topology optimization is

ne of the most popular. Applications of topology optimization have

ttracted a great amount of attention in recent years [22–24] . However

or this study the Nelder–Mead method is chosen for programming the

ptimization algorithm. Being one of the most widely used optimization

ethods, it belongs to the family of numerical methods, which offers

implicity and precision in calculation without the need for evaluating

ntegrals [25–27] . The Nelder–Mead method utilizes a simplex, depend-

ng on the number of dimensions of the parameter domain, with each

ndex representing a trail configuration to seek an optimal solution over

terations. Groups of indices are produced by generation, with each of

hem being superior in performance to the previous one. The details of

he method are discussed in the following section. 

Parametric optimization methods are preferred over topology op-

imization due to the fact that the structural designs resulted from

opology optimization often contain highly irregular angles and sur-

aces. Structures produced by topology optimization methods are also

ore difficult to replicate on a different scale, which is often required

ith mechanical metamaterials. In comparison, parametric optimiza-

ion takes advantage of a pre-existing arrangement of structural compo-

ents, changing the geometry by only altering the governing parameters.

ence the optimized geometry can be produced in a similar approach

o the original. Also the Nelder–Mead method used in this work is par-

icularly good at handling a large number of variables which makes it

ossible to expand the findings to a higher-degree domain of variables

28,29] . 

As the mechanical metamaterials examined in this work are derived

rom simple two-dimensional designs, their geometry patterns are en-

irely defined by only a handful of parameters. A small change of these

ould render a great impact on their performance. Therefore parametric

ptimization is often sufficient in investigating these simpler structures.

astly, parametric optimization methods are largely numerical, indicat-

ng a void of differential analysis. This helps accelerating the optimiza-

ion process, making it suitable for implicit problems. 

. Methodology 

Due to the complex of unit geometry, in this work we evaluate

he performance of a mechanical metamaterial by means of numerical

imulation with FEA [30–33] . The FEA solver is employed to search

or eigenfrequencies of the model subject to a wave vector with various

patial frequencies. When a complete isolation forms between two

igenmode curves, the eigenfrequency margin between them indicates

aximum attenuation of the incident wave. Such phenomenon is

efined as an elastic band gap. To accurately analyze the performance

f the metamaterial, a complete dispersion relation is investigated.

uintessentially, the wave vector scans across the entire first Brillouin

one in the reciprocal space, which can be reduced to the irreducible

rillouin zone. Here we investigate both two-dimensional square and

hree-dimensional cubic models with different Brillouin Zones by

ontrolling the wave vector, ⃗𝑘 . 

Their dimension of the reciprocal lattice can be calculated with re-

pect to the dispersion relationship by: 

 𝑚𝑎𝑥 = 

𝜋
, 
𝑎 

110 
here a is the unit cell length in physical space, and the resultant max-

mum wave number k max is half of the side length of the first Brillouin

one. By optimizing the performance of a mechanical metamaterial, the

and gap can be tailored to be more suitable for its application. As a

etamaterial structure can be easily scaled in dimension which leads to

hifting of the band gap position proportionally, the sole interest of this

tudy is the enlargement of band gaps. 

Keeping the main goal of optimization in mind, the objective is de-

ived: to increase the relative width of the primary bandgap. The objec-

ive function can be expressed as: 

𝑎𝑥𝑖𝑚𝑖𝑧𝑒 ∶ 𝑑 = 

(
𝑓 𝑢𝑝𝑝 _ 𝑚𝑖𝑛 − 𝑓 𝑙𝑜𝑤 _ 𝑚𝑎𝑥 

)
𝑓 𝑢𝑝𝑝 _ 𝑚𝑖𝑛 + 𝑓 𝑙𝑜𝑤 _ 𝑚𝑎𝑥 

2 

; 𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∶ 𝑓 𝑢𝑝𝑝 _ 𝑚𝑖𝑛 − 𝑓 𝑙𝑜𝑤 _ 𝑚𝑎𝑥 > 0 . 

