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Abstract 
 
In the paper, an anisotropic Green’s function based hybrid finite element was developed for solving fully plane anisotropic elastic ma-

terials. In the present hybrid element, the interior displacement and stress fields were approximated by the linear combination of anisot-
ropic Green’s functions derived by Lekhnitskii formulation, the element frame fields were constructed by the interpolation of general 
shape functions widely used in the conventional finite element, and then they are linked by a new double-variable hybrid functional. 
Because the approximated interior fields exactly satisfied the governing equations related to anisotropic elasticity, all integrals in the 
present hybrid functional were performed along the element boundary and theoretically arbitrary hybrid polygonal element can be con-
structed. Finally, the present hybrid polygonal element with four edges was verified by making comparison of numerical results and ex-
act solutions in a cantilever composite beam made with angled lamina.  
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1. Introduction 

Despite a large number of publications in the last decade, 
the accurate and efficient prediction of mechanical behavior of 
fully anisotropic materials like angled fiber/particle-reinforced 
composites, biomaterials, and so on, is still of great interest. 
However, compared to the experimental or analytical methods, 
resort to numerical techniques is usually necessary when treat-
ing complex geometries and loading conditions. 

Among general computational techniques, the Finite ele-
ment method (FEM) is still the one most extensively used in 
the analysis of anisotropic composite and engineering struc-
tures [1-3]. As an efficient alternative to the FEM, the Bound-
ary element method (BEM), also commonly known as the 
Boundary integral equation (BIE) method, is also developed 
for solutions to those problems in anisotropic elasticity. For 
example, boundary element analysis of plane anisotropic bod-
ies was conducted by Tan and Gao for investigating stress 
concentrations and cracks [4]. Pan and Amadei solved fracture 
mechanics problem of cracked plane anisotropic media with a 
new formulation of the BEM [5]. Qin and Mai solved prob-
lems of hole-crack interactions using BEM [6]. Similar analy-
sis was performed by Wang and Sun for two-dimensional 

fracture analysis in anisotropic bodies [7]. 
In this study, a Green’s function based hybrid finite element 

formulation different to the FEM and the BEM is formulated 
for two-dimensional elastic analysis in homogeneous fully 
anisotropic bodies. Early contributions to the development of 
the Green’s function based hybrid finite element method in-
clude those for isotropic heat conduction [8], isotropic, plane 
elasticity with circular hole [9, 10] and orthotropic elastic 
analysis [11]. Due to the usage of Green’s functions or fun-
damental solutions as kernels in the hybrid finite element for-
mulation, the algorithm was named as HFS-FEM for simplic-
ity. However, reports of its application to the case of general 
anisotropy have been extremely scarce indeed. So, herein we 
focus on the establishment of anisotropic Green’s function 
based hybrid finite element formulation for two-dimensional 
anisotropy. It’s worth noting that the work in Ref. [11] was 
just suitable for the orthotropic case in which the directions of 
material principal axes are the same as those of global coordi-
nate axes. Otherwise, the full anisotropy will occur. 

In the present computational model, the Green’s functions 
or fundamental solutions are the analytical basis for construct-
ing displacement and stress fields analytically satisfying the 
governing equations of problem within the element. Here, the 
Green’s functions initially derived by Cruse [12] and latterly 
widely used in the BEM [5, 7, 13, 14] for the fully anisotropic 
elastic case are employed. Then, the independent element 
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frame displacement field is approximated by the conventional 
shape function interpolation, as done in the FEM [15, 16] and 
the BEM [17] for one-dimensional line elements. These two 
fields are connected by a double-variable hybrid functional to 
produce the finally force-displacement equations. Because of 
the inherent feature of Green’s functions, the domain integral 
in the functional is removed and only integrals along the ele-
ment boundary are remained. Therefore, the present method 
inherits the advantage of boundary integral in the BEM analy-
sis and also it can provide versatile element material definition, 
like the FEM, which is important to perform multi-material 
analysis. So, the present computational method offers an effi-
cient alternative to the FEM and the BEM. 

