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Many synthetic and natural media which are often described as multifunctional smart
materials demonstrate thermo-electro-chemo-mechanical coupling behavior and are sen-
sitive to external environmental stimuli. This paper presents a set of basic equations, a var-
iational principle and a finite element procedure for investigating the coupled behavior of
thermo-electro-chemo-elastic media. Emphasis here is placed on introducing chemical
effects into the coupled equation system. Using the governing equations of thermal con-
duction, electric flow, ionic diffusion and momentum balance, a variational principle is
deduced for a linearly coupled system by means of the extended Gibb’s free energy func-
tion. The variational principle is then used to derive a fully coupled multi-field finite ele-
ment formulation for simulating the coupled thermo-electro-chemo-elastic behavior of
biological tissues. Numerical examples are considered to illustrate the coupled phenomena
of the materials and to verify the proposed variational theory and numerical procedure.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction interval fluid, and deform in volume and shape. They can
With the rapid development of material sciences and
technologies, many new multifunction materials have
been created and applied to industrial engineering, includ-
ing materials that exhibit coupled multi-field behavior and
interaction among fields. For example, conducting poly-
mers have been widely used as artificial muscles and
biosensors (Baughman, 1996; Garard et al., 2002; MacDiar-
mid, 2002; Yoseph, 2000), as the conducting polymers can
accomplish the transformation of electrical, chemical and
mechanical energy and demonstrate response to external
environmental variables including temperature, pH and
electrical and mechanical loadings. Such versatile poly-
mers, which seem to be increasingly manufactured, in-
clude hydrogel and various advanced polymers (Otero
et al., 1995; Doi et al., 1992; Santa et al., 1997). In general,
these multi-field materials consist of a solid network and
. All rights reserved.
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be applied to practical engineering as biosensors, artificial
skins of robots, artificial muscles, and actuators of adaptive
structures (Garard et al., 2002; Yoseph, 2000).

By comparison, natural materials such as biological tis-
sues, clays and shales exhibit strong swelling and contrac-
tive behavior under chemical, electrical and mechanical
stimuli. For example, articular cartilage is a porous med-
ium bathed in an electrolyte and its electro-chemo-
mechanical coupling behavior cannot be ignored. This
cartilage consists of hydrated proteoglycans and collagen
fibers which form fibrillar structures that trap their own
water. To sustain external loads, including mechanical
and electrochemical loads, cartilage modifies its internal
configuration by means of water and ion exchanges
(Simom et al., 1998; Garikipatia et al., 2004; Loret and
Simões 2005). The performance of saturated porous media
has also attracted the attention of many researchers and
scientists over the past decades (de Boer, 2000; 2003;
Ehler, 2002). Early studies in this direction focused on
the interactions between the solid and fluid of the satu-
rated porous media. A so-called poroelastic theory was
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developed (Biot, 1955; Bowen, 1982) and used for deriving
various numerical algorithms. The concept of equivalent
stress and the equations of mass balance and momentum
balance form the primary framework of the poroelastic
theory.

Using poroelastic theory (Bowen, 1982), a triphasic
mixture model of porous media was proposed to consider
the electric and diffusion effect induced by ions in the fluid
(Lai et al., 1991). In the triphasic theoretical model, the
porous medium was assumed to be composed of solid,
fluid and ions. Modified mass balance and momentum bal-
ance equations, in addition to the ionic diffusion equation,
were introduced. These equations were then used to de-
scribe the deformation and stress of biological soft tissues
like cartilage and to derive corresponding finite element
(FE) formulations (Snijders et al., 1995). Later, a quadripha-
sic model was presented, to investigate quasi-static finite
deformation of swelling of incompressible porous media,
where the ions in the fluid are decompounded as anions
and cations (Huyghe and Janssen, 1997). In this model, bal-
ance laws are derived for each phase and for the mixture as
a whole. The quadriphasic model, considering electric-
osmosis and streaming current effects, can be applied to
the analysis of intervertebral disk tissue (Frijns et al.,
1997). More recently, a thermo-electro-chemo-mechanical
formulation based on the quadriphasic mixture model has
been developed for quasi-static finite deformation of
swelling incompressible porous media (Huyghe and Jans-
sen 1999). It is noted that both triphasic and quadriphasic
models belong to the category of mixture theory based on
the poroelastic framework of porous media. However,
these two models provide balance equations of the mix-
ture only, and an explicit form of constitutive law does
not appear in the related literature. Therefore, the solution
of these theoretical models largely depends on the form of
constitutive law used.