In this case the relative band gap width is defined as the ratio of

he absolute gap width, calculated by taking the distance from the high-

st point on the lower eigenfrequency curve and the lowest point on

he higher one, to the median frequency of the gap, which determines

ts position on the spectrum. As the model geometry is scaled, the fre-

uency graph is scaled proportionally, both in position and in width. By

easuring the relative gap width the effect of scaling is eliminated so

he objective reflects the true width of the gap. 

Implementing the objective shown above, an optimization algorithm

an be built using the Nelder–Mead method. Mathematically, new points

re generated based on the coordinates of the previous indices. These

perations are expressed as follows, with the coordinates denoted as �⃗� .

ere the number of indices is n + 1, with point W ranked at the last place

 i = n + 1) and point B ranked first ( i = 1). The generation of new points

ollows the mathematical formulation shown in Table 1 . 

Termination conditions in this case include a limit on the number

f iterations as well as a minimum deviation between the indices. The

aximum number of iteration is set to be 100 generations, while a strict
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Fig. 2. (a) RMSD plot shows rapid convergence and (b) Final geometry with enlarged core. (For interpretation of the references to color in this figure, the reader is 

referred to the web version of this article.) 

Fig. 3. (a) Initial band structure where Ra = Rb = 0.6 ∗ a . (b) Optimized band structure where Ra/a = 0.82879 and Rb/a = 0.82386. 
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eviation threshold is set: RMSD min = 1 ∗ 10 − 6 . Upon reaching either one

f the conditions the program will exit the loop and return all data. 

𝑀𝑆𝐷 = 

√ ∑𝑛 
𝑖 =1 

(
�̄� 𝑖 − 𝑥 𝑖 

)2 
𝑛 

; 𝑤ℎ𝑒𝑟𝑒 �̄� 𝑖 = 

𝑛 ∑
𝑖 =1 

𝑥 𝑖 

𝑛 
. 

In this study, the optimization process is conducted by combining

atLab scripts which analyze the results and execute the NM algorithm,

ith a FEA solver that provides simulation data given the generated

ets of parameters. The data is then transmitted to the MatLab program

nd the objective value is extracted for each of the indices. With three-

imensional simulations the model is built as a cubic representative vol-

me element. Considering the Bloch’s theorem, with the representative

olume element, periodicity conditions are applied to the three pairs of

ides to satisfy the following relationship: 

 ( 𝒓 ) = 𝑒 𝑖𝑘 ⋅𝒓 𝑢 ( 𝒓 ) . 

Due to the numerical nature of simplex optimization methods, the

eometrical compatibility needs to be programmed individually into

he algorithm before analyzing each design. Triangular and tetrahe-

ral elements are used, respectively, for two-dimensional and three-

imensional models, with quadratic Lagrange interpretation between

odes to enhance accuracy. The outcomes from each simulation are

hown in the following section. 
111 
. Results 

.1. Shape optimization of two-dimensional phononic crystal 

For the two-dimensional validation of the algorithm, a square

hononic crystal is examined. The geometry is governed by three pa-

ameters, namely internal length R a , internal height R b , and the edge

f cell a = 0.1 m exhibited in Fig. 1 . As can be observed the structure is

omposed of two different materials: the core, shaded in blue and the

atrix in grey. Both matrix and core materials are virtual homogenous

aterials with the following characteristics: 

𝑎𝑡𝑒𝑟𝑖𝑎𝑙 1 ( 𝑚𝑎𝑡𝑟𝑖𝑥 ) ∶ 𝐸 1 = 2 𝐺𝑃 𝑎 ; 𝜌1 = 1 ∗ 10 3 𝑘𝑔∕ 𝑚 

3 ; 𝛾1 = 0 . 45 . 
𝑎𝑡𝑒𝑟𝑖𝑎𝑙 2 ( 𝑐𝑜𝑟𝑒 ) ∶ 𝐸 2 = 200 𝐺𝑃 𝑎 ; 𝜌2 = 8 ∗ 10 3 𝑘𝑔∕ 𝑚 

3 ; 𝛾2 = 0 . 34 . 

