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Abstract

Purpose – The purpose of this paper is to develop a hybrid-Trefftz (HT) finite element model (FEM)
for simulating heat conduction in nonlinear functionally graded materials (FGMs) which can
effectively handle continuously varying properties within an element.

Design/methodology/approach – In the proposed model, a T-complete set of homogeneous
solutions is first derived and used to represent the intra-element temperature fields. As a result, the
graded properties of the FGMs are naturally reflected by using the newly developed Trefftz functions
(T-complete functions in some literature) to model the intra-element fields. The derivation of the
Trefftz functions is carried out by means of the well-known Kirchhoff transformation in conjunction
with various variable transformations.

Findings – The study shows that, in contrast to the conventional FEM, the HT-FEM is an accurate
numerical scheme for FGMs in terms of the number of unknowns and is insensitive to mesh distortion.
The method also performs very well in terms of numerical accuracy and can converge to the analytical
solution when the number of elements is increased.

Originality/value – The value of this paper is twofold: a T-complete set of homogeneous solutions
for nonlinear FMGs has been derived and used to represent the intra-element temperature; and the
corresponding variational functional and the associated algorithm has been constructed.
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1. Introduction
Functionally graded materials (FGMs) are a new generation of composite materials
whose microstructure varies from one material to another with a specific gradient.
In particular:

[. . .] a smooth transition region between a pure ceramic and pure metal would result in a
material that combines the desirable high-temperature properties and thermal resistance of a
ceramic, with the fracture toughness of a metal (Gray et al., 2003).

By virtue of their excellent behaviours, FGMs have become increasingly popular in
materials engineering and have featured in a wide range of engineering applications
(e.g. thermal barrier materials (Erdogan, 1995), optical materials (Koike, 1991),
electronic materials (Tani and Liu, 1993) and biomaterials (Pompe et al., 2003)).

During the past decades, extensive studies have been carried out on developing
numerical methods for analyzing thermal behaviours of FGMs (Kim and Paulino, 2002;
Sutradhar and Paulino, 2004; Wang and Qin, 2008; Wang et al., 2006). For example, FEM
(Kim and Paulino, 2002), the boundary element method (Sutradhar and Paulino, 2004) and
the meshless method (Wang and Qin, 2008; Wang et al., 2006) have been widely used to
analyze the thermal responses of FGMs. In contrast to the three methods above,
hybrid-Trefftz (HT)-FEM (Qin, 2005) seems to be more suitable for numerical simulation of
FGMs, as Trefftz functions, which can reflect naturally the graded material properties, are
used as internal interpolation for approximating elemental fields. It should be mentioned
that HT-FEM, introduced in 1977 (Jirousek and Leon, 1977), is a class of FE associated
with the Trefftz method (Kamiya and Kita, 1995; Li et al., 2007). Trefftz method is a
powerful numerical scheme for the solution of boundary value problem (Cheung et al.,
1989; Van Genechten et al., 2010). It chooses Trefftz functions as basis function, which are
also called as T-complete functions or T-complete set of regular homogeneous solutions in
literature. The mathematical fundamentals of T-complete sets are established mainly by
Herrera and his co-workers (Herrera and Sabina, 1978; Herrera, 1980). Since it combines
advantages of the FEM and Trefftz method, the HT-FEM has now become a highly
efficient and well-established computational tool and been successfully applied to various
engineering problems, such as, e.g. plane elasticity (Dhanasekar et al., 2006), Kirchhoff
plates (Qin, 1994), thick plates (Petrolito, 1990; Qin, 1995), general three-dimensional solid
mechanics (Peters et al., 1994), potential problems (Wang et al., 2007; Zielinski and
Zienkiewicz, 1985), Helmholtz problems (Sze and Liu, 2010), transient heat conduction
analysis (Jirousek and Qin, 1996), and piezoelectric materials (Qin, 2003a, b) and contact
problems (Qin and Wang, 2008; Wang et al., 2005). Unlike the conventional FEM, HT-FEM
is based on a hybrid method which includes imposing intra-element continuity to link up
the nonconforming internal fields with the inter-element frame field (Qin, 2000). Such
intra-element fields are chosen as suitable T-complete functions so as to a priori satisfy the
governing equation of the problem under consideration. As indicated by Qin (2000), the
main advantages of this method are:

. it only needs numerical integration along the element boundaries, which enables
arbitrary polygonal or even curve-sided shapes to be generated;

. it has high accuracy and a fast convergence rate ( Jirousek et al., 1993); and

. it permits great liberty in element geometry and provides the possibility of
accurate performance without requiring annoying mesh adjustment to various
local effects thanks to loading and/or geometry (Dhanasekar et al., 2006).
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Considering that the conventional FEM is inefficient for handling materials whose
physical property varies continuously, this paper presents a new element model whose
intra-element interpolation functions, called T-complete functions, can reflect varying
properties. A brief outline of the paper is as follows: Section 2 presents a set of
newly derived T-complete functions by means of the Kirchhoff transformation. The
corresponding variational functional and Trefftz finite element formulation are
described in Section 3. In Section 4, three typical examples are considered to demonstrate
the numerical efficiency and accuracy of the proposed HT-FEM. Finally, Section 5
presents some conclusions and potential extensions of the proposed model.