In addition to the mixture methods discussed above,
other types of multi-field approaches have been presented
in recent years (Moyne and Murad, 2002; Loret et al., 2002;
De Sudipto and Aluru, 2004; Wallmersperger et al., 2004;
Gajo and Loret, 2003; Yang et al., 2004, 2005; Zohdi,
2004) to reveal the electro-chemo-mechanical coupling
behavior of porous media and to try to explain interactions
among the fields. On the basis of these theories, some
numerical methods have been developed to solve the
coupled multi-field differential equations, including direct
iteration procedures (De Sudipto and Aluru, 2004;
Wallmersperger et al., 2004) and the FE method (Gajo
and Loret, 2003; Yang et al., 2004, 2005; Zohdi, 2004).

In this paper, a theoretical model and the corresponding
FE formulation for thermo-electro-chemo-mechanical cou-
pled problems are presented, developed by redefining lin-
early coupled constitutive relations and extending the
traditional Gibb’s free energy to include chemical effects.
In contrast to previous work, the theoretical model pro-
posed is based on a newly introduced linear constitutive
chemical law instead of the balance laws which have been
used in the triphasic and quadriphasic mixture models (Lai
et al., 1991; Snijders et al., 1995; Huyghe and Janssen,
1997; Frijns et al.,1997; Huyghe and Janssen, 1999). As
existing chemical governing equations are not suitable
for FE analysis, we start by deriving a modified form of ba-
sic equation for the chemical field (Section 2). By extending
the traditional Gibb’s free energy to include chemical field,
we obtain linear forms of coupled constitutive laws and a
variational principle including chemical effect (Sections 3
and 4). As a special case of the coupled system, coupling
between chemical and mechanical fields is discussed in de-
tail, and the determination of some coupled property
parameters is also demonstrated (Section 5). Finally,
numerical examples are performed to assess the coupled
chemo-mechanical behavior for medium (Section 6).
2. Governing equations of fields

Consider a thermo-electro-chemo-mechanical body of
volume X bounded by surface S. The governing equations,
including heat conduction equation, Maxwell equation of
electrostatics, equilibrium equations of stresses, and diffu-
sion equations of ions, are as follows:

(1) Equilibrium equations of stresses:

rij;j þ fi ¼ 0 ðin XÞ ð1Þ

(2) Boundary conditions:

ui ¼ �ui ðon SuÞ ð2aÞ
rijnj ¼ �ti ðon StÞ ð2bÞ

(3) Maxwell’s equation of electrostatics:

Di;i ¼ qb ðin XÞ ð3Þ

(4) Electric boundary conditions:

/ ¼ �/ ðon S/Þ ð4aÞ
Dini ¼ ��qs ðon SDÞ ð4bÞ

(5) Heat conduction equation:

hi;i ¼ �T0 _g ðin XÞ ð5Þ

where

hi;i ¼
oh1

ox1
þ oh2

ox2
þ oh3

ox3

(6) Thermal boundary conditions:

T ¼ T ðon STÞ ð6aÞ
hini ¼ �hn ðon ShÞ ð6bÞ

In these equations, rij, Di, /, hi and T are, respectively,
stress tensor, electric displacement vector, electric poten-
tial, heat flux vector and temperature, fi and qb are the
mechanical body force and body electric charge density,
Su, St, S/, SD, ST and Sh denote, respectively, the correspond-
ing surface of displacement, traction, electric potential,
electric displacement, temperature and heat flux.
�ui and �ti are the prescribed surface displacements and
tractions, �/ and �qs are the prescribed electric potential
and surface electric charge, T and �hn are the prescribed
temperature change and heat flux on the surface S, ni is
the unit outward normal vector on the surface S, g is the
entropy density, T0 is reference temperature, and
S = Su + St = S/ + SD = ST + Sh.
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(7) Basic equations of chemical field:
Fick’s law shows that the mass flux n� is proportional to