The paper is organized as follows: Sec. 2 describes the basic 
equations for homogeneous general anisotropic elastic theory 
and Sec. 3 gives the corresponding Green’s function expres-
sions. In Sec. 4, the formulation of Green’s function based 
hybrid finite element is establish and tested in Sec. 5 by sev-
eral examples. Finally, some conclusions are drawn in Sec. 6. 

 
2. Problem formulation 

2.1 Plane anisotropic elastic governing equations 

Before dealing with the development of the Green’s func-
tion-based hybrid finite element formulation, it is useful to 
review some basic equations in two-dimensional homogene-
ous fully anisotropic elasticity. For this case, the governing 
equations including the strain-displacement relation, the con-
stitutive relation and the equilibrium relation in the absence of 
body forces in a Cartesian coordinate system 1 2( , )X X=x  
can be given in matrix form as [18] 
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where iu , ije  and ijs  ( , 1,2)i j =  are the plane compo-
nents of displacement, strain and stress fields, respectively, 
and 12 122g e=  is the engineering strain. The subscript comma 
represents the differential to the coordinate component, i.e. 

, /i iX¶ = ¶ ¶ , and ijc  (i,j=1,2,6) are elastic stiffness coeffi-
cients of the material. 

Inversely, the stiffness matrix in the constitutive Eq. (2) 
can be expressed from the inverse of the generalized compli-
ance matrix s% , that is 
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where   ( , 1,2,6)ijs i j =  are elastic compliance coefficients of 
the material, which may be given in terms of engineering ma-
terial constants as follows [18] 
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and 
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where iE  is the Young’s moduli referring to the axe iX , 

ijG  is the shear modulus for the i jX X-  plane, and ijn  is 
the Poisson’s ratio which is defined as the compressive strain 
in the jX  direction due to unit tension strain in the iX  di-
rection. Also, ,ij kh  and ,k ijh  are the coefficients of mutual 
influence of the first and second kind, respectively, and they 
are zero in the case of specially orthotropic elastic materials. 

Due to the symmetry of the matrix Eq. (6), the following 
relations exist 
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2.2 Coordinate transformation 

Practically, the full anisotropy can be implemented by rotat-
ing the material principle axes of orthotropic laminate com-
posite materials. Fig. 2 shows a typical coordinate rotation 
from the local coordinate axes (1,2) which are along the mate-
rial principal directions 1E  and 2E  of orthotropic materials 
to the global coordinate axes 1 2( , )X X . For this case, the 
compliance matrix Eq. (6) can be given by [19] 
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where q  is the material principle axis 1 orientation angle, 
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is the Reuter’s matrix, and 
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is the transformation matrix. 

Besides, appropriate boundary conditions should be com-
plemented to keep the problems solvable, that is, on the 
boundary of the domain of interest, we have 
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where the overbar denotes the specified values. 

 
3. The Green’s functions for plane anisotropic elasticity 

In the paper, a novel numerical method is developed to 
simulate the fully anisotropic plane elastic bodies and Green’s 
functions or fundamental solutions play an important role in 
the present numerical method. In order to keep the paper 
complete, the anisotropic plane elastic Green’s functions or 
fundamental solutions are given in this section. 

By introducing Airy's stress functions, Lekhnitskii has 
shown that the characteristic equation for a homogeneous 
fully anisotropic elastic material is [18] 

 
( )4 3 2

11 16 12 66 26 222 2 2 0 .s s s s s sm m m m- + + - + =% % % % % %  (14) 

Through a consideration of potential energy, Lekhnitskii 
has shown that the characteristic equation has no real roots 
and the roots are always distinct as long as the material is not 
isotropic. Thus, for a generally anisotropic body the roots of 
the characteristic equation are always complex and are of the 
form 

 
I,       I   ( =1,2)i i i i i i im a b m a b= + = -  (15) 

 
where I 1= - , ,  i ia b  are real constants and 0ib >  from 
thermodynamic considerations. 

Subsequently, the characteristic directions may be denoted 
by [20, 21] 

 
1 2           ( 1,2)z X Xa am a= + =  (16) 

 
and their complex conjugates. 1 2( , )X X  is an arbitrary field 
point in the domain. 

In order to express the fundamental solutions, another two 
complex variables related to source points can be expressed as 
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where 1 2( , )s sX X  is the corresponding source point. 

