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placement discontinuity (EDD) boundary integral equations governing three-dimensional
(3D) crack problems are transferred to simplified integral-differential forms by introduc-
ing some complex quantities. The proposed ASM is based on the analogy between these
EDD boundary equations for 3D planar cracks problems of 2D hexagonal QCs and those

?f,\),/gf qur?ensional hexagonal quasicrystal in isotropic thermoelastic materials. Mixed model crack problems under combined nor-
Three-dimensional mal, tangential and thermal loadings are considered in 2D hexagonal QC media. By virtue
Thermal effect of ASM, the solutions to 3D planar crack problems under various types of loadings for
Planar crack 2D hexagonal QCs are formulated through comparison to the corresponding solutions of
Analytical solutions isotropic thermoelastic materials which have been studied intensively and extensively. As

Penny-shaped crack an application, analytical solutions of a penny-shaped crack subjected uniform distributed

combined loadings are obtained. Especially, the analytical solutions to a penny-shaped
crack subjected to the anti-symmetric uniform thermal loading are first derived for 2D
hexagonal QCs. Numerical solutions obtained by EDD boundary element method provide a
way to verify the validity of the presented formulation. The influences of phonon-phason
coupling effect on fracture parameters of 2D hexagonal QCs are assessed.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Shechtman’s discovery in 1982 of a quasiperiodic crystal with sharp diffraction images of non-crystallographic symmetry
[1] upset the prevailing views on the atomic structure of matter. This kind of quasiperiodic crystal was subsequently named
by quasicrystal (QC) [2] which lead to the redefinition of crystals in classical crystallography, in which a solid material is
either crystals or amorphous [3]. Since then, the decagonal [4], dodecagonal [5], and octagonal [6] QC phases, were synthe-
sized and discovered in the laboratory. In 2009, a natural quasicrystal in icosahedral phase (63%Al-24%Cu-13%Fe), was first
found in a rock sample by Bindi et al. [7]. Up to 2015, the discovery of another type of natural quasicrystal with decagonal
symmetry was reported [8]. Besides the above solid QCs, these quasiperiodic structures with twelve-fold and eighteen-fold
symmetries were found in polymers, nanoparticle mixture and colloids, which were named soft matter QCs [9-11]. The 2011
Nobel Prize in chemistry was awarded to Shechtman owing to his exciting discovery.
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QC solids with specially arranged atoms, have unique physical, chemical and mechanical properties, i.e. low surface en-
ergy, low coefficient of friction low electrical and thermal conductivity, good wear and corrosion resistance, high hardness,
just to name a few [12]. Owing to these meritorious properties, several quasicrystal materials have been suggested for
possible technological applications, especially in surface modified coatings and particulate-reinforcing phase for composites
[13-15]. On the other hand, possible application of QC materials has been pointed out for various areas of energy savings,
namely thermal insulation, light absorption, power generation and hydrogen storage [16]. Recently, the discovery of super-
conductivity in QCs, which is ubiquitous in many crystals, was reported by Kamiya et al. [17]. In short, QCs have become
a new class of functional and structural materials and have many prospective engineering applications. On account of the
engineering significance and academic value, the study of QCs, has attracted considerable interest in the fields of solid-state
physics, crystallography, materials science, applied mathematics, and solid mechanics [18].

Despite the bright potentials of QCs, the elasticity, defects and other subjects related to their mechanical behaviors have
brought new challenge to researchers of solid mechanics [19,20]. Based on Landau density wave theory [21], two class of
physical fileds, phonon and phason fields, are suggested to describe the mechanics of QCs in particular their elasticity [22].
Since then the elastic behavior of QCs has been investigated by many scholars [18, 23-25]. According to the generalized
Hooke’s law to the elasticity of QCs [18,25], the fundamental equations of quasicrystals were expressed in differential form
by Ding et al. [25], and the associated boundary value or initial-boundary value problems were well posed.

The analysis of QCs’ crack problems, as a critical problem in solid mechanics, has attracted attention by many researchers.
Due to the introduction of the extra unknown quantities and governing equations in the phason field, it is difficult to con-
duct crack analysis of QCs [26-28]. From the point of view of the quasiperiodic directions, QCs are classified by, respectively
one-, two-, and three-dimensional QCs. 2D QCs in a 3D body have the atom arranged quasiperiodically in a plane and pe-
riodically in the orthogonal. There are ten systems, i.e. triclinic, monoclinic, orthorhombic, tetragonal, trigonal, hexagonal,
pentagonal, decagonal, octagonal and dodecagonal systems, and 57 point groups in 2D QCs [29]. Mikulla et al. [30] stud-
ied crack propagation in 2D decagonal QCs. Using Fourier transform and dual integral equations theory [31], Zhou and Fan
[32] calculated the displacement and stress fields, stress intensity factor and strain energy release rate for a Mode I Grif-
fith crack in 2D octagonal QC media. Li et al. [33] investigated the asymptotic behaviour of the stress around the Griffith
crack tip in a 2D decagonal QC solid. By decomposing crack problem into a plane strain state superposed on anti-plane
state problems, Guo and Fan [34] studied the Mode II crack problem of 2D decagonal QCs. Using a perturbation method,
Peng and Fan [35] considered an infinite 2D decagonal QC weakened by a circular crack and obtained the uniformly valid
asymptotic solutions for the Mode I loading. A meshless method, named Meshless local Petrov-Galerkin method (MLPG) was
proposed by Sladek et al. [36] to investigate general crack problems in finite-size 2D decagonal quasicrystals. The references
mentioned above references focused on 2D plane or anti-plane crack problems only. To the authors’ knowledge, there is less
literature about 3D fracture problems of these QCs. However, crack problems should be of 3D nature in practice.