2. Basic equation and their Trefftz functions
2.1 Governing equations and their boundary conditions
Consider a two-dimensional (2D) heat conduction problem in an anisotropic nonlinear
FGM, occupying a 2D arbitrary-shaped region V , R

2 bounded by its boundary G,
and in the absence of heat sources. The governing differential equation is:X2

i;j¼1

›

›xi

Kijðx;TÞ
›TðxÞ

›xj

� �
¼ 0; x [ V ð1Þ

with the boundary conditions:

. Dirichlet/essential condition:

TðxÞ ¼ �T; x [ GD ð2aÞ

. Neumann/natural condition:

qðxÞ ¼ 2
X2

i;j¼1

Kij
›TðxÞ

›xj

niðxÞ ¼ �q; x [ GN ð2bÞ

where T is the temperature, G ¼ GD þ GN , ni is outward normal vector, and K ¼
{Kijðx;TÞ}1#i;j#2 denotes the thermal conductivity matrix which satisfies the
symmetry K12 ¼ K21 and positive definite DK ¼ detðKÞ ¼ K11K22 2 K2

12 . 0. {ni} is
the outward unit normal vector at boundary x [ G.

2.2 Trefftz functions
Trefftz functions play an important role in the derivation of the HT-FE formulation
(Qin, 2005). In this subsection, the construction of Trefftz functions for heat conduction
in nonlinear FGMs is discussed in detail.

The nonlinear and anisotropic properties of equation (1) make it difficult to generate
the related Trefftz functions. To bypass this problem, the Kirchhoff transformation
and mathematical variable transformation are used in the derivation. To this end, we
begin with assuming that the coefficients of heat conduction are exponential functions
of the space coordinates as follows:

Kijðx;TÞ ¼ aðTÞ �Kije
P2

i¼1
2bixi ; x ¼ ðx1; x2Þ [ V ð3Þ
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in which a(T) . 0, �K ¼ { �Kij}1#i;j#2 is a symmetric positive-definite matrix, and the
values are all real constants. b1 and b2 are two material constants.

By employing the Kirchhoff transformation:

fðTÞ ¼

Z
aðTÞdT ð4Þ

Equations (1) and (2) can be reduced to the following form:

X2

i;j¼1

�Kij

›2FTðxÞ

›xi›xj

þ
X2

m¼1

X2

n¼1

2bm
�Kmn

›FTðxÞ

›xn

 !
e
P2

i¼1
2bixi ¼ 0; x [ V ð5Þ

FTðxÞ ¼ fð �TÞ; x [ GD ð6aÞ

qðxÞ ¼ 2
X2

i;j¼1

Kij

›TðxÞ

›xj

niðxÞ ¼ 2e
P2

i¼1
2bixi

X2

i;j¼1

�Kij

›FTðxÞ

›xj

niðxÞ ¼ �q; x [ GN ð6bÞ

where FT ðxÞ ¼ wðTðxÞÞ and the inverse Kirchhoff transformation yields:

TðxÞ ¼ w21ðFTðxÞÞ ð7Þ

The simplest way to find the Trefftz functions of equation (5) is by using the following
two transformations.

To simplify the expression of equations (5) and (6), set FT ¼ Ce2
P2

i¼1
bixi .

Then equations (5) and (6) can be rewritten as follows:

X2

i;j¼1

�Kij
›CðxÞ

›xi›xj

2 l 2CðxÞ

 !
e
P2

i¼1
bixi ¼ 0; x [ V ð8Þ

C ¼ fð �TÞe
P2

i¼1
bixi ; x [ GD ð9aÞ

qðxÞ ¼ 2e
P2

i¼1
bixi

X2

i;j¼1

�Kij
›C

›xj

2 bjC

� �
niðxÞ ¼ �q; x [ GN ð9bÞ

in which:

l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX2

i¼1

X2

j¼1

bi
�Kijbj

vuut
Since e

P2

i¼1
bixi . 0, hence the Trefftz functions of equation (8) are equal to those of

anisotropic modified Helmholtz equation.
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To find the solution of equation (8), we set:

y1

y2

 !
¼

1=
ffiffiffiffiffiffiffi
�K11

p
0

2 �K12=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�K11D �K

q ffiffiffiffiffiffiffi
�K11

p
=
ffiffiffiffiffiffi
D �K

p
0
B@

1
CA x1

x2

 !
ð10Þ

where D �K ¼ detð �KÞ ¼ �K11
�K22 2 �K

2
12 . 0.