The shape optimization is conducted by altering the geometric pa-

ameters R a and R b . They are in proportion to the cell length, so the

rimary variables of interest are the ratio of R a and R b to a individu-

lly, which forms a two-dimensional parametric domain. The simplex

n the two-dimensional domain is a triangle. Utilizing the NM method,

he program will generate three indices for the initial simplex, then shift

he indices across the domain, and gradually approach a simplex corre-

ponding to a peak value of the optimization objective. 

For quicker computation we included at the start of the NM al-

orithm a seed geometry ( 
𝑅 𝑎 
𝑎 

= 

𝑅 𝑏 
𝑎 

= 0 . 6 ) to ensure a valid complete

and gap from input. In the nature of Nelder–Mead parameter search,

he method does not require a successful seed input. However random
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Fig. 4. (a) Planar view of dilational metamaterial structure. (b) Initial seed ge- 

ometry where R = 0.3 a , t = 0.1 a and d = 0.004 a . 

s  

n  

s  

a

 

c  

a  

t  

t

 

a

 

fi  

i  

T  

t

3

 

d  

a  

i  

o  

t  

t  

t  

l  

d  

s

 

c  

s  

d  

e  

d  

t  

u  

m

 

g  

F

(

earch without the seed geometry may lead to slow convergence and sig-

ificantly higher consumption of computational power. The inclusion of

eed geometry is particularly desirable with three-dimensional models

s the number of degrees of freedom increases drastically. 

As shown in Fig. 2 (a), convergence occurs very rapidly in the latter

ase (purple curve). The relative bandgap width increases drastically

nd reaches optimum within the first 12 generations. Inspired by the

wo-dimensional scenario, the following cases are studied with the same

echniques. 

As presented in Fig. 2 (b), the final optimized geometric parameters

re: 

𝑅 𝑎 

𝑎 
= 0 . 82879; 

𝑅 𝑏 

𝑎 
= 0 . 82386 . 

The initial and optimized band structures are shown in Fig. 3 . The

nal gap width is 91.58%. Compared to 49.58% initially, the bandgap is
ig. 5. (a) Optimized band structure showing a primary gap width of 82.5%. (b)

d) Optimized geometry and three-dimensional cell structure. 

112 
mproved by 84.71%. The total time elapsed for this procedure is 28 min.

his method proved to be effective in optimizing two-dimensional pat-

erns that possess unique properties of metamaterials. 

.2. Shape optimization of three-dimensional dilational PC cell 

Following the previous two-dimensional trial, a three-dimensional

ilational metamaterial structure is investigated. The initial geometry

nd band structure are displayed in Fig. 4 . In this case the geometry

s governed by three parameters: t, d and R. R stands for the radius

f the circular core; t represents the thickness of the plate when the

hree-dimensional cell is constructed by extruding and combining the

wo-dimensional drawing; and d stands for the width of the connec-

ion branch. Once more the cell geometry is in proportion to the overall

ength a (abbreviation since irrelevant), which also contributes to the

etermination of wave vector �⃗� , and the position of all bands on the

pectrum. 

For this scenario a brief trial is conducted for 20 iterations and good

onvergence is reached rapidly. The number of twenty iterations was

elected due to high consumption of computational power with three-

imensional models. Moreover the three-variable case was not the main

mphasis of the project rather than the four-variable case which includes

irect relevance to the previous work by Buckmann et al. [3] . An ex-

ended investigation of this geometrical design will be conducted in an

pcoming project where the shape will be studied in greater details and

ore iterations of optimization. 

Same as previous, the minimum RMSD is set to 1 ∗ 10 − 6 . The initial

eometry yields a band structure where no complete gap can be found.
 Convergence plot indicates rapid convergence in first 20 iterations. (c) and 
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Fig. 6. (a) Initial dilational metamaterial structure. (b) Con- 

sideration of the geometrical compatibility of the parameters. 

Fig. 7. (a) Initial band structure. (b) Optimized band structure with widened gap. (c) Optimized two-dimensional geometry. (d). Isometric view of optimized 

structure. 
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√

fter the optimization procedure, the final parameters are as follow: 

𝑅 

𝑎 
= 0 . 03634; 𝑡 

𝑎 
= 0 . 45086; 𝑑 

𝑎 
= 0 . 00551 . 