Then the induced displacement components along the 1- 
and 2- directions at the field point 1 2( , )X X  due to a unit 
concentrated force along the k- direction (k=1,2) at the source 
point 1 2( , )s sX X  can be written as [5, 7, 12, 13] 
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where Re  means the real part of any complex expression, 
and 
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Also in Eq. (18), the complex constants kA a  can be ob-

tained from the requirements of unit load at the source point 
and displacement continuity for the fundamental solutions, by 
the solution of the linear system 
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where kad  denotes the Kronecker Dirac function, and 
I 1= -  is the unit pure imaginary number. 

 
 
Fig. 1. Local and global coordinate axes. 
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It is necessary to note that for the case of isotropic material, 
the roots of characteristic equation are pure imaginary I  and 

I- , which lead to the coefficient matrix of the linear system 
Eq. (20) singular. Because this, it is not possible to directly 
use Eq. (20) with the isotropic formulation. 

Furthermore, the Green’s strain, stress and traction kernels 
can be derived by the strain-displacement relation Eq. (1), the 
anisotropic stress-strain constitutive Eq. (2) and the traction-
stress relation Eq. (12), respectively. 

 
4. Hybrid finite element formulation 

In the absence of body forces, the hybrid variational func-
tional for an particular anisotropic plane elastic element can be 
written as [9, 11, 22] 
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2e e e
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where iu  and iu%  are independent displacement fields de-
fined in the interior of element and on the element boundary. 
For example, in the presented approach, the interior displace-
ment field T

1 2{ , }u u=u  can be defined by means of the linear 
combination of the corresponding fundamental solutions given 
by Eq. (18) at sn  source points, i.e. 
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It’s evident that Eq. (22) prior satisfies the governing 

equations in terms of displacements if a series of source points 
 ( 1 )k sk n= ®y  are placed outside the element by the follow-

ing simple rule [9, 22] 
 

( )k b b cg= + -y x x x  (24) 
 

which can produce boundary geometrically similar to the 
physical element boundary. In Eq. (24), g  is a dimen-
sionless coefficient controlling the distance of the source point 
and the element boundary, bx  is the elementary boundary 
point, i.e. node, and cx  the geometrical centroid of the ele-
ment. Investigation of the effect of the parameter g  has been 
fully discussed for isotropic and orthotropic elastic problems 
[9, 11], and it was found that there is a large interval to choose 
the parameter g  to achieve relatively stable numerical results. 
In this study, 5g =  is used, unless stated otherwise. 

As a consequence, the stress approximation =σ  
T

11 22 12{ , , }s s s  can be given by combining of Green’s stress 
kernels with unknown source intensities, that is, 
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On the other hand, the frame displacement field 
T

1 2{ , }u u=u% % %  defined on the element boundary is assumed to 
be same as the shape functions used in the boundary element 
method and finite element method, that is, 

 
( ) e=u x Nd%%  (27) 

 
where ed  denotes the element nodal DOF and N%  represents 
shape functions matrix. 

Appling the Gaussian theorem again to the above functional 
and considering the natural satisfaction of the equilibrium 
equation under the assumed displacement and stress fields 
inside the element, we have the final expression for the pre-
sent HFS finite element model 
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Substituting Eqs. (22) and (27) into the simplified func-

tional Eq. (28) produces 
 

T T T1
2me e e e e e e e eP = - - +c H c d g c G d  (29) 

 
in which 
 

T T Td ,   d ,   d
e e e

e e e sG G G
= G = G = Gò ò òH Q N G Q N g N t% %  (30) 

 
with 
 

1 2

2 1

0
.

0
n n

n n
é ù

= ê ú
ë û

Q T  (31) 

 
In Eq. (30), the matrices He and Ge are performed along the 

element boundary. Practically, they can be numerically inte-
grated by Gaussian integration edge by edge. The detailed 
evaluation procedure is similar to that in the Trefftz FEM [23], 
in which the computing code was provided for reference. 