It follows from equation (8) that:

X2

i¼1

›2Cð yÞ

›yi›yi

2 l 2Cð yÞ

 !
¼ 0; y [ V ð11Þ

Hence, we have the Trefftz solutions for equation (8) in the form:

I 0ðlrÞ; ImðlrÞcosðmuÞ; ImðlrÞsinðmuÞ m ¼ 1; 2; . . . ; ðr; uÞ [ V ð12Þ

where:

r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2

1 þ y2
2

q
; u ¼ arctan

y2

y1

� �

and Im denotes the m-order modified Bessel function of first kind.
Therefore, the Trefftz functions of equation (5) can be represented as:

I 0ðlrÞe2
P2

i¼1
bixi ;

ImðlrÞcosðmuÞe2
P2

i¼1
bixi ;

ImðlrÞsinðmuÞe2
P2

i¼1
bixi m ¼ 1; 2; . . .

ð13Þ

3. HT-FE formulation
3.1 Assumed fields
To perform HT-FE analysis, the whole domain V is divided into a number of elements.
For a particular element, say element e, occupying a sub-domain Ve with the element
boundary Ge, two groups of independent fields are assumed in the following way
(Qin, 2005):

. A non-conforming intra-element field is defined by:

ueðxÞ ¼
Xm

j¼1

NejðxÞcej ¼ NeðxÞce ;x [ Ve ð14Þ

where ce stands for unknown parameters and m represents the number of homogeneous
solutions (Trefftz terms). Nej are the homogeneous solutions to equation (8):
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Ne1 ¼ I 0ðlrÞ;

Ne2 ¼ ImðlrÞcos u;

Ne3 ¼ ImðlrÞsin u; . . . ;

Neð2mþ1Þ ¼ ImðlrÞsinðmuÞ; . . .

It should be mentioned that the assumed intra-element temperature field here is defined
in a local reference system x ¼ (x1, x2) whose axis remains parallel to the axis of the
global reference system X ¼ (X1, X2) (Figure 1(a)).

The corresponding outward normal derivative of ue on Ge is defined by:

qe ¼ 2
X2

i;j¼1

Kij

›ue

›xj

ni ¼ Qece ð15Þ

where:

Qe ¼ 2
X2

i;j¼1

Kij
›Ne

›xj

niðxÞ ¼ 2AKTe ð16Þ

with:

A ¼ n1 n2

h i
; Te ¼

›Ne

›x1

›Ne

›x2

" #T

ð17Þ

The undetermined coefficients c, here, may be calculated in many different ways
(variational approach, least square, etc.) that enable the prescribed boundary conditions
and the inter-element continuity to be approximately fulfilled. The simplest way to
enforce the inter-element continuity conditions:

ue ¼ uf on Ge > Gf conformity ð18aÞ

qe þ qf ¼ 0 on Ge > Gf reciprocity ð18bÞ

and to express the unknown coefficients c in terms of conveniently chosen nodal
parameters is a hybrid procedure based on using a frame function representing an

Figure 1.
(a) Intra-element field in a

particular element and
(b) typical quadratic

interpolation for the frame
field

X2

X2

X1

X1

Node Centroid

(a) (b)

1

1 – x2

2

2

2

–

3

N2

N1

N3

x = –1 x = 0 x = +1

x (1– x)

x (1+ x)
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independent temperature ũ. So, the second independent temperature field should be
introduced in the following way:

. An auxiliary exactly and minimally conforming frame field:

~ueðxÞ ¼ ~NeðxÞde; x [ Ge ð19Þ

is independently assumed along the element boundary Ge in terms of nodal degrees of
freedom (DOF) de, where Ñe represents the conventional finite element interpolating
functions. For instance, a quadratic interpolation of the frame field on any side with
three nodes of a particular element (Figure 1(b)) can be given in the form:

~u ¼ ~N1u1 þ ~N2u2 þ ~N3u3 ð20Þ

where Ñi (i ¼ 1, 2, 3) denotes shape functions in terms of natural coordinate j shown in
Figure 1(b).

3.2 Modified variational principle and stiffness equation
The HT-FE formulation for heat conduction in nonlinear FGMs can be established by
the variational approach (Qin, 2005; Wang and Qin, 2009). The approach is based
mainly on a modified variational principle. The terminology “modified principle” refers
here to the use of conventional potential functional and some modified terms for the
construction of a special variational principle. The reason for using the modified
terms is that satisfaction of continuity temperature and heat flow between elements
(equation (18)) and heat flow boundary conditions cannot be guaranteed in the
HT-FEM due to the use of Trefftz functions as the shape function within an element.
Following the procedure given by Wang and Qin (2009), the functional corresponding
to the problem defined in equations (8) and (9) is constructed as:

Pm ¼
e

X
Pme ð21Þ

with:

Pme ¼ 2
1

2

Z
Ve

e2
P2

i¼1
bixi U; iU ;i

� �
dV2

Z
Gqe

�q~udGþ

Z
Ge

qð~u 2 uÞdG

þ

Z
Ge

e2
P2

i¼1
bixi

X2

i;j¼1

�KijbjniU
2

 !
dG

ð22Þ

in which:

U ;1 ¼
ffiffiffiffiffiffiffi
�K11

p ›U

›x1
þ

�K12ffiffiffiffiffiffiffi
�K11

p ›U

›x2
; U ;2 ¼

ffiffiffiffiffiffi
D �K

p
ffiffiffiffiffiffiffi
�K11

p ›U

›x2
with U ¼ ue

P2

i¼1
bixi :

