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SUMMARY

To circumvent the constraint in application of the conventional differential quadrature (DQ) method that
the solution domain has to be a regular region, an interpolation-based local differential quadrature (LDQ)
method is proposed in this paper. Instead of using regular nodes placed on mesh lines in the DQ method
(DQM), irregularly distributed nodes are employed in the LDQ method. That is, any spatial derivative at a
nodal point is approximated by a linear weighted sum of the functional values of irregularly distributed
nodes in the local physical domain. The feature of the new approach lies in the fact that the weighting
coefficients are determined by the quadrature rule over the irregularly distributed local supporting nodes
with the aid of nodal interpolation techniques developed in the paper. Because of this distinctive feature, the
LDQ method can be consistently applied to linear and nonlinear problems and is really a mesh-free method
without the limitation in the solution domain of the conventional DQM. The effectiveness and efficiency
of the method are validated by two simple numerical examples by solving boundary-value problems of a
linear and a nonlinear partial differential equation. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The differential quadrature (DQ) method was introduced by Bellman and his co-workers in the early
1970s [1], following the concept of integral quadrature. It has been shown by many researchers
that the DQ method (DQM) is an attractive numerical tool with high efficiency and accuracy.
A comprehensive review of the work related to the method can be found in the paper of Bert and
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Malik [2]. Since then, the DQM has been recognized as a numerically accurate and computationally
efficient numerical technique, and has been used successfully to deal with a large number of
problems of physical and engineering science [3–6]. The basic idea of the DQM is that any
derivative at a mesh point can be approximated by a weighted linear sum of all the functional values
along a mesh line. The key procedure in the DQM is the determination of weighting coefficients.
As shown by Shu and Richards [7], when the solution of a partial differential equation (PDE) is
approximated by a high-order polynomial, the weighting coefficients can be computed by a simple
algebraic formulation or by a recurrence relationship. However, as pointed out by Bert and Malik
[2], the DQM is limited to applications for domains having boundaries that are aligned with the
co-ordinate axes, such as rectangular and circular domains. For problems with complex geometry,
the DQM cannot be directly applied. One has to rely on the co-ordinate transformation [8–10],
the quadrature element method [11, 12], or the DQM based on the boundary integral equations
[13]. Liew et al. proposed a moving least-squares DQM to solve plate problems where scattered
nodes can be used [14, 15]. Although with these techniques very good results can be obtained for
problems with complex geometry, one has to admit that the process is somewhat complex, and the
approach is not as flexible as the finite element method.

There is a practical demand to develop a more efficient and flexible method for solving complex
problems like the local differential quadrature (LDQ) method. In the LDQ method, a spatial
derivative at a nodal point is approximated by the linear weighted sum of the functional values of
nodes in the local physical domain only. The LDQ method was first proposed by Sun and Zhu
for solving problems of incompressible viscous flow using regularly distributed nodal points [16].
Using the LDQ method, Zong and Lam solved the two-dimensional wave equation [17]. Recently,
in a series of papers, Shu et al. successfully developed a radial basis function (RBF)-based DQM,
which can be considered as a mesh-free method, using scattered nodes [18–21]. It is obvious that
the application of the RBF-based DQM has no limitation in dimensions and complex geometries.
However, the optimum shape parameter in the RBF must be selected numerically and incorporated
with the special nodal distributions. The condition number of the system matrix would become
large if the number of nodes increased in the case of the global RBF-DQ method [20]. In addition
to the use of scattered nodes inside the solution domain, however, some regularly distributed nodes
must be employed near the boundary in the case of the local RBF-DQ method [19, 21].

In the present work, an interpolation-based LDQ method is developed. The partial derivative
of a function with respect to space variables at a reference point is approximated by a weighted
linear summation of the functional values at a set of irregularly distributed local supporting nodes.
The weighting coefficients are determined with the aid of the techniques of nodal interpolation.
Two simple numerical examples are presented to validate the effectiveness and efficiency of the
method by solving boundary-value problems of a linear and a nonlinear PDE.

2. THE LOCAL DQ METHOD

Since in the DQM, the derivatives of a function at a node point are approximated by a weighted
linear sum of the functional values along a mesh line parallel to the co-ordinates, irregularly
distributed nodes must be organized in some way before deriving the quadrature rule of the LDQ
method. However, the basic idea of the organization is very simple, see below. As shown in
Figure 1(a), a local co-ordinate system I − xy can be established about the reference node I in
the local area of the domain, surrounded by several supporting nodes. These nodes are chosen, in
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AN INTERPOLATION-BASED LDQ METHOD 575

Figure 1. Schematics of deriving the quadrature rule in a local supporting area: (a) linear interpolation;
and (b) quadratic interpolation.

general, to have the smallest distances from the node I. There are 8 of these nodes in Figure 1, for
example, and they have been locally arranged and numbered in a counterclockwise manner