To enforce inter-element continuity on the common element 
boundary, the unknown vector ec  should be expressed in 
terms of nodal DOF ed . The minimization of the functional 

meP  with respect to ec  and ed , respectively, yields 
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from which we can obtain the element stiffness equation 
 

e e eK d = g  (33) 
 

and the relationship of ec  and ed  
 

1 .e e e e
-c = H G d  (34) 

 
In Eq. (33), the element stiffness matrix is expressed as 
 

T 1 .e e e e
-=K G H G  (35) 

 
From the derivation procedure, it can be seen that the ad-

vantage of the present hybrid finite element formulation is in 
fact that the element interior displacement and stress fields 
have analytically satisfied the anisotropic elastic equations. 
Therefore, the present element can produce more accurate 
numerical results, which have been shown by Wang and Qin 
for homogeneous/inhomogeneous isotropic elasticity [9, 10]. 
Besides, the feature of element boundary integrals make us 
construct versatile convex polygonal elements, instead of con-
ventional triangular and quadrilateral elements [9, 22]. 

 
5. Numerical results 

In this section, several examples including bending of a 
cantilever beam, stress concentration along a circular hole, and 
biomechanical analysis in human femur bone are studied to 
illustrate the performance of the present method. All examples 
are under the plane stress condition, except for special state-
ment. Certainly, the plane strain analysis can also be carried 
out by the present method if the material compliance coeffi-
cients in Eq. (5) can be provided completely. 

 
5.1 Bending problem of a cantilever beam 

This example is used to check the accuracy and effective-
ness of the present Green’s-function-based hybrid finite ele-
ment. A cantilever beam made with angled boron/epoxy lam-
ina is here taken into consideration. The length of the beam is 

350l = mm, and the height and width of the rectangular cross-
section are 50b = mm and 1h = mm, respectively. The uni-
form pressure 2 MPaq =  is applied to the top edge of the 
beam, as shown in Fig. 2. The symbol q  appeared in the 
figure denotes the angle between the local orthotropic material 
principal direction 1 parallel to the fibers and the global coor-
dinate axis 1X . The material properties in the principal direc-
tions for the orthotropic unidirectional boron/epoxy panel are 
given by [24] 

 
1 2

12 12

113 GPa,       52.7 GPa, 
28.5 GPa,    0.45 .

E E
G n
= =
= =

 

 
With the plane stress assumption, the analytical solutions of 

displacements and stresses are given in the appendix for the 

purpose of comparison. Firstly, the convergence of the present 
anisotropic hybrid elements is investigated. For this purpose, 
two different mesh configurations respectively including 20 
and 80 hybrid finite elements are shown in Fig. 3 and numeri-
cal results of the deflection 2u  and the stress component 11s  
at specified locations are listed in Table 1, from which it's 
evidently found that the numerical results of both the dis-
placement and the stress results are closer to the exact solu-
tions as the number of elements increases. So the convergence 
of the present element is demonstrated. Additionally, as a 
simple illustration of the influence of the parameter g , which 
controls the distance of source point to the element boundary, 
Table 2 indicates the variation of 11s  at the specified loca-
tion (175 mm, -25 mm) for different g  for the case of 80 
hybrid finite elements and 0q = . We observe from Table 2 
that there is a large interval to choose the parameter g  to 
produce relatively stable results, and similar discuss can be 
found in Refs. [9, 11]. 

Next, the effect of the fiber rotation angle q  is investi-
gated by means of the present anisotropic elements. During 
the computation, 80 hybrid finite elements with 289 nodes are 
employed to evaluate the variations of the vertical displace-
ment (deflection) 2u  on the horizontal line 2 0X =  and the 

Table 1. Convergence of the present hybrid finite element for the case 
0q = . 

 
HFS-FEM 

 
20 elements 80 elements 

EXACT 

u2 (mm) at (0,0) 3.2830 (2.02 %) 3.2851 (1.95 %) 3.3507 

σ11 (MPa) at  
(175 mm, -25 mm) 

73.036 
(0.204 %) 

72.868 
(0.026 %) 72.887 

 
Table 2. Variation of 11s  with different g  for the case of 80 hybrid 
finite elements and 0q = . 
 

g   2 3 4 5 6 7 8 

σ11 (MPa) 71.653 72.716 72.829 72.868 72.884 72.891 72.894 

 

 
 
Fig. 2. Cantilever beam made with angled boron/epoxy lamina. 