It should be mentioned that in functional (22), the governing equation (8) is satisfied,
a priori, due to the use of Trefftz solutions in the HT-FE model. The boundary Ge of a
particular element consists of the following parts:
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Ge ¼ Gue < Gqe < GIe and Gue > Gqe ¼ Gqe > GIe ¼ Gue > GIe ¼ B ð23Þ

where GIe represents the intra-element boundary of the element “e”.
Next, we prove that the stationary condition of the functional (21) leads to the

governing equation (5), boundary conditions (6) and continuity conditions (18). The
first-order variational of the functional (22) yields:

dPme ¼ 2

Z
Ve

Ee
P2

i¼1
bixi dVþ

Z
Ge

Fe
P2

i¼1
bixi dG2

Z
Gqe

�qd~udG

þ

Z
Ge

dqð~u 2 uÞdGþ

Z
Ge

qðd~u 2 duÞdG

ð24Þ

where:

E ¼
X2

i;j¼1

�Kiju;j þ �Kijbj

� �
du;i þ l 2u þ �Kijbju;i

� �
du

� �
ð25Þ

F ¼
X2

i;j¼1

2 �Kijbjniudu ð26Þ

By using the divergence theorem:Z
V

f ;ih;j þ h72f
� �

dV ¼

Z
G

hf ;injdG ð27Þ

where f and h are two arbitrary functions in the solution domain, functional (24) can be
written as:

dPme ¼

Z
Ve

e
P2

i¼1
bixi
X2

i;j¼1

�Kijðu;ij 2 l2uÞ

 !
dV2

Z
Gqe

ð�q 2 qÞd~udG

þ

Z
Ge

dqð~u 2 uÞdGþ

Z
GIe

qd~udGþ

Z
Gue

qd~udG

ð28Þ

For the temperature-based method, the potential conformity is satisfied in advance,
that is:

d~u ¼ d�u ¼ 0 on Gueðu ¼ ~uÞ d~ue ¼ d~uf on GIef ð~u
e ¼ ~uf Þ ð29Þ

Then, equation (28) can be rewritten as:

dPme ¼

Z
Ve

e
P2

i¼1
bixi

X2

i;j¼1

�Kijðu;ij 2 l2uÞ

 !
dV2

Z
Gqe

ð�q 2 qÞd~udG

þ

Z
Ge

dqð~u 2 uÞdGþ

Z
GIe

qd~udG

ð30Þ

from which the governing equation (8) and boundary conditions (9) can be obtained
using the stationary condition dPme ¼ 0:
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X2

i;j¼1

�Kij

›2uðxÞ

›xi›xj

2 l 2uðxÞ

 !
e
P2

i¼1
bixi ¼ 0; x [ V ð31Þ

u ¼ fð �TÞe
P2

i¼1
bixi ; x [ GD ð32aÞ

qðxÞ ¼ 2e
P2

i¼1
bixi

X2

i;j¼1

�Kij
›u

›xj

2 bju

� �
niðxÞ ¼ �q; x [ GN ð32bÞ

We can produce the field continuity requirement equation (18) in the following way.
When assembling elements “e” and “f”, we have:

dPmðeþf Þ ¼

Z
Veþf

e
P2

i¼1
bixi

X2

i;j¼1

�Kijðu;ij 2 l 2uÞ

 !
dV2

Z
Gqeþqf

ð�q 2 qÞd~udG

þ

Z
Ge

dqð~u 2 uÞdGþ

Z
Gf

dqð~u 2 uÞdGþ

Z
GIef

qd~uef dGþ · · ·

ð33Þ

From which the vanishing variation of dPmðeþf Þ leads to the reciprocity condition (18b)
qe þ qf ¼ 0 on the intra-element boundary GIef.

Therefore, the functional (22) can be used to generate the element stiffness equation
used in this work through the variational approach described in Qin (2000). Applying
the divergence theorem again to the functional (22), we have the final functional for the
HT-FE model:

Pme ¼ 2
1

2

Z
Ge

qudG2

Z
Gqe

�q~udGþ

Z
Ge

q~udG ð34Þ

Substituting equations (14), (15) and (19) into the functional (34) yields:

Pe ¼ 2
1

2
cT
eHece 2 dT

e ge þ cT
e Gede ð35Þ

in which:

He ¼

Z
Ge

QT
e NedG Ge ¼

Z
Ge

QT
e
~NedG ge ¼

Z
Geq

~N
T

e �qdG

To enforce inter-element continuity on the common element boundary, the unknown
vector ce shoufld be represented in terms of the nodal DOF de. An optional relationship
between ce and de in the sense of variation can be obtained by minimization of the
functional Pe with respect to ce:

›Pe

›cT
e

¼ 2Hece þ Gede ¼ 0 ð36Þ

which leads to:

ce ¼ H21
e Gede ð37Þ
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and then yields the expression Pe only in terms of de and other known matrices:

Pe ¼
1

2
dT

e G
T
e H

21
e Gede 2 dT

e ge ð38Þ

Therefore, by taking the vanishing functional Pe with respect to de:

›Pe

›dT
e

¼ GT
e H

21
e Gede 2 ge ¼ 0 ð39Þ

the stiffness equation can be expressed as:

Kede 5 ge ð40Þ

where Ke 5GT
e H

21
e Ge stands for the element stiffness matrix.