Only since general solutions for 3D problems of 2D hexagonal QCs were given by Gao and Zhao [37], some research
efforts have been made on the 3D crack analysis of 2D hexagonal QCs. Gao and Ricoeur [38] analytically studied the 3D
problems associated with a spheroidal quasicrystalline inclusion embedded inside an infinite dissimilar quasicrystalline ma-
trix subject to uniform loadings at infinity. As further developments to the work conducted by Gao and Zhao [37], Yang et
al. [39] included thermal effect into the problem and presented the associated general solution of 2D hexagonal QCs. As an
application of the general solution, they dealt with a penny-shaped crack problem with crack surface uniformly distributed
temperature loadings. With the help of these general solutions in terms of quasi-harmonic functions [37,39] conjugated with
the generalized method of potential theory, some 3D exact analyzes of planar crack in 2D hexagonal QCs were conducted,
such as the cases of Model I crack [40] and symmetry temperature loadings [41]. Without considering thermal effects, Li et
al. [42] took the phonon and phason displacement discontinuities as the unknown variables of generalized potential func-
tion method and first derived closed-form exact solutions to the elliptical crack problems for 2D hexagonal QCs. Zhao et
al. [43] extended boundary integral equation method to investigate 3D planar crack problem for 2D hexagonal QCs. Due to
hyper-singularity of extended displacement discontinuity (EDD) boundary integral equations derived by Zhao et al. [43], it is
difficult to solve these integral equations analytically via the conventional method. An EDD boundary element formulation
was proposed by Li et al. [44] to study 3D planar crack problems of 2D hexagonal QCs with thermal effects. By virtue of
EDD boundary element method, Li et al. [44] presented numerical results for rectangular, elliptical and penny-shaped crack.

Although, numerical method [36, 44, 45] is very convenient to solve all kinds of planar crack problems, corresponding
analytical solutions are more advantageous in revealing coupling relationships between various physic fields and are of
more theoretical and practical significance. The present paper explores an analysis solution method (ASM) to investigate
3D planar cracks of 2D hexagonal QCs. Some analytical solutions to 3D crack problems of these QCs are given for the first
time. Following this introduction, the 3D planar crack problem considered is stated in Section 2. The EDD boundary integral
equations derived by Zhao et al. [43] are presented in Section 3, which are the basic equations to build our analytical
approach of ASM. Section 4 presents the solution procedure of ASM for various kinds of crack modes. As an application
of the ASM, the analytical solutions of a penny-shape crack with uniformly combined loadings applied on crack surfaces
are presented in Section 5. In Section 6, the solution derived from the proposed ASM is verified by EDD boundary element
method [44] and numerically presented to discuss the influences of phonon-phason couple effects on fracture parameters
of 2D hexagonal QCs. Finally, some conclusions drawn from the present study are given in Section 7.
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Fig. 1. Arbitrarily shaped planar crack in the quasiperiodic plane oxy of 2D hexagonal QCs.

2. Statement of the problems

We describe a 2D QC medium, possessing the point groups of 6mm, 622, 6m2, 6/mmm and Laue class 10 [18], in a
Cartesian coordinate system (x, y, z) with the quasiperiodic plane of QCs parallel to the plane oxy. An arbitrarily shaped
planar crack S lies on the plane oxy, as shown in Fig. 1. The upper and lower surfaces of the crack S are denoted by S* and
S—, respectively. The outer normal vectors of S+ and S — have the relation

{ni}s+ ={0, 0, -1}, {ni}s- = {0, 0, 1}. (1)
It is assumed that the arbitrarily extended tractions, namely combined loadings, are applied on crack surfaces. The ex-

tended tractions including not only conventional phonon tractions p;, but also phason tractions g;, and heat flux boundary
value hy, have the same magnitude but opposite directions on the upper and lower crack surfaces, i.e.,

Pilst = —DPils-» Gils+ = —qils-» halss = —hnls-, (2)
where

pi = ojjn;,

gi=Hjn;, (i, j=1, 2, 3orx, y, z,), (3)

hy, = h,-n,,

o (Hy) and h; are the components of phonon (phason) stress and heat flux, respectively. According to Landau density wave
theory [21], besides the conventional phonon fields, phason fields are introduced to determine the local rearrangement
of atoms in a cell in QCs [19,25]. Identical to the standard elasticity of crystals, the phonon stress tensor is symmetric, i.e.,
0 jj=0j;, however, the phason stress tensor is asymmetry, as H;; # H;;. For 2D QCs, the phonon stress has explicit components
{0xx, Oyy, 02z, Oxy, Oyz, 02} and phason stress {Hxx, Hyy, Hxy, Hyx, Hyz, Hxz} [19,37].