the gradient of the ionic concentrations c�;j by Levine Ira
(2002):

n�i ¼ �u�ij c�;j ð7Þ

where ‘+’ and ‘�’ denote anion and cation, respectively. The
proportional coefficients u�ij denote the diffusion coeffi-
cients of anions and cations and depend on the intrinsic
features of the medium. For isotropic medium, u�ij ¼
u�dij. c± are increments of concentrations for the anion
and cation. Therefore, c± can be related to the current con-
centrations �c� by �c� ¼ c�0 þ c�, where c�0 are the reference
concentrations. The convection-diffusion equations of the
ions can thus be written as

oc�

ot
þ c�v i
� �

;i �
u�ij c�

RT�
l�;j

 !
;i

¼ 0 ð8Þ

where v is the convective velocity of the ions, R is the uni-
versal gas constant and T* is the absolute temperature. The
first term in Eq. (8) represents the change rate of the con-
centrations with respect to the time. The second term
stands for the convection effect that describes the macro-
scopic motion of the ions. The third term is the diffusion
of the ions. The electric potential produced by ion is very
small comparing with one by the applied electric field
and therefore is ignored.

For the motion of ions in fluid, the primary mechanism
is due to the ionic diffusion. By ignoring the convection ef-
fect in Eq. (8), which means the macroscopic motion of the
ions is not been considered, we have

oc�

ot
�

u�ij c�

RT�
l�;j

 !
;i

¼ 0 ð9Þ

where l± is chemical potential. In classical physical chem-
istry, the chemical potential and concentration of the ions
have the following relations:

l� ¼ l�0 þ RT� ln �c� ð10Þ

where l�0 is a reference potential of anion and cation in the
standard state.

Substituting Eq. (10) into Eq. (9) leads to

oc�

ot
� u�ij c�;j
� �

;i
¼ 0 ð11Þ

It is noted that Eqs. (8) and (11) agree with ones given by
Moyne and Murad (2002) for the motion of ions. For an iso-
tropic medium, we have

oc�

ot
þ n�i;i ¼ 0 ðin XÞ ð12Þ

The corresponding natural boundary condition is

n�i ni ¼ n�n ðon SÞ ð13Þ

where n�n is the ionic flux on the surface of the domain.
Eq. (12) and natural boundary condition (13) are the

governing equations of ionic diffusion. For the multi-field
coupling case, we must modify Eq. (12) to consider the
coupling effect. For this purpose, taking differentiation
with respect to time t leads to
ol�

ot
¼ RT�

c�0

oc�

ot
ð14Þ

Using Eqs. (12) and (14), we obtain the diffusion equations
of ions in the following form:

ol�

ot
þ RT�

c�0
n�i;i ¼ 0 ð15Þ

Relations between displacements ui and strains eij for elas-
tic field, electric potential / and electric fields Ei for elec-
trostatics, temperature change T and heat flux hi for heat
conduction, ionic flux n�i and concentration change c± for
chemical field are as follows:

eij ¼
1
2
ðui;j þ uj;iÞ ð16Þ

Ei ¼ �/;i ð17Þ
hi ¼ �kijT ;j ð18Þ
n�i ¼ �u�ij c�;j ð19Þ

where kij are heat conduction coefficients. It is noted that
the above mentioned theory is restricted to small
deformation.

3. Free energy and constitutive laws

In this section, the Gibb’s free energy function in Qin
(2001) and Mason (1950) is extended to include chemical
effect and is used to derive the linear constitutive law for
thermo-electro-chemo-mechanical systems. For a system
including thermal, electrical, chemical and mechanical
interaction, the extended Gibb’s free energy per volume
can be written by adding chemical energy in the following
form:

g ¼ U � EiDi � gT þ
X

a¼þ;�
laca ð20Þ

where g is extended Gibb’s free energy density, U denotes
the internal energy density, the second and third terms
stand for the energy contributions of electric and temper-
ature fields, respectively, and the last term is the chemical
energy. The Gibb’s free energy containing the first three
terms in Eq. (20) has discussed elsewhere (Qin, 2001;
Mason, 1950). The last term should be added to the Gibb’s
free energy when the chemical effect is considered (Levine
Ira, 2002). An exact differential of Gibb’s free energy func-
tion (20) with respect to its independent variables (e, E, T
and c) leads to

dg ¼ rijdeij � DmdEm � gdT þ
X

a¼þ;�
ladca ð21Þ

Thus, we obtain

rij ¼
og
oeij

; Di ¼ �
og
oEi

; g ¼ � og
oT
; l� ¼ og

oc�
ð22Þ

When the function g is expanded with respect to T, eij, Em

and c± within the scope of linear interactions, we have

g ¼ 1
2

rijeij � DiEi � gT þ
X

a¼þ;�
laca

 !
ð23Þ
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The following constants can then be defined:

cijkl ¼
o2g

oeijoekl

" #
; jnm ¼ �

o2g
oEnoEm

" #
;

R�ij ¼ �
o2g

oeijoc�

" #
; m� ¼ � o2g

oToc�

" #
;

a ¼ qCv

T0
¼ � o2g

oT2

" #
; emij ¼ �

o2g
oeijoEm

" #
;

w�m ¼ �
o2g

oEmoc�

" #
; kij ¼ �

o2g
oeijoT

" #
;

vm ¼ �
o2g

oToEm

" #
; s� ¼ o2g

oc�oc�

" #
ð24Þ

where cijkl are the elastic coefficients, jnm the dielectric
constants, q the density, Cv the specific heat per unit
mass, emij the piezoelectric coefficients, kij the thermal-
stress coefficients, and vm the pyroelectric coefficients.
The newly introduced constants R�ij ; m�; w�m, and s± are,
respectively, the mechanical-chemical coefficients mea-
sured at a constant temperature and electric field, the
thermo-chemical coefficients measured at constant strain
and electric field, the electrical-chemical coefficients
measured at a constant strain and temperature, and the
chemical potential constant measured at a constant
strain and temperature and electric field for anion and
cation.

When the function g is differentiated according to Eq.
(21), and the above constants are used, we find

rij ¼ Cijkleij � kijT � eijnEn �
X

a¼þ;�
Ra

ijc
a ð25aÞ

g ¼ kijeij þ aT þ vnEn þ
X

a¼þ;�
vaca ð25bÞ

Dm ¼ eklmekl þ vmT þ jmnEn þ
X

a¼þ;�
wa

mca ð25cÞ

l� ¼ �R�klekl � v�T �w�n En þ s�c� ð25dÞ

A set of these equations is the constitutive relation in the
coupled system.

It is noted that the constitutive equations (25a)–(25d)
are extensions of known thermo-electro-mechanical cou-
pling (Qin, 2001; Mason, 1950) to include chemical field.
In classical physical chemistry, the relation between chem-
ical potential and ionic concentrations is expressed by a
logarithm function [see Eq. (10)], but here we assume a lin-
ear relationship between the potential and the concentra-
tion changes, which means that Eqs. (25a)–(25d) apply
for a small change of ionic concentrations only. This
assumption allows us to develop the corresponding
numerical model for FE formulation in a simple way. Actu-
ally, the classical logarithm relation is applied to determine
the present linear coefficients, as shown in the following
section.

Finally, using the material parameters defined in Eqs.
(25a)–(25d) we can rewrite the Gibb’s free energy function
equation (23) as
g ¼ 1
2

Cijklekleij � kijTeij � eijnEneij �
X

a¼þ;�
Ra

ijc
aeij

� 1
2
aT2 � vnEnT �

X
a¼þ;�

vacaT � 1
2
jmnEnEm

�
X

a¼þ;�
wa

mcaEm þ
1
2

X
a¼þ;�

sacaca ð26Þ
This energy function is used as a basis for developing FE
formulations in the following sections.
4. Variational principle