As illustrated in Fig. 5 , the optimized structure is greatly deformed in

hape as compared to the original. The nodes (of side-length t ) are signif-

cantly enlarged while the core diminished. The resultant band structure

isplays a complete gap between the sixth and seventh bands, and the

nal gap width is 82.5%. 

.3. Four-variable shape optimization of pre-existing metamaterial 

tructure 

The trial reveals potential of creating novel structures with large

and gaps using numerical optimization methods. With interest in im-

roving the performance of pre-existing three-dimensional mechani-

al metamaterial structures, a three-dimensional dilation metamaterial

tructure, proposed by Buckmann et al. in 2014 [3] , is investigated.

hown in Fig. 6 is the initial geometry, determined by a series of shape

arameters, all in proportion to cell length a . As h is driven by the rest of

he parameters only b ( B 

∗ a ), d ( D 

∗ a ), t ( T ∗ a ) and w ( W 

∗ a ) are considered.

 four-variable parametric domain is therefore generated. 
113 
With the complicated structure it becomes vital to define a realistic

ange for all geometric parameters to avoid overlapping. The parameters

ust be varied within ranges compatible with each other. Considering

he geometry, the following calculations are made: 

an ( 𝛼) = 

𝑎 

2 − 

√
2 
2 𝑏 − 𝑡 

𝑎 

2 − 𝑡 
; 

= arctan 
⎛ ⎜ ⎜ ⎝ 
𝑎 

2 − 

√
2 
2 𝑏 − 𝑡 

𝑎 

2 − 𝑡 

⎞ ⎟ ⎟ ⎠ = arctan 

( 

1 − 

√
2 𝐵 − 2 𝑇 

1 − 2 𝑇 

) 

; 𝛽 = 𝛼 + 

𝜋

4 

 𝑚𝑎𝑥 = 

tan ( 𝛽) 
2 

∗ 
𝑎 

2 − 

√
2 
2 𝑏 − 𝑡 

sin ( 𝛼) 
= 

tan ( 𝛼) + 1 
2 − 2 tan ( 𝛼) 

∗ 
𝑎 

2 − 

√
2 
2 𝑏 − 𝑡 

sin ( 𝛼) 
. 

So the definitive ranges of the parameters are: 

 ∈ [ 0 . 05 , 0 . 4 ] ; 𝑇 ∈ [ 0 . 1 , 0 . 5 ] ; 𝐵 ∈ [ 0 . 1 , 0 . 7 ] ; 𝐷 ∈
[ 1 
1000 

, 
2 
25 

]
. 

2 𝐵 + 2 𝑇 ≤ 1 . 
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Fig. 8. (a) Polar distribution of phase velocities (m/s) 

in the X –Y plane of the unit cell. (b) Distribution of 

phase velocities (m/s) in the plane constructed by vec- 

tors (1,1,0) and (0,0,1). 

Fig. 9. Eigenmode shapes at (a) 80.3 Hz. (b) 100.8 Hz 

and (c) 106.1 Hz. The wavenumber k = 0.1 ∗ 𝜋/ a . 

Red arrows represent the direction of displacement, 

whereas the three modes show clear orthogonal polar- 

ization. (For interpretation of the references to color 

in this figure legend, the reader is referred to the web 

version of this article.) 
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Fig. 10. The dynamic approximation of Poisson’s ratio. The blue and red curves 

represent the original and optimized models. Values of the ratio are determined 

by retrieving the polarized phase velocities at various frequencies. (For inter- 

pretation of the references to color in this figure legend, the reader is referred 

to the web version of this article.) 

g

𝐶

 

b  

P

𝛾
11 12 
And: 

 𝑚𝑎𝑥 = 

tan ( 𝛼) + 1 
2 − 2 tan ( 𝛼) 

∗ 
𝐴 − 

√
2 𝐵 − 2 𝑇 

2 sin ( 𝛼) 
. 

here 𝛼 = arctan ( 1− 
√
2 𝐵−2 𝑇 

1 −2 𝑇 ) 
The optimization algorithm is run for 100 iterations, the minimum

MSD is set to 1 ∗ 10 − 4 for refined differentiation with the indices rank-

ng. The final parameters are as follow: 

𝐵 = 

𝐵 

𝑎 
= 0 . 36218; 𝑇 = 

𝑡 

𝑎 
= 0 . 19126; 𝑊 = 

𝑤 

𝑎 
= 0 . 07604; 

 = 

𝑑 

𝑎 
= 0 . 00101 . 