The existence of the crack causes the phonon (phason) displacements u(w), displacements and temperature change 6
across the crack surfaces to be discontinuous. We define that

lui]] = uils+ —uils-, (i=1, 2, 3, orx, y, 2), (4a)
[w; =w;ls- —Wj|S,, (J=1,2 orx, y), (4b)
1] =6s- — 0O, (4c)

whitch are referred to as the extended displacement discontinuities (EDDs) to characterize fracture properties of 2D hexago-
nal QCs. Additionally, the basic equations including the constitutive equations and the equilibrium equations for are specified
in Appendix A.

3. EDD boundary integral equations for 3D arbitrarily shaped planar crack problems

Using Green’s functions of unit point EDDs and the superposition principal [45], Zhao et al. [43] obtained the EDD bound-
ary integral equations for 3D arbitrarily shaped planar crack problems in 2D hexagonal QC media, i.e.,

1 .
/ {73[(3@5205 — DL lluxll + Lt lwx D + (351n2¢ — DLz lluxll + Lw2[lwx|D]
s+
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o1 1
+ Ll I+ Lursllwyl) cos @ sing = + Ly cos 61| dS(&. m) = ~pu(x.). (52)

1 .
[ {516e0s0 D @arllugll + Lo 1wy ) + Gsin’p — 1)Lz | + Lz )
S+

+(L13||ux||+Lw13||wx||>cos¢sm¢> +Lipcosg IIGII}dS(E n) = —py(x.y). (5b)

1 .
/ {g[(3c052¢ — 1) (Lag [l + Luan | w ) + (3sin’p — 1) (Laz llux |l + Luzz | wi )]
S+

+(Las|luy || + Lwas|lwyl[) cos ¢ Sm¢ + Ly cosp ||9||}d5($ n = —qx(Xx.y). (50)

1 .
[ {51605 = 1) @ar luyll + Luan lwy )+ (35in’p = 1) Lazlluy | + Lz wy )]

S+
(L3 ]+ Luas Wil <05 sin 3 + Ly cos b 1911} ds(&, ) = ~g,(x.»), (5d)
[1lhas.m = -p.cey), (se)
S+
[ 1% as e, n) = ~hocx ), (56)
where
r= \/@ -7+ (=9 (6a)

(g_x) Sin¢:(’7‘3’)’

cos¢ = m_— . (6b)
and Ly, Ly, L3 and Ly, are the material-related constants which are listed in Appendix B, or can be found in Ref. [43].

EDD boundary integral Eq. (5a-f) are the governing equations of crack boundary value problems stated in Section 2.
In Eq. (5), the problem can be decoupled into three cases: 1) crack problem under normal loading which is governed by
Eq (5e); 2) crack problem under the phonon (phason) tangential loadings governed by Eq. (5a-d); 3) crack problem under
the thermal loadings governed by Eq. (5a-f) [43]. The complexity of Eq. (5) makes it difficult to obtain analytical solution
via conventional methods, especially for Eq. (5a-d) governing the tangential problem. The numerical method based on EDD
boundary element method proposed by Li et al. [44] can be used to solve Eq. (5).

When the EDDs are determined by solving Eq. (5), the extended stress intensity factors can be obtained in term of the
following relationships [43].

K = V2 lim Ls u: /. )

Kf =v2mm llm (Lat lux |l + Lt lwxlD) / /P
Ky =2rm hm (Laz[luy |l + Lwiz[lwyl)/ /P,

Kllf =2nr lim (Lot [|ux|| + Lo [wxl) / /P,
Kit = V2nm llm Loz luy [l + Lwzz [|[wy 1)/ /P

Kn = /2707 lim L |0]//7, (7d)
p—

where KIF is Mode I phonon stress intensity factor, KF(I ) is Mode II phonon (phason) stress intensity factor, Im( lll) is
Mode III stress intensity factor, K is heat flux inten51ty factor and p is the distance of a point on crack face to the crack
border.
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4. Solution procedure of ASM for an arbitrarily shaped planar crack
4.1. Crack surfaces subjected to normal loading
The problem with crack surfaces subjected to normal loading (p,(x,y)) is governed by Eq. (5e). Consider the same problem

but for isotropic elastic materials, the corresponding displacement discontinuity boundary integral equation takes the form
[46,47]

s
T / dS = —ps(x. ¥), (®)

wen

where E and v are Young's modulus and Poisson’s ratio, respectively, and superscript represents corresponding quantity
in the isotropic elasticity. In addition, the Mode I stress intensity factor can be obtained through [46]

m: uaflllw” 9)

Comparing Eq. (5e) and Eq. (8), we can see that for 2D hexagonal QCs, the unknown quantity ||u.|| in Eq. (5e) can be
solved by
1 E
U = ————=|It|l. 10
el = 7 gy —yy 1261 (10)
Substituting Eq. (10) to Eq. (7a), the Mode I stress intensity factor for 2D hexagonal QCs is obtained as
Kf =K. (11)

It should be noted that the crack solutions of EDD, or KIF for 3D planar crack problems in 2D hexagonal QCs media can
be calculated by Egs. (10) and (11) with the corresponding solutions of isotropic elastic materials.