Variational functional plays a central role in the for-
mulation of the fundamental governing equations in fi-
nite element method (FEM). For the boundary value
problem described in Section 2 and the linear constitu-
tive equations (25a)–(25d), the variational functional
used for deriving FE formulation of thermo-electro-che-
mo-mechanical coupling system can be constructed in
the form

P ¼
Z

X

_Bþ F þ J
� �

dX�
Z

X
fi _ui � qb

_/
� �

dX

�
Z

S

�ti _ui þ �qs
_/� T

T0

�hn � s
X

a¼þ;�

�na
nca

 !
dS ð27Þ

where _B ¼ oB
ot ; s ¼ RT�

c�0
. The vanishing variation of functional

(27) leads to

dP ¼
Z

X
d _BdXþ d

Z
X
ðF þ JÞdX�

Z
X

fid _ui � qbd _/
� �

dX

�
Z

S

�tid _ui þ �qsd _/�
�hn

T0
dT � s

X
a¼þ;�

�na
ndca

 !
dS ¼ 0

ð28Þ

where B is the generalized Biot’s free energy (Mason, 1950)
of the coupled four-field system. The function B should sat-
isfy the following conditions:

oB
oeij
¼ rij;

oB
oT
¼ g;

oB
oEi
¼ Di;

oB
oc�
¼ l� ð29Þ

It should be noted that the minus sign in Eq. (22) disap-
pears here. Thus the function B has following differential
form:

d _B ¼ d _g þ 2Dnd _En þ 2 _gdT ð30Þ

The function J in Eq. (27) is the dissipation energy caused
by ionic diffusion and F is the heat dissipation. They are de-
fined by

J ¼ �1
2
s
X

a¼þ;�
na

i ca
;i ð31aÞ

F ¼ � 1
2T0

hiT ;i ð31bÞ
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Substituting Eqs. (30) and (31) into Eq. (28) yields

dP ¼
Z

X
rijd _eij þ _gdT þ Dnd _En þ

X
a¼þ;�

_ladca

 !
dX

� 1
2

d
Z

X

1
T0

hiT ;i þ s
X

a¼þ;�
na

i ca
;i

 !
dX

�
Z

X
fid _ui � qbd _/
� �

dX

�
Z

S

�tid _ui þ �qsd _/�
�hn

T0
dT � s

X
a¼þ;�

�na
ndca

 !
dS ¼ 0

ð32Þ

Integrating by parts, Eq. (32) can be further written as

dP ¼
Z

X
�ðrij;j þ fiÞd _ui þ

hi;i

T0
þ _g

� �
dT þ ðDi;i � qbÞd _/

�
þ
X

a¼þ;�
ðsna

i;i þ _laÞdca

#
dXþ

Z
S

"
rijnj � �ti
� �

d _ui

þ Dini þ �qsð Þd _/þ
�hn

T0
� hini

T0

 !
dT

þ
X

a¼þ;�
s �na

n � na
i ni

� �
dca

#
dS ¼ 0 ð33Þ

Due to the arbitrariness of dui, d/, dT and dc±, the varia-
tional equation (33) leads to following governing equations
and natural boundary conditions:

rij;j þ fi ¼ 0 rijnj ¼ �ti

Di;i ¼ qb Dini ¼ ��qs

hi;i ¼ �T0 _g hini ¼ �hn

n�i;i þ
1
s

_l� ¼ 0 n�i ni ¼ �n�n

Obviously, they are the Euler equations of functional (27)
and represent the governing equations (1), (3), (5) and
(15) of the mechanical, thermal, electrical and chemical
fields, respectively, as well as the corresponding natural
boundary conditions, respectively.

It is interesting to note that the governing equations of
the chemical field have the same forms as those of heat
conduction problem. In other words, there is an analogous
relation between ionic diffusion and heat conduction.
Table 1 lists the analogous relations between chemical
problems and heat conduction problems.
Table 1
Analogies of ionic diffusion and heat conduction.