The outcomes are illustrated in Fig. 7 . 

While the original structure exhibits a complete gap as wide as

1.99%, after 100 iterations of optimization, the final gap width is cal-

ulated to be 38.93%. The performance of the mechanical metamaterial,

easured by the bandgap width, is increased by 77.04%. The optimized

hape is very much similar to that of the original, although deformation

uch as an enlarged thickness can be observed as indicated by the geo-

etric parameters. 

Fig. 8 depicts the phase velocities and their dependency on the orien-

ation of the wave vector. The symmetrical results are as expected from

 cubic unit cell. Although the phase velocities show an anisotropic dis-

ribution, the four-fold symmetry in the X –Y plane coincides with that

n the original design. 

Following the polar representation, the phase velocity in the ΓM di-

ection is investigated to retrieve the value of Poisson’s ratio. Here we

elected the first three eigenmodes, which showed orthogonal polariza-

ion in the displacement vector. The mode shapes are depicted as follows

n Fig. 9 . 

Utilizing both the longitudinal eigenmode and the transverse eigen-

odes the Poisson’s ratio is calculated from the phonon band structure.

t low frequencies this dynamic result approximates the static estima-

ion. Considering the elasticity tensor 
↔

𝐶 , the following derivations are
114 
iven: 

 44 = 𝜌
(
𝑣 𝑇 ,𝑧 110 

)2 
, 𝐶 12 = 𝜌

(
𝑣 𝐿 110 

)2 − 𝐶 44 − 𝜌
(
𝑣 
𝑇 ,𝑥𝑦 

110 

)2 
, 𝐶 11 = 2 𝜌

(
𝑣 
𝑇 ,𝑥𝑦 

110 

)2 
+ 𝐶 12 . 

Where the non-zero components in the tensor, C 11 , C 12 and C 44 , can

e determined from the polarized phase velocities. Following this, the

oisson’s ratio is easily calculated: 

= 

𝐶 12 
𝐶 + 𝐶 

. 
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Here the low frequency region is selected, as indicated by small wave

umbers to provide an approximation of the static case. The results

rom both geometry patterns are shown in Fig. 10 . In comparison to the

riginal proposed by Buckmann et al., the optimized geometry yields a

oisson’s ratio of − 1.0034. This is calculated by taking a polynomial fit

o the phonon band structure data. Using the same method the original

oisson’s ratio is determined to be − 0.8586. The decrease in the nega-

ive Poisson’s ratio is resulted from a decreased d / a ratio, as suggested

n the original work. And the optimized result coincides with the trend

emonstrated within. 

. Conclusion 

Inspired by the previous study on mechanical metamaterial struc-

ures that possess wave manipulation capabilities, this work is ded-

cated to exploring the potential of shape optimization by means of

umerical optimization algorithm. Particularly the Nelder–Mead sim-

lex method is incorporated with FEA calculations to evaluate and im-

rove the objective value, which is simply the relative band gap width

s extracted from the band structure plotted by the eigenfrequency

olver. 

With repetitive trials with both two-dimensional and three-

imensional models, the NM method has proven to be very effective and

fficient in optimizing the shape of metamaterial structures. This study

eveals the capabilities of the NM method in operating within multi-

ariable parameter domain. The NM method harbors great potential in

mproving the performance of mechanical metamaterial structures pro-

osed previously, and shall be utilized more frequently. Based on the

ndings of this work one can expect the Nelder–Mead method to be

urther explored with more existing mechanical metamaterial designs.

ew methods will be developed with more stability and the efficiency

f this method, as compared to other optimization methods, will also be

urther evaluated over more iterations. 

upplementary materials 

Supplementary material associated with this article can be found, in

he online version, at doi: 10.1016/j.enganabound.2019.03.011 . 
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