4.2. Crack surfaces subjected to tangential loadings

From Eq. (5), we find that the temperature discontinuity ||0|| exists in Eqs. (5a-f), but it only depends on heat flux crack
boundary value in Eq. (5f). If there is no thermal loading, ||6| becomes zero. Therefore, the crack problem under the phonon
(phason) tangential loadings is only governed by Eq. (5a-d). It is easily seen that Eqs. (5a-d) are coupled with each other
which makes the solution finding more complicated. In order to simplify Eqs. (5a-d), we introduce the following complex
quantities:

U=uy+iuy, W=wy+iwy,

. . 12
P =px+ipy, Q=qx+iqy, (12)
where i = +/—1, with this introduction, Eqs. (5a-d) are simplified and transferred to the following concise form
TIL Lu || Ul 2 1L L 0| P(x, y)
A— w LA -w - ds = — ’ , 13
S/ { r [Lz sz} |:||W|| r{ly Lu |W | Q. y) (1)
where A = 02/0x2 + 32/9y2, A = 9/0x +1i0/dy, and
L L L L
L = 11; 12 Ly = wn-; wi2
- Ly—-Lyp - Lyt —L
[ = . 12 op o twh . wi2 (14a)
L — Ly + Lo Lo Lw21 + Loz
2= 5 w=
= Ly =Ly - Lyo1 — L
=2 . 2 f o o . w22 (14b)
By denoting
KF = KE + K,
K" = Ki! + ik}, (15)

Eq. (7b) and Eq. (7c) become
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For isotropic elastic media, we have [46]

1 EQ-v) .0 o1  Ev .
f[AHGjm_vz)IIU I+ A rmuu ||i| =-T(x.y), (17)

S+

where T(x, y) is the tangential loading, and

EQ2 Ev
K® = K + 11<§I_Fnhm[16 ((1 v2)||U||+16n(1 1)2)||u||}/f (18)

We suppose there are two different isotropic elastic media with corresponding quantities Eq, v{, T; and E, vy, T,, and
the tangential loadings T; and T, have the same magnitude with phonon and phason loadings, i.e., T{(x,y)=P(x, y), and
T5(x,y)=Q(x, y). According to Egs. (17) and (18), one has

E](Z—Ul) E,v _
1 167t( )” 1” 1 m”Uf” P(x.y)
/S* 87| Be-w) A 527”2]”'” ds:_[Q(x’,y)}’ (19)
167 (1 - 1)2)”2“ 167 (1 —-v2) 172
and
E1(2-v1) Ejv
e U | sra o 1% 4
[ke] Varm m A e 2 ) Jug] Ez#“ | N (20)
167 (1-v2) 172 167 (1 —v2) U3
On letting
el |
(L L |[un] | 167(1- U
L L[ W= | E@-va) e | (21a)
i 7 er(1-vg)
E
e | s ) -
L1 e
| 167 (1 —v3) Uz i

it is found that Eqs. (13) and (19) are identical in terms of structure. Thus, ||U|| and ||W|| can be directly obtained from the
corresponding elastic solutions from Eq. (21a) or (21b) as follows

R b=t Gl
”U” — Ll LW] 167-[(1 VZ) 1 (228)
_”W”_ _LZ Lw2_ E;(2 -1, H ” ’
| 167 (1 — v2) 2
Eqvy 7]
0] L ]| T | -
|y - SR
| 167 (1 —v3) Uz
To make Eq. (22a) and Eq. (22b) identical with each other, v; and v, should satisfy the following relationship
2-v1 _ LUl +Ln W] (232)
Vi LiflUl + Lua [[W]]
2-vy LU +LnlW]| (23b)

v LU+ LW

Observing Egs. (19), (21) and (23), one can find that if ||U||/||W|| is constant, v; and v, can be solved by Eq. (23).
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Substituting (21) into Eq. (16) and comparing it with Eq. (20), we can obtain

[,’ﬁf{} [ﬂ (24)

Note that from Eq. (24), it looks like that the phonon and phason stress intensity factors (KF, Kt') are decoupled and depend
on the phonon and phason loadings, respectively, however, from Eq. (20), expressions of both K and K5 include v and vy,
respectively. Since v and v, are coupled with each other as indicated in Eq. (18) and must depend on both phonon and
phason loadings, and KF and K are actually coupled. With v; and v, being determined by Eq. (23), KF and K" can be cal-
culated by Eq. (24) directly using the corresponding solutions of purely elastic material which has been studied intensively
and extensively.