 

 

 
 
Fig. 3. Mesh configurations with 20 (upper) and 80 (below) hybrid 
finite elements. 
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stress component 11s  along the vertical line 1 / 2X l= , and 
numerical results are displayed in Figs. 4 and 5. On the one 
hand, it’s observed that there is good agreement between the 
numerical results and the exact solutions of both the displace-
ment and the stress, so the performance of the present ele-
ments is demonstrated again. On the other hand, we observe 
that there is a remarkable increase of the deflection of the 
beam when the value of q  becomes large, while the varia-
tion of stress results is slight. Furthermore, Fig. 5 clearly 
shows an approximated linear change of the normal stress 

11s  and the positive sign in Fig. 5 indicates the normal stress 
is tensile while the negative sign indicates the regions in 
which this stress is compressive, as desired. Finally, results of 
the vertical displacement and the stress component at two key 
points (0, 0) and (175 mm, -25 mm) for different fiber orienta-
tions are tabulated in Table 3, from which the good agreement 
is obviously observed between results from the present 

method and exact solutions. 
 

5.2 Stress concentration problem in a square plate with cir-
cular hole 

The second example is presented to investigate stress con-
centration in an infinite plate containing a circular hole under 
remote uniform tension p  in the 1X  direction, as shown in 
Fig. 6. This problem provides an excellent example to illus-
trate the modelling efficiency of the present hybrid finite ele-
ment formulation, particularly for treating the curved hole 
boundary around which the stresses also vary very rapidly.  

In the computational treatment, the radius of the circle is 
taken to be 1 mm, and a considerable distance is chosen from 
the circular opening to be a finite square sheet, i.e. with side 
length 20 mm, to approximately replace the infinite domain so 
that the effects of the finite boundaries would not be signifi-
cant. The uniform tension 100 MPap = . The analysis was 
carried out for the orthotropic graphite-epoxy material de-
scribed by the following four independent engineering elastic 
constants in the principal directions [4] 

 
1 2

12 12

181 GPa,       10.3 GPa, 
7.17 GPa,   0.28,  

E E
G n
= =
= =

 

 
which can be used to sufficiently define a fully anisotropic 
material by setting different fiber orientation angle q . Also, 
we find that the graphite-epoxy material in this example has 
stronger anisotropy than the boron/epoxy material mentioned 
in example 1, because 1 2/ 17.57E E = , 1 12/ 25.24E G =  for 
the graphite-epoxy material and 1 2/ 2.14,E E =  1 12/E G =  
3.96  for the boron/epoxy material. 

It should perhaps be noted that the entire physical domain is 
modeled here, because, even though there are planes of sym-
metry for the geometry and load conditions, no such symme-
try exists for the material properties. In the practical computa-
tion, the computational mesh shown in Fig. 7 is employed to 
model the entire domain, in which 256 8-node elements with 
832 nodes are included. Fig. 8 shows the scaled variation of 
the normalized tangential stress, / pbs , around the circum-
ference of the circular hole for the case of material orientation 
angle 0q = . To demonstrate the efficiency of the present 
Green’s function-based hybrid finite element, the numerical 

Table 3. Results of the displacement at (0,0) and the stress at (175 mm, 
-25 mm) for different fiber orientations. 
 

EXACT HFS-FEM 
q  

u2 (mm) σ11 (MPa) u2 (mm) σ11 (MPa) 

0o 3.3507 72.887 3.2851 72.868 

30o 4.2108 78.385 4.1233 78.299 

60o 6.0352 77.113 5.9428 77.033 

90o 6.9975 73.214 6.9228 73.417 

 

 
 
Fig. 4. Displacement variations along the horizontal line 2 0X =  of 
the beam for the boron/epoxy composite. 

 

 
 
Fig. 5. Stress distributions along the vertical line 1 / 2X l=  of the 
beam for the boron/epoxy composite. 