Heat conduction Ionic diffusion

Temperature T Concentration c
Heat flux hi = �jijT,j Mass flux ni ¼ �uijc;j
Entropy change rate _g Chemical potential change rate _l
Energy form gT Energy form lc
Governing equation

hi;i þ 1
T0

_g ¼ 0
Governing equation
ni;i þ c0

RT�
_l ¼ 0

Boundary condition hini ¼ �hn Boundary condition nini ¼ �nn
5. Chemo-mechanical formulation

For some media, the electric and thermal effects are
weak with respect to chemical and mechanical effects
and they can be ignored. Thus the governing equations of
chemo-mechanical couplings can be expressed as

u�c�;ii �
1
s

_l� ¼ 0 rij;j þ fi ¼ 0 ð34Þ

where the inertial effect is neglected. The natural boundary
conditions are

u�c�;i ni ¼ ��n�n rijnj � �ti ¼ 0 ð35Þ

As in previous sections, the chemical governing equations
modified by coupling coefficient are used. The generalized
variational principle for the chemo-mechanical coupling is
then given by

d
Z

X

_g þ Jð ÞdX�
Z

X
fid _ui dX�

Z
St

�tid _ui dS

�
X

a¼þ;�

Z
Sn

s�na
ndca dS ¼ 0 ð36Þ

where g is Gibb’s free energy for chemo-mechanical cou-
pling problem, J is chemical dissipation energy with the
forms

dg ¼ rijdeij þ ldc ð37aÞ

J ¼ �1
2
s
X

a¼þ;�
na

i ca
;i ¼

1
2
s
X

a¼þ;�
uaca

;ic
a
;i ð37bÞ

Substituting Eqs. (37a) and (37b) into Eq. (36), we have

dP ¼
Z

X
rijd _eij þ _ldc þ s

X
a¼þ;�

uaca
;i c

a
;i

 !
dX�

Z
X

fid _ui dX

�
Z

s

�tid _ui dSþ
X

a¼þ;�

Z
s
s�na

ndca dS ¼ 0

¼
Z

X
Cijkleijd _ekl �

X
a¼þ;�

Ra
ijc

ad _ekl �
X

a¼þ;�
Ra

kl
_ekldca

 

þ
X

a¼þ;�
sa _cadca þ s

X
a¼þ;�

uaca
;ic

a
;i

!
dX�

Z
X

fid _ui dX

�
Z

s

�tid _ui dSþ
X

a¼þ;�

Z
s
s�na

ndca dS ¼ 0 ð38Þ

After some algebra, the equation becomes

dP ¼
Z

X
ðrij þ fiÞd _ui dXþ

Z
S

rijnj � �ti
� �

d _þui dS

þ
X

a¼þ;�

Z
X
�suaca

;ii þ _l
� �

dca dX

þ
X

a¼þ;�

Z
S
s uaca

;ini þ na
n

� �
dca dS ¼ 0 ð39Þ

Eq. (39) is equivalent to Eqs. (34) and (35).
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Eq. (38) can be written in compact matrix form for the
purpose of FE formulation:

dP ¼
Z

X
d _uBT CBu� d _uBT RNc � dcNT RB

ou
ot
þ dcNT sN

oc
ot

�
þ sdcBT

c uBcc
�

dX�
Z

X
d _uNT f dX�

Z
s

d _uNT�tdS

þ s
Z

s
dcNT�ndS ¼ 0 ð40aÞ

dP¼ d _u
Z

X
BT CBu�BT RNc
� �

dX�
Z

X
NT f dX�

Z
s

NT�tdS
� �

þ dc
Z

X
�NT RB _uþNT sN _cþsBT

c uBccþs
Z

s
NT �ndS

� �
ð40bÞ

This leads to following FE equations:

0 0
KT

cm Mc

� 	
_u
_c


 �
þ

Kmm Kmc

0 Kcc

� 	
u

c


 �
¼

Fm

Fc


 �
ð41Þ

in which the coefficient matrices have following forms:

Mc ¼
Z

X
NT sNdX ð42Þ

Kmm ¼
Z

Xe
BT CBdX;Kmc ¼ KT

cm ¼ �
Z

Xe
BT ReN dX;

Kcc ¼
Z

X
sBT

c uBc dX ð43Þ

The equivalent nodal force vectors are

Fe
m ¼

Z
Xe

NT f dXþ
Z

Se
t

NT�te dS

Fe
c ¼ �

Z
S
sNT

ne
n dS ð44Þ

For material parameters of chemo-mechanical media,
the mechanical stiffness matrix can be easily obtained
through Young’s modulus and Poisson’s ratio, and the dif-
fusion coefficient can also be measured by a physicochem-
ical method (Levine Ira, 2002). Here, the new parameters to
be determined are the proportional coefficients and the
coupling coefficient of the chemical and mechanical fields,
which can be estimated by a theoretical method.