4.3. Crack surfaces subjected to thermal loading

We assume that only thermal loading is applied on the crack surfaces. This problem is governed by Egs. (5a-d) and
Eq. (5f). However, the temperature discontinuity ||6] depends on Eq. (5f) only. For the same problem for isotropic thermoe-
lastic material, there is a similar governing boundary equation [46,47] as

B I|9"II
ar ). dS = hn(x,y), (25)

and the heat flux intensity factor is

Kt =— ﬁFhm”A (26)

where f is the coefficient of heat conduction. Comparing Eq. (5f) and Eq. (25), the temperature discontinuity |6 for 2D
hexagonal QCs can be solved by

61l =—z2 1671, (27)

and the heat flux intensity factor is

KM =KD, (28)
Substituting Eq. (27) into Eqs. (5a-d) with Eq. (13) yields

U]

1ML La |[ U JA[L L |[|U
A= w +A W -
/s+{ T|:L2 Lw2j||:||W|| |l L |

w 47TLh L29

“d5= b [LW} ALyeepas, (29)
| S+ r

which can be regarded as a tangential problem just like the subsection above. Therefore, two systems of isotropic material
are used. The displacement discontinuity boundary integral equations for isotropic thermoelastic problem [47] are trans-
ferred to

2—-v
/ Al 2 1HU10H 21 || {9” Ol](l-f—l)l) / A1||96||d5 (30)
st rl2=v, e ZHUHH T a1+ 1) T ’

—— | 1N

where « is the coefficient of linear thermal expansion, and superscript “?” here means that related physic quantities are
induced by thermal loading. Comparing Eqs. (29) and (30), corresponding displacement discontinuities |[U? || and ||W?|| can
be solved by

Ly Lwm |U9|
L, Lw |W9

[ Lig(2—v1) “ 9“
1

_ B 20+ v
||~ 4mLy | Lo(2—v2) us ”

2(1L+ V2)a2 (3-1)
— 0 e ]
L |U 2(1+ v 171
L, LW2 [we 4erh Ligvy H 0o H

2(1 + 1)2)052 2

Note that v; and v, should also satisfy Eq. (23). The corresponding thermal stress intensity factors for 2D hexagonal QCs
can be derived by inserting Eq. (26) into Eq. (16) or Eq. (7b, c) as
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Lip(2 —v1) L19V1
K* _Fnﬁ fim m” i 21+ v g 1 (32)
KH 4L, p—0 Ly (2 - 1) ” ” ~ Ligva ” (9” JP

2(1+vy)ap 172 2(1+vp)ap 172

Making a comparison between Egs. (20) and (32), one has

KF o 2'3 L19(1 V1) 0 Ke
Kt L 0 Lp(1-va) 1<e ’ (33)
o

which shows thermal stress intensity factors for 2D hexagonal QCs can also be obtained from corresponding solutions for
isotropic thermoelastic materials.

5. Application of ASM to penny-shape crack problems

Suppose the planar crack is a penny-shaped crack centered at the origin of the coordinate system with radius a. For an
isotropic thermoelastic material, the penny-shaped crack surface is subjected to uniformly distributed combined loadings

P(x,y) = px+ipy = pe'®, p,(x,y) = pz ha(x.y) = —h, (34)

where ¢ is defined by tan ¢y =py/px. As the crucial quantities in fracture mechanics, the solutions of EDDs and extended
stress intensity factors for the isotropic thermoelastic materials can either be found in many literatures [48-50] or given
here directly as follows

2
g = 22V e (350)

T
for normal displacement discontinuity, or named crack opening displacement;

16(1 -
Ue| = 2eito, 35b
10l = T Jpv/az - re (35b)
for tangential displacement discontinuity induced by tangential loadings;

4h
16°1] = fva =77,

“ Ul “ _ 4(13+ﬁx;r)har 2 2ei®, (35¢)

for temperature and displacement discontinuities induced by thermal loading, in which r = \/m tan ¢ =x/y, extended
stress intensity factors are

Ke =2 /%pz, (36a)

Ke = Lﬂ“” p<eiA¢ + %e,m)’ (36b)
Echa/a la
Kl=———Y" K,=2/—=h, 36
1= 3 /7B —v) h = (36¢)

where Ag =@ — @g.
For 2D hexagonal QCs, when crack surfaces are applied with uniformly distributed combined loadings, as

pz(X, ¥) = p, (37a)

P(x,y) = px + ipy = pei%,
Q(x.y) = qx + igy = ge'%, (37b)

hn(x, y) =—h. (37¢)

We can immediately obtain corresponding crack solutions for 2D hexagonal QCs according to ASM presented in
Sections 4,

For Mode I case, using potential function method and complex derivation, Wang et, al. [41] gave an analytical solution
for penny-shaped crack. Here, we obtain corresponding crack solutions, e.g. the crack opening displacement by substituting
Eq. (35a) into Eq. (10)

Pz
= 225V -1, (38)
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and get Mode I stress intensity factor by virtue of the substitution of Eq. (36a) into Eq. (11)

KF =2 /%pz. (39)

Egs. (38) and (39) are equivalent to Egs. (40) and (41) in Ref. [40].