 
 
Fig. 6. Sketch of a circular hole in an anisotropic square plate with 
uniform tension in the horizontal direction. 
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results from the conventional FEM implemented in ABAQUS 
are provided to make comparison. In ABAQUS, two mesh 
discretisations are produced. The first one (FEM1) is same as 
that used in the present method, while the second one (FEM2) 
is relatively refined mesh by using more elements and nodes 
(1024 elements and 3200 nodes). It’s found in Fig. 8 that the 
present method with the mesh discretization involving less 
numbers of elements can produce almost same accurate results 
as those from the conventional FEM which uses a refined 
mesh discretization. Additionally, the stress concentration 
factor can be evaluated by the ratio of maximum hoop stress 

max
bs  and the average stress p  and for the case of zero ma-

terial orientation angle, it has values of 5.8209 (HFS-FEM), 
5.0883 (FEM1) and 5.8548 (FEM2), respectively. Further-
more, it can be seen that the anisotropy causes a qualitatively 
quite different and rapid variation of the tangential stress along 
the periphery of the hole, compared to the isotropic case, 
which has a theoretical value 3 of the stress concentration 
factor. 

In order to investigate the effect of material orientation an-
gle q  on the tangential stress around the circular hole, Figs. 
9 and 10 respectively give the variations of the the normalized 
tangential stress bs  and the stress concentration factor 

max / pbs  for various material orientation angles. It’s evident 
from Fig. 9 that dramatic change of the distribution of tangen-
tial stress bs  is led by the material orientation angle q , and 
Fig. 10 shows that the maximum tangential stress decreases 
with the increase of material orientation angle. 

5.3 Biomechanical problem in anisotropic bone model 

In the last example, the two-dimensional simplified anisot-
ropic human femoral bone model is considered. The engineer-
ing elastic constants along the material principal directions are 
given by [25] 

 
1 2

12 12

17 GPa,       11.5 GPa,
3.3 GPa,   0.31 .

E E
G n
= =
= =

 

 
During the computation, it’s assumed that the right upper 

surface of the bone model shown in Fig. 11 is subjected to a 
uniform pressure 10 MPa. The bottom of the bone model is 
fixed by constraint of the displacements along the two coordi-
nate axis directions. Total 731 elements with 2286 nodes are 
employed to discretize the model, as shown in Fig. 11. Due to 
the bending caused by the specified pressure on the right up-
per surface, it is inevitably that the stress, especially the nor-
mal stress 22s , has a strong variation on the bottom surface 
which is fixed. To display this, Fig. 12 plots the variation of 
the normal stress 22s  on the bottom edge. It can be seen that 
the stress component 22s  changes from tensile stress (posi-
tive sign) to compressive stress (negative sign), as we ex-
pected. Additionally, the numerical results from the conven-
tional FEM implemented by ABAQUS are provided in Fig. 
12, and a good agreement between results from the present 

 
 
Fig. 7. Mesh configuration for the stress concentration problem. 

 

 
 
Fig. 8. Tangential stress around the circumference of the circular hole 
for zero material orientation angle. 

 

 
 
Fig. 9. Tangential stress around the circumference of the circular hole 
under tension for various material orientation angles. 

 

 
 
Fig. 10. Variation of stress concentration factor for various material 
orientation angles. 
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method and the conventional FEM is observed. Finally, the 
stress distribution of 22s  by the present method in the entire 
bone structure is plotted in Fig. 13, and simultaneously the 
FEM results are plotted in the figure for comparison. Again, a 
good agreement is observed between the results from the con-
ventional FEM and the present method. 

 
6. Conclusions 

In the paper, a Green’s function based hybrid finite element 
method using the quadratic hybrid element formulation is 
successfully implemented for solving two-dimensional homo-
geneous fully anisotropic elastic problems. The displacement 

and stress Green’s function expressions employed here are 
based on the Lekhnitskii potential method. The convergence 
and numerical accuracy of this numerical method are demon-
strated with a number of problems involving anisotropic beam 
bending, stress concentration caused by a circular cut in infi-
nite anisotropic media and biomechanical problem in anisot-
ropic bone model. Numerical solutions computed in the pre-
sent study are shown to be in excellent agreement with the 
analytical solutions or those from the conventional FEM, even 
with the relatively modest number of elements used. 
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Appendix  

A.1 Analytical solution of anisotropic cantilever beam 
under uniform pressure 

Under the assumption 
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the displacement and stress components can be derived by 
Lekhniskii anisotropic potential theory as 
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in which 3 / 12I hb= . 
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