Let us first consider the linearly proportional coeffi-
cients of chemical potential and concentration. In this
study the linear relation l± = s±c± is assumed to be satisfied.
Based on the theory of physical chemistry, the dimensions
of c± and l± are, respectively, mol m�3 and J m�3, thus s±

should have the dimension of J mol�1.
We use the same notation to rewrite Eq. (10) as

l� ¼ RT�

V�
ln �c� ¼ RT�

V�
ln c�0 þ c�
� �

ð45Þ

Then the differentiation of Eq. (45) is given by

dl� ¼ s�dc� ¼ RT�

V�
dc�

c�0 þ c�
ð46Þ

Considering an infinitesimal change in concentration, we
have

s� ¼ RT�

V�
lim
c�!0

1
c�0 þ c�

¼ RT�

V�c�0
ð47Þ
If the temperature change is very small, i.e. T* = T0 + T � T0,
Eq. (47) can be rewritten as

s� ¼ RT0

V�c�0
ð48Þ

Since the dimensions of the parameters R, T0 and V� are,
respectively, J mol�1 K�1, K, and m3 mol�1, the dimension
of s± should be J mol�1, which is consistent with the dimen-
sion in the present linear relation. The value of s± depends
on the properties of the material.

Concerning the coupled coefficient of chemical and
mechanical effects, we can use the analogous relation of
chemical and heat conduction to predict its value. Consid-
ering an isotropic material and supposing that concentra-
tion changes induce only swelling and contraction, and
no shear deformation of the medium is produced, the con-
stitutive laws for chemo-mechanical coupling can be writ-
ten as

rij ¼ Cijkleij �
X

a¼þ;�
Ra

ijc
a

¼ mE
ð1þ mÞð1� 2mÞ ekkdij þ

E
1þ m

eij �
X

a¼þ;�
Ra

0dijca ð49aÞ

l� ¼ R�kl

V�
ekl þ s�c� ¼ R�0

V�
dklekl þ s�c� ð49bÞ

In order to estimate the coupled coefficients R�0 , setting i = j
in the above equations and denoting eii = e11 + e22 + e33 as
the volume strain, the volume stress is given by

rii ¼
E

1� 2m
eii � 3Rþ0 cþ � 3R�0 c� ð50Þ

It is assumed that the swelling and contraction of the
material induced by concentration change starts from the
free stress state, e.g. rii = 0. Thus we can obtain the volume
expansion coefficient

Kþ ¼ eii

cþ

� �
r¼0
¼ 3ð1� 2mÞ

E
Rþ0 ð51aÞ

K� ¼ eij

c�

� �
r¼0
¼ 3ð1� 2mÞ

E
R�0 ð51bÞ

Then the coupled coefficients are

R�0 ¼
E

3ð1� 2mÞK
� ð52Þ

Note that the dimension of E is N m�2 and dimension of K±

is m3 mol�1, the dimension of R�0 is, thus, N m mol�1.

6. Numerical examples

Since the main purpose of this paper is to outline the
basic principles of the proposed multi-field approach
including a chemical effect, the assessment is limited to
the swelling of a rectangular plate subjected to chemical
load and a rectangular strip subjected to a chemical stim-
ulus on its longer side. The two examples illustrate the
coupling between chemical and mechanical fields. The
material parameters and values used in present calcula-
tions are listed in Table 2.



Table 2
Material parameters used in numerical examples.