Gao and Ricoeur [38] derived an analytical solution of shear field stress intensity factors according to the limited case
of spheroidal inclusion. Making use of ASM, the related crack analytical solutions regarding tangential phonon and phason
loadings can also be easily established. Combining Eqs. (35b) and (22a), one can obtain tangential EDDs for crucial fracture
quantities as,

-1
Uil | _ va@>=1*|Li  Lw P | pido (40)
Wil w2 |l Lw| |q|
which show that both phonon and phason loadings influence the tangential EDDs. It is also revealed that phason fields in-
fluence on the deformation and fracture of the material. On the other hand, the substitution of Eq. (36b) into Eq. (24) yields

KF = 2pV ar < 1Aq> + e—|A¢)
T 2 -1

(41)
K - 2avar (eiA¢ i e—iA¢>’
T 2—1;
or in a traditional form like
K — 4./ampcos (Ad))
o m@—w) (42a)
¢ AVamrp(1 —vy)sin(A¢)
Ky = )
m(2—-v1)
y  4Jamqcos (A¢)
K = S
(2 —V2) (42b)
KH — 4/arq(1 —vq)sin (AqS)
= 72— v2)
where v; and v, are determined by Eq. (23) and solved as
2(L1Lwz — LuaLy)p — 2(LiLw1 — Lunl1)gq
v = , 43a
"7 @uLwz — LoniL2)p — LitLwt — LuniLi)g (43a)
by = 2(LaLwy — Lwala) p — 2(LaLwn — Lwole)q (43b)

(L1 Lwz — LuniL2)p — (La1lwt — Lu21l1)q’

From Egs. (41) and (42), it is found that Mode II and III field intensity factors are very brief in structure, and the phonon
and phason loadings are decoupled in Mode II and III field intensity factors. However, when inserting Eq. (43) into Eq. (42),
we have

Kt k1 kp O 0 pcos (Ag)

KH . 4\/& K21 K22 0 0 g cos (A¢) (44)
KII;I . 0 0 K33 K34 psm(Aq’)) ’

KI]I 0 0 K43 Kaq QSIH(A¢)

where «j; are the material dependent and are defined by

(Ly + L) Lwa — (Lwt + Lwn)Lo

T Wk, Ll
Ky = LiLwi — LuiL4

2(L1Lwy — LynLy)’
Kyt = — LyLwy — LuoLs

2(LiLwy — Lualy)’

(Lt + L)Lt — (Lwt + L)Ly
Ky = — , 45a
2 2(L1Lyz — Ly1Ly) (45a)
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Table 1
Material constants for a particular 2D hexagonal quasicrystal.
Phonon elastic constants c11 =200 GPa, ¢33 =150 GPa, c44 =50 GPa
¢ = 100 GPa, c¢y3 = 100 GPa
Phason elastic constants K; =50 GPa, K, =20 GPa

K3 =20 GPa, K, =20GPa
Phonon-phason coupling constants Ry = 10GPa, R, =5GPa

R; =5GPa, R4 =5GPa
Thermal modulus A1 = 1.798 x 10°N/(Km?), A33 = 1.383 x 106N/(Km?)
Coefficients of heat conduction B11=53W/(Km), B33 =53W/(Km)

(Lt — L)Lwa — (Lwt — Lwn)Lo

5 T Wk — Lk
s = — L1kwt = Lwnls
T T 2(UiLee — Linla)’
K3 = LyLwo — LuoLs
2(LiLwy — LyaLy)’
Kan = — (L1 = L)Ly — (L1 — Lw1) L, (45b)

2(L1Lwy — LynLy)

Observing Eq. (44), we find that the phonon and phason loadings are coupled and they influence field intensity factors
simultaneously.

For thermal loading, namely uniform anti-symmetric heat flux applied over the crack surfaces, to our knowledge, no
analytical crack solutions for it are found in literature. This is due to the much-complicated coupling effects of the phonon,
phason and temperature existing in this problem. It is convenient to be solved by utilizing ASM. Similarly, employing the
relationship in Eq. (27) and corresponding solution for thermoelastic materials in Eq. (35c), the temperature discontinuity
||8]| induced by thermal loading is obtained as

h

16 =~z

a? —r2, (46)

and tangential EDDs are solved via the comparison between Eqs. (33) and (35¢)

-1
|u?| _hpva® -1 Ly Lun Lig | i (47)
i we | 32l Ly Lwa Ly |

which shows thermal loading can induce both the phonon and phason fields. Because only radial EDDs are incurred by
thermal loading which can be indicated in Eq. (47), thermal stress intensity factors must be Mode II cases, which is solved
here by inserting Eq. (36¢) into Eqs. (28) and (33), as
; 2hLypava
(KH)ther = ’
3J7Ly
2hL29aJE
(Kll[-l)ther = . (48)
3V

Eq. (48) indicates that thermal loading induce not only phonon stress intensity factor but also phason stress intensity
factor, and both stress intensity factors show difference between Ly and L,45. Moreover, the heat flux intensity factor is
solved by

a
Ky, =2 /;h. (49)

6. Numerical results and discussions

In this section, the results of analytical solutions to the penny-shaped crack are numerically presented to verify the
proposed ASM and to assess the influences of phonon-phason coupling effects on fracture parameters of 2D hexagonal QCs.
The material constants are chosen as those given in Ref. [38] and listed in Table 1. Making use of these material constants
and the definitions in Ref. [43] and Appendix B, the material-related constants Ly, L, L3 and Ly, in EDD boundary integral
Eq. (5) are calculated and listed as follows,

Ly; = 5.559002 GPa, Ly; = 0.298770 GPa,
Li; = 3.978748 GPa, L,, =0.218845 GPa,
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Fig. 2. Phonon displacement discontinuity ||u,| for normal loadings in the radial direction of penny-shaped crack.

Table 2
Normalized fields intensity factors for Mode I, II, and III with thermal effect considered at the ends of the x-axis.

o

Normalized fields intensity factors  Analytical solutions by ASM  Numerical solutions by EDD-BEM [43]  Relative error (%)

FF 1 1.019156 0.018796
E 0.383528 0.386987 0.893828
Ef 0.323579 0.324310 0.225402
FH 0.199334 0.200751 0.680241
FH 0.507769 0.509064 0.254388
P 1 1.017598 1.729366
(FF)ther 1 0.995833 0.418443
(E) her 1 1.008952 0.887257

Ly = 0.211817 GPa, Lyp = 1.451724 GPa,

Ly1z = 0.547112 GPa, Ly, = 3.978748 GPa, (50a)
Ly = —0.341342 x 10~4GPa/K,

Lyy = 0.176894 x 10~*GPa/K,

Ly, = — 0.421761W/(mK), (50b)
L3 = 4.814327 GPa, (50c)

which are the basic elements to construct the analytical crack solutions by ASM.

6.1. Validity of the present solutions

Using EDD boundary element method, Li et al. [44] given some useful numerical solutions for rectangular, elliptical and
penny-shaped crack problems, in which numerical results about penny-shaped crack with uniform coupled loadings were
used to verify the analytical solutions obtained via ASM. Figs. 2-7 show the distribution of normalized EDDs across penny-
shaped crack surfaces under normal, tangential, and thermal loadings. Table 2 tabulates all extended fields intensity factors,
which are normalized by

P Kive (51a)

F=——"
: 2pJa
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The analytical solutions by ASM are in great agreement with the numerical solutions obtained by EDD boundary element

method. To some extent, comparisons of these solutions also validate EDD boundary element method proposed by Li et al.
[44].

6.2. Discussion of fracture parameters

As we all known, EDDs and extended stress intensity factors are main fracture parameters and of high significance in
fracture analysis. We can see from Fig. 3 that phonon displacement discontinuity ||ux|| along the x-axis decreases mono-
tonically with the increase of the applied phason loading. From the point of physic, the phonon displacement represents
the deformation of the material. Thus, we can draw a conclusion that the phason loading can alleviate propagation of crack
through reducing phonon displacement discontinuity, however, it may promote the quasiperiodic rearrangement of atoms,
as predicted form Fig. 4. On the other hand, when applying thermal loadings on the crack surfaces, we can see from Figs. 6
and 7 that the generated phonon displacement discontinuities across crack surfaces are opposite to the phason, that is, the
influences of thermal effect are difference on the phonon and phason fields.

As regard to extended stress intensity factors, normal phonon stress loading can only induce Mode I phonon stress in-
tensity factor, as discussed in above sections and the literatures [40,43,44], which is a simple case and not addressed here.
What we are most concerned is the coupled field intensity factors, related to Mode II, III cases, and thermal case, whose
corresponding analytical solutions are given firstly in this paper. To quantify the effect of the tangential phonon and phason
loadings on the Mode II, Il field intensity factors, we convert Eq. (39) to the following form

— I([]i' —_
K11
kit 1 ¢ 0 07[pcos(Ap),
VI Lk | _|s2 1 0 0 []|qcos(Ag), (52)
4va | K 0 0 1 g||psin(Ag), |’
K33 0 0 ¢ 1 gsin(A¢),
Kl'ﬂ

L K33~
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where ¢; (i=1, 2, 3, 4) are the four ratios of « as

K12 K21 K34 K43

= e T e P T s T K (53)
and ¢4, §2, ¢3, G4 characterize the effect of phason loading on KIFI, the effect of phonon loading on Kl';', the effect of phason
loading on KIFH, the effect of phonon loading on KII;'I, respectively. When the values of ¢; are zero, the phonon and phason
stress intensity factors are decoupled and depend directly on the phonon and phason loadings, respectively. When the values
of ¢; are unit, these two stress intensity factors are coupled and influenced by phonon and phason loadings simultaneously.
On the other hand, a positive value of ¢; represents these two loadings have a same effect on corresponding stress intensity
factor and vice versa. When adopting the material-related constants in Eq. (50), we can obtain

¢1 = —0.0731, ¢, = 0.0640, ¢3 = 0.1031, ¢4 = —0.0231, (54)

which show there are complex effects of the tangential phonon and phason loadings on corresponding field intensity factors
for the considered 2D QCs.

Finally, for thermal stress intensity factors, Mode Il cases are induced only by thermal loading. Form Eq. (43), the differ-
ence between phonon stress intensity factor (Kf)ye and phason (KH)y,., are caused by material-related constants Ly and
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Ly, which have opposite quantities for present constants in Eq. (50). This reveals that thermal loading also has different
effect on these two types of thermal stress intensity factors.

7. Conclusion

Considering combined normal, tangential, and thermal loadings for Model I, II, and III crack problems, an analysis solu-
tion method, namely ASM, is proposed for 3D planar cracks of arbitrary shape in 2D hexagonal QC media. EDD boundary
integral equations governing 3D crack problems are transferred to integral-differential forms by introducing some complex
quantities. By comparing these simplified governing equations, some significant relationships are revealed from the solu-
tions of planar crack problems for 2D hexagonal QC media and those for isotropic thermoelastic media. The solutions to
3D planar crack problems of 2D hexagonal QCs are formulated by means of their comparison to corresponding solutions of
isotropic thermoelastic materials.