It is worth noting that the evaluation of the right-hand vector ge in equation (40) is
the same as that in conventional FEM, which is obviously convenient for the
implementation of HT-FEM into existing FEM programs.

3.3 Recovery of constant temperature in the domain
Considering the physical definition of the Trefftz functions, it is necessary to recover
the missing constant temperature modes in the domain from the above results.

Following the method presented by Qin (2000), the missing constant temperature in
the domain can be recovered by writing the internal potential field of a particular
element e as:

ue ¼ Nece þ c0 ð41Þ

where the undetermined constant temperature parameter c0 in the domain can be
calculated using the least square matching of ue and ũe at element nodes:

Xn

i¼1

ðNece þ c0 2 ~ueÞ
2jnode i ¼ min ð42Þ

which finally gives:

c0 ¼
1

n

Xn

i¼1

Duei ð43Þ

in which Duei ¼ ð~ue 2NeceÞjnode i and n is the number of element nodes.
Once the nodal field is determined by solving the final stiffness equation, the

coefficient vector ce can be evaluated from equation (40), and then C0 is evaluated from
equation (43). Finally, the potential field u at any internal point in an element can be
obtained by means of equation (41).

It should be pointed out that the potential field obtained by the proposed HT-FEM is
the solution of equations (8) and (9). Therefore, it needs to use two inverse
transformations in obtaining the temperature field T:

(1) FT ¼ ue2
P2

i¼1
bixi .

(2) TðxÞ ¼ w21ðFTðxÞÞ.
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4. Numerical assessments and discussions
In this section, the efficiency, accuracy and convergence of the HT-FEM are tested by
considering three heat conduction problems in FGMs. The results of the proposed
method are compared with the MFS solution and analytical solution. To provide a
more quantitative understanding of the results, the average relative error Rerr(w) and
normalised error Nerr(w) defined, respectively, by:

RerrðwÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

NT

XNT

i¼1

wði Þ2 �wði Þ

�wði Þ

����
����
2

vuut ; ð44Þ

NerrðwÞ ¼
jwði Þ2 �wði Þj

1#i#NT
max j �wði Þj

; ð45Þ

are employed in numerical analysis, where w̄(i ) and w(i ) are the analytical and
numerical solutions at xi, respectively, and NT denotes the total number of uniform test
points in the domain of interest. Unless otherwise specified, NT is taken to be 100 and
five-point Gauss-Legendre quadrature rule is used for numerical integration in all the
following numerical analysis.

Example 1. First a 0.04 £ 0.04 square plate graded along the x1 direction is
considered (Wang and Qin, 2009). The thermal conductivity K ¼ K0eb1x1 , where
K0 ¼ 1 and b1 ¼ 50, the corresponding value in equation (3) is:

aðTÞ ¼ 1; �K ¼
1 0

0 1

 !
; b1 ¼ 1; b2 ¼ 0:

The analytical solution is:

TðxÞ ¼
eb1x1 2 1

e 0:04b1 2 1
ð46Þ

subject to the following boundary conditions:

qðxÞ ¼ 0; x1 ¼ 0; qðxÞ ¼ 0; x1 ¼ 0:04; TðxÞ ¼ 0; x2 ¼ 0; TðxÞ ¼ 1; x2 ¼ 0:04

Since the properties of the FGM are independent of temperature, there is no need to use
the Kirchhoff transformation in this example. Table I presents, respectively, the effect
of the terms M of Trefftz functions on the average relative error Rerr, the condition
number of stiffness matrix K, and the Trefftz interpolation matrix H for element 1
shown in Figure 2. Condition number Cond in Table I is defined as the ratio of the
largest singular value of matrix to the smallest. It can be observed from Table I that the

M 7 9 11 13

Rerr 1.204 £ 1022 7.346 £ 1023 7.371 £ 1023 1.185 £ 1022

Cond(K) 6.4043 6.4264 6.4236 6.4232
Cond(H) 2.291 £ 108 2.730 £ 1011 5.424 £ 1014 8.743 £ 1015

Table I.
Numerical results of
Example 1 with different
terms M of T-complete
functions in 2 £ 2 meshes
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condition number of stiffness matrix K is insensitive to the terms of the Trefftz function.
Furthermore, we observe from Table I that there is an optimal value of the terms of
Trefftz function which can produce best numerical accuracy (9 or 11 for the element type
used here). The reason why accuracy does not improve along with further increase in the
terms M is that such increase inevitably produces a larger condition number of matrix H,
which is not beneficial to its inverse operation. Therefore, unless otherwise specified, the
terms of Trefftz functions are chosen to be M ¼ 9 in the following numerical analysis.
Table II displays the numerical accuracy and condition numbers of the matrices K and
H with respect to different densities of mesh. It can be seen from Table II that with
refinement of the element meshes, the numerical solution converges rapidly to the
analytical solution. It is noted that the condition number for both matrices K and
H increases quickly along with an increase in the number of elements, which may cause
the convergence rate of the proposed method to be slower.

Figure 2.
Configuration of different

refined meshes (2 £ 2,
4 £ 4, 6 £ 6, 8 £ 8) used in

the proposed HT-FEM
method

1

(a) (b)

1

(d)

1

(c)

1

Elem 2 £ 2 4 £ 4 6 £ 6 8 £ 8

Rerr 7.346 £ 1023 1.702 £ 1023 2.309 £ 1024 2.036 £ 1024

Cond(K) 6.4264 23.3715 51.6317 143.9752
Cond(H) 2.730 £ 1011 6.851 £ 1013 2.169 £ 1015 6.959 £ 1015

Table II.
Numerical results of

Example 1 with different
meshes
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Example 2. Consider the heat transfer in a nonlinear FGM whose coefficients of heat
conduction are defined by equation (3) with a(T) ¼ e T. This problem usually occurs in
high-temperature environments. By using the Kirchhoff transformation, we can obtain:

FT ¼ eT ; T ¼ f21ðFTÞ ¼ lnðFTÞ:

Let us consider an orthotropic material (Marin and Lesnic, 2007) in the square
V ¼ ð21; 1Þ £ ð21; 1Þ in which:

�K ¼
2 0

0 1

 !

and b1 ¼ 0;b2 ¼ 1. Its analytical solution is:

TðxÞ ¼ ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 2 Tx=Tr

2Tr

r
sinhðTrÞe2Ty

 !
ð47aÞ

FTðxÞ ¼ eTðxÞ ð47bÞ

where:

Tx ¼
x1ffiffiffi

2
p 2 1; Ty ¼ x2; Tr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tx 2 þ Ty 2

p
:

Figure 3 shows the variations in the numerical accuracy of temperature and heat flux in
x1 and x2 directions with mesh density. We can observe from Figure 3 that the results
from the present HT-FEM agree well with the analytical solution and converge quickly
along with the increasing number of elements. Figures 4-6 show the distribution of
normalised errors of temperature and heat flux, respectively, by HT-FEM with 4 £ 4
meshes. It can be observed that the results are again in good agreement with the
analytical solution.

Figure 3.
Rerr of temperature and
heat flux versus number of
elements in Example 2
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Example 3. We next consider another type of nonlinear exponential FGM with the same
geometry V ¼ ð21; 1Þ £ ð21; 1Þ as in Example 2. In practice, the dependence of the
thermal conductivity on the temperature may be chosen as linear, i.e. a(T) ¼ 1 þ mT,
where m is a material constant. By using the Kirchhoff transformation, we can obtain:

FT ¼ T þ
m

2
T 2; T ¼ f21ðFTÞ ¼

21 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ 2mFT

p
m

:

The analytical solution in this example is:

TðxÞ ¼
21 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ 2mFTðxÞ

p
m

ð48aÞ

FT ðxÞ ¼ e ðlðTxþTyÞ=tÞ2
P2

i¼1
bixi ð48bÞ

in which:

t ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�K11

ffiffiffiffiffiffi
D �K

p
2 �K12

�K11

 !2

þ2 �K12

ffiffiffiffiffiffi
D �K

p
2 �K12

�K11

 !
þ �K22

vuut

Figure 4.
Isolines of normalised

errors of temperature by
HT-FEM in Example 2
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Tx ¼
x1

ffiffiffiffiffiffi
D �K

p
�K11

; Ty ¼ 2
x1

�K12

�K11

þ x2

where:

�K ¼
1 0:25

0:25 3

 !
; b1 ¼ 0:1; b2 ¼ 0:5; and m ¼

1

4
:

Figure 7 shows the convergent rate of temperature and heat flow from the present
HT-FEM in Example 3. From the figure, it can be seen that the proposed method can
obtain acceptable numerical accuracy with only four elements (2 £ 2 meshes).
Furthermore, the HT-FEM converges clearly to the analytical solution when refinement
of the meshes commences, but then its convergence rate decreases due to the ill condition
of matrix. It is noted that the accuracy of the temperature field is about one order of
magnitude higher than that of the heat flux field.

Figures 8-10 show the distribution of the normalised errors of temperature and heat
flux in the x1 and x2 directions, respectively, by using 16 elements. It can be seen from
these three figures that the proposed method provides very accurate results for the
temperature and heat flux fields.

To assess the sensitivity of the element model to mesh distortion, we implement the
proposed HT-FEM with different distorted meshes as shown in Figure 11, where Ds
denotes distorted mesh parameter. Table III exhibits the results of sensitivity to

Figure 5.
Isolines of normalised
errors of heat flux in the x1

direction by HT-FEM in
Example 2
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mesh distortion. The numerical results reveal that the proposed method is remarkably
insensitive to mesh distortion, a result which is superior to that from the traditional
FEM, allowing greater freedom in element geometry and giving the possibility of
accurate performance without troublesome mesh adjustment.