Young’s modulus
E (Pa)

Poisson’s ratio m Diffusion
coefficient /+ (m2/s)

Diffusion coefficient
/� (m2/s)

Coefficients of the chemical
potential s+, s� (N m mol�1)

Chemo-mechanical coupling

coefficient Rþ0 ; R�0 ðN m mol�1Þ

3.5 � 105 0.45 4.8 � 10�10 7.8 � 10�10 1.0 � 103 1.75 � 104

Ionic concentration 

o x 

y

Fig. 1. Mechanical boundary conditions and the input concentrations of a
square plate.
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Example 1 (A square plate subjected to chemical load). Con-
sider the swelling of a square plate of sides 0.01 m
subjected to chemical load. The body force is assumed to
vanish. The displacements vanish on the lower boundary
and the other sides are traction free. The ionic concentra-
tion is applied on the upper boundary, which varies from
0.001 mol/l to 0.01 mol/l, and the concentration is zero on
the lateral sides as shown in Fig. 1. As a result, the
concentrations of the ions vary linearly in x direction and
display symmetry with respect to the y-direction. The
same distributions for the anions and cations are assumed
here.
Fig. 2. Schematic plot of the swelling of a square plate under chemi
The deformation of the plate obtained from the pro-
posed formulation is shown in Fig. 2. It is apparent that a
volume swelling of the plate occurs under the chemical
stimuli, while the degree of swelling varies from point to
point. The symmetry of the deformation in x -direction
can be found because of the symmetric model and load.
Due to the linear distribution of ionic concentration, the
maximum swelling occurs on the upper boundary and no
swelling occurs on the lower boundary. It is shown that
chemical swelling of the medium is very similar to heat
expansion where volume expansion produces under ther-
mal load. The variations of maximum displacements ver-
sus the ionic concentrations are shown in Fig. 3. It is
noted that the maximum displacements uxmax and uymax

both increase linearly with an increase of the ionic concen-
tration. The magnitudes of uxmax and uymax are very differ-
ent due to the difference of ionic distribution in the two
directions.

Example 2 (A rectangular strip subjected to a chemical
stimulus on its longer side).
For a rectangle strip of sides 0.01 m � 0.004 m, the dis-
placement is fixed in the y-direction at the lower side. To
avoid rigid body motion, the displacement of the middle
point of the lower side is constrained in x -direction. A
chemical stimulus is applied to the strip on one of its
longer sides. This boundary value problem highlights the
fact that the swelling deformation of the medium can be
affected by the boundary condition and chemical load.

The ionic diffusion results in a linear distribution of ions
in the strip. The calculated deformation of the strip is
shown in Fig. 4. In contrast with Example 1, a bending
deformation of the strip appears due to the non-symmetric
swelling which leads to different expansions on the two
opposite sides of the strip. It is concluded that the defor-
cal stimulation: undeformed (left) and deformed state (right).
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Fig. 3. Variations of maximum displacement via ionic concentrations.

Fig. 4. Schematic plot of bending deformation of a strip under chemical
load: undeformed state (left) and deformed state (right).
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mation model of the whole sample can be controlled by
applying proper constraints on the boundaries. A similar
phenomenon for a gel fiber has been demonstrated in
Wallmersperger et al. (2004). This example illustrates the
capability of the present theory to modeling of the defor-
mation of coupling medium under chemical stimulus.
7. Conclusions

A finite element formulation is derived based on the
governing equations of coupled thermal, electrical, chemi-
cal and mechanical fields proposed in this paper. Using the
proposed four-field equations, a variational principle for
deriving the FE formulation can be easily constructed.
The coupling between the chemical field and the other
fields is enforced through out-of-diagonal coefficients.
Thus the resulting FE procedure is fully coupled in terms
of the four fields. Two numerical examples are considered
to illustrate the application of the FEM and to verify the
proposed theory.

A linearly constitutive relation is obtained using the
concept of extended Gibb’s free energy. The materials
parameters for the chemo-mechanical coupling problem
are discussed from the point of the view of theoretical esti-
mations and their dimensions. It is shown that material
parameters in the present linear model are related with
the physical constants in classical physical chemistry.

It should be pointed out that modification of the basic
equation governing the chemical field is necessary for the
treatment of coupled behavior. The present investigation
modifies the ionic diffusion equations, allowing the chem-
ical field to be coupled with the other fields.
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