Applying presented ASM, analytical solutions of a penny-shaped crack under uniformly disturbed combined loadings
are obtained. Especially, analytical solutions of Model II, and IIl problems considering thermal effect are first presented for
2D hexagonal QC. EDD boundary element method proposed by Li et al. [44] is employed to verify the obtained analytical
solutions, and great agreement has been reached. Numerical results are obtained to investigate the influences of phonon-
phason couple on fracture parameters of 2D hexagonal QCs. Four parameters ¢; (i=1, 2, 3, 4) defined by ratios of «; are
introduced to quantify the effect of the tangential phonon and phason loadings on corresponding field intensity factors.
Additionally, the result indicates that anti-symmetrically thermal loading can only induce Mode Il phonon and phason stress
intensity factors, and they only have difference on the material-related constants between L,y and Lyg.
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The present analytical solutions may serve as benchmarks for computational fracture mechanics of 2D hexagonal QCs. The
proposed method in this paper provided a way to investigate crack problems of 2D hexagonal QCs through their comparison
to corresponding solutions (regardless of analytical or numerical solutions) of isotropic thermoelastic materials.
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Appendix A. Basic equations for 2D hexagonal QCs [39, 43]

The equilibrium equations in the absence of a body force and body heat source are
80'xx any 80'zx
-0,
ax + ay + 0z

doy 00y 00y,

x tay Tz =% (Ala)
00y, 00y, 00y _

ax T ay oz =0

OHyx N OHyy N 0Hy, _o,

ax ay 0z (A1b)

dHyx  OHy aHyZ_O
0x oy oz

dhy  0hy  0Oh;
e y oz =0 (Ade)
The constitutive equations used to describe the relationships of extended stresses and extended displacements are
Uy auy Jdu ow. ow
O = C11 gx +C2—5 aay L tops aazz +Ri—— aax 4+ Ry 883’ —Aub,
u u u w w
Oyy —Clzaa +Cn—== aa +c13 aazz +R; aaxx +R1387y —Anb,
Uy Uy u w w
Oz = Ci3 5~ + 033 3y + 33 3; +R3 axx +R387yy — A330,
au ou ow. A2a
"ﬂ=c44<ay+ayz) tRegy A
duy du aw.
Ozx = C44 Tx + TXZ +Ry azx
_ duy  Juy owy  dwy
Oxy = (ay'i-a)c)-i-RG( 3y +W )
0 ad ad ow. ow,
Hy = Ry 8”” R a”y 4R 8”2 K ko
0 ad ad ow. ow,
Hyy = R, 8”” Ry a”y +Rs 8”2 tho g K
duy  Juy ow. ow
Hyy = RG(ay + X + K3 ——— 3y Xy K —— 8X s (A.2b)
_ Oy auy oWy awy
ny = RG( ay + Ix ) + Kg ay + K3 —= 9
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Hy _R4(%”"+%“Z> L

a0 a0 a0
«=—Pn X’ hy = —Bu y h; = —Bu 5z (A.2c)

where c¢; (K;) and R; are the phonon (phason), phonon-phason coupling elastic constants; A;; and 8;; denote thermal modulus
and coefficients of heat conduction, respectively. The following relations for transversely isotropic hold

1 —C12 Ri—-Ry

Ce = f’ Ke =Ky —K; — K3, Rg = 5 (A3)
Appendix B. Material related constants [43]
The related material constants in EDDs boundary integral equations are listed as follows
Lll = Z 52](1)1]/‘2], 3
= Lwir = 3 S2jnkaA5 ;.
L12 = Zs]lfll 1i° ];l f . (Bla)
Lwiz = 3 s1ifiikiiAy;,
L3 = 3(L11 — L), Lw é}:lL P Ll 1
Ly = _]g] 5250105, w13 = 3(Lwn — Lwi2),
3
Ly = Z 210)1] 2j
2 Lyo1 = Zszjwukzj 5
Loz =} s1ifiiBy;, = (B.1b)
L23 — :(L“ _ le)’ w22 = Zsllf]lkll 1i°
Ly = — Z 55017, Ly3 = 3(Lw21 —Ly22),
j=1
3
=—Y wC;, (B.1c)
=1
S
. 2;115'337 (B.1d)

where ¢, fij, Bij, i, A;‘] B:‘J Cf, and Df are the material-related constants defined in Ref. [43], and s;; (i=1, 2) and
Sy (j =1, 2, 3) with positive real parts are eigenvalues determined by the following eigenvalue equations, respectively,
[37]

as$ —bsg +cs3 —d =0, (B.2a)

est—fs2+g=0, (B.2b)

where the constants a, b, ¢, d,e, f and g are defined in the general solution derived by Yang et al. [39]. It should be pointed
out that the governing EDD boundary integral equations are obtained by Zhao et al. [43] via the general solution with
distinct eigenvalues.
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