Figure 6.
Isolines of normalised

errors of heat flux in the x2

direction by HT-FEM in
Example 2
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Figure 8.
Isolines of normalised
errors of temperature by
HT-FEM in Example 3
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Isolines of normalised
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Example 3
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Figure 10.
Isolines of normalised

errors of heat flux in the x2

direction by HT-FEM in
Example 3
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5. Conclusions
In this paper, we present a set of Trefftz functions for heat conduction problems in
exponential FGMs by way of the Kirchhoff transformation and coordinate transformation.
The Trefftz functions are then used for developing the HT-FE formulation for heat
conduction analysis in 2D nonlinear FGMs. Numerical results demonstrate that the
proposed HT-FEM is a competitive numerical method for the solution of heat conduction
in nonlinear FGMs. The method performs very well in terms of numerical accuracy and
can converge to the analytical solution when the number of elements is increased. The
results also demonstrate the insensitivity of the element model to mesh distortion. Future
extension of the proposed method can be made to cases of three-dimensional composite
materials (Berger et al., 2005) and transient heat transfer problems in FGMs (Kuo and
Chen, 2005; Sladek et al., 2005; Sutradhar et al., 2002). This work is under way.

References

Berger, J.R., Martin, P.A., Mantic, V. and Gray, L.J. (2005), “Fundamental solutions for
steady-state heat transfer in an exponentially graded anisotropic material”, Zeitschrift Fur
Angewandte Mathematik Und Physik, Vol. 56, pp. 293-303.

Cheung, Y.K., Jin, W.G. and Zienkiewicz, O.C. (1989), “Direct solution procedure for solution of
harmonic problems using complete, non-singular, Trefftz functions”, Comm. Appl. Num.
Meth., Vol. 5, pp. 159-69.

Dhanasekar, M., Han, J.J. and Qin, Q.H. (2006), “A hybrid-Trefftz element containing an elliptic
hole”, Finite Elements in Analysis and Design, Vol. 42, pp. 1314-23.

Erdogan, F. (1995), “Fracture mechanics of functionally graded materials”, Composites
Engineering, Vol. 5, pp. 753-70.

Gray, L.J., Kaplan, T., Richardson, J.D. and Paulino, G.H. (2003), “Green’s functions and boundary
integral analysis for exponentially graded materials: heat conduction”, Journal of Applied
Mechanics-Transactions of the ASME, Vol. 70, pp. 543-9.

Herrera, I. (1980), “Boundary methods: a criterion for completeness”, Proc. Natl. Acad. Sci. USA,
Vol. 77, pp. 4395-8.

Herrera, I. and Sabina, F.J. (1978), “Connectivity as an alternative to boundary integral equations:
construction of bases”, Proc. Natl. Acad. Sci. USA, Vol. 75, pp. 2059-63.

Jirousek, J. and Leon, N. (1977), “A powerful finite element for plate bending”, Computer Methods
in Applied Mechanics and Engineering, Vol. 12, pp. 77-96.

Jirousek, J. and Qin, Q.H. (1996), “Application of hybrid-Trefftz element approach to transient
heat conduction analysis”, Computers & Structures, Vol. 58, pp. 195-201.

Jirousek, J., Venkatesh, A., Zielinski, A.P. and Rabemanantsoa, H. (1993), “Comparative study of
p-extensions based on conventional assumed displacement and hybrid-Trefftz FE
models”, Computers & Structures, Vol. 46, pp. 261-78.

Kamiya, N. and Kita, E. (1995), “Trefftz method 70 years”, Adv. Eng. Softw., Vol. 24 Nos 1-3.

Kim, J.-H. and Paulino, G.H. (2002), “Isoparametric graded finite elements for nonhomogeneous
isotropic and orthotropic materials”, Journal of Applied Mechanics, Vol. 69, pp. 502-14.

Koike, Y. (1991), “High-bandwidth graded-index polymer optical fibre”, Polymer, Vol. 32,
pp. 1737-45.

Kuo, H.Y. and Chen, T.Y. (2005), “Steady and transient Green’s functions for anisotropic
conduction in an exponentially graded solid”, International Journal of Solids and
Structures, Vol. 42, pp. 1111-28.

Hybrid-Trefftz
FEM for heat

conduction

597



Li, Z.C., Tzon-Tzer, L., Hung-Tsai, H. and Cheng, A.H.D. (2007), “Trefftz, collocation, and other
boundary methods – a comparison”, Numerical Methods for Partial Differential Equations,
Vol. 23, pp. 93-144.

Marin, L. and Lesnic, D. (2007), “The method of fundamental solutions for nonlinear functionally
graded materials”, International Journal of Solids and Structures, Vol. 44, pp. 6878-90.

Peters, K., Stein, E. and Wagner, W. (1994), “A new boundary-type finite element for 2-D- and
3-D-elastic structures”, International Journal for Numerical Methods in Engineering,
Vol. 37, pp. 1009-25.

Petrolito, J. (1990), “Hybrid-trefftz quadrilateral elements for thick plate analysis”, Computer
Methods in Applied Mechanics and Engineering, Vol. 78, pp. 331-51.

Pompe, W., Worch, H., Epple, M., Friess, W., Gelinsky, M., Greil, P., Hempel, U., Scharnweber, D.
and Schulte, K. (2003), “Functionally graded materials for biomedical applications”,
Materials Science and Engineering, Vol. A362, pp. 40-60.

Qin, Q.H. (1994), “Hybrid Trefftz finite-element approach for plate-bending on an
elastic-foundation”, Applied Mathematical Modelling, Vol. 18, pp. 334-9.

Qin, Q.H. (1995), “Hybrid-Trefftz finite element method for Reissner plates on an elastic
foundation”, Computer Methods in Applied Mechanics and Engineering, Vol. 122,
pp. 379-92.

Qin, Q.H. (2000), The Trefftz Finite and Boundary Element Method, WIT Press, Southampton.

Qin, Q.H. (2003a), “Solving anti-plane problems of piezoelectric materials by the Trefftz finite
element approach”, Computational Mechanics, Vol. 31, pp. 461-8.

Qin, Q.H. (2003b), “Variational formulations for TFEM of piezoelectricity”, International Journal
of Solids and Structures, Vol. 40, pp. 6335-46.

Qin, Q.H. (2005), “Trefftz finite element method and its applications”, Applied Mechanics Reviews,
Vol. 58, pp. 316-37.

Qin, Q.H. and Wang, K.Y. (2008), “Application of hybrid-Trefftz finite element method to
frictional contact problems”, Computer Assisted Mechanics and Engineering Sciences,
Vol. 15, pp. 319-36.

Sladek, V., Sladek, J., Tanaka, M. and Zhang, C. (2005), “Transient heat conduction in anisotropic
and functionally graded media by local integral equations”, Engineering Analysis with
Boundary Elements, Vol. 29, pp. 1047-65.

Sutradhar, A. and Paulino, G.H. (2004), “The simple boundary element method for transient heat
conduction in functionally graded materials”, Computer Methods in Applied Mechanics
and Engineering, Vol. 193, pp. 4511-39.

Sutradhar, A., Paulino, G.H. and Gray, L.J. (2002), “Transient heat conduction in homogeneous
and non-homogeneous materials by the Laplace transform Galerkin boundary element
method”, Engineering Analysis with Boundary Elements, Vol. 26, pp. 119-32.

Sze, K. and Liu, G. (2010), “Hybrid-Trefftz six-node triangular finite element models for
Helmholtz problem”, Computational Mechanics, Vol. 46, pp. 455-70.

Tani, J. and Liu, G. (1993), SH Surface Waves in Functionally Gradient Piezoelectric Plates,
Japan Society of Mechanical Engineers, Tokyo.

Van Genechten, B., Bergen, B., Vandepitte, D. and Desmet, W. (2010), “A Trefftz-based numerical
modelling framework for Helmholtz problems with complex multiple scatterer
configurations”, Journal of Computational Physics, Vol. 229 No. 18, pp. 6623-43.

Wang, H. and Qin, Q.H. (2008), “Meshless approach for thermo-mechanical analysis of
functionally graded materials”, Engineering Analysis with Boundary Elements, Vol. 32,
pp. 704-12.

EC
28,5

598



Wang, H. and Qin, Q.H. (2009), “Hybrid FEM with fundamental solutions as trial functions for
heat conduction simulation”, Acta Mechanica Solida Sinica, Vol. 22, pp. 487-98.

Wang, H., Qin, Q.H. and Arounsavat, D. (2007), “Application of hybrid Trefftz finite element
method to non-linear problems of minimal surface”, International Journal for Numerical
Methods in Engineering, Vol. 69, pp. 1262-77.

Wang, H., Qin, Q.H. and Kang, Y.L. (2006), “A meshless model for transient heat conduction in
functionally graded materials”, Computational Mechanics, Vol. 38, pp. 51-60.

Wang, K.Y., Qin, Q.H., Kang, Y.L., Wang, J.S. and Qu, C.Y. (2005), “A direct constrain-Trefftz
FEM for analysing elastic contact problems”, International Journal for Numerical Methods
in Engineering, Vol. 63, pp. 1694-718.

Zielinski, A.P. and Zienkiewicz, O.C. (1985), “Generalized finite element analysis with T-complete
boundary solution functions”, International Journal for Numerical Methods in
Engineering, Vol. 21, pp. 509-28.

Corresponding author
Qing-Hua Qin can be contacted at: qinghua.qin@anu.edu.au

Hybrid-Trefftz
FEM for heat

conduction

599

To purchase reprints of this article please e-mail: reprints@emeraldinsight.com
Or visit our web site for further details: www.emeraldinsight.com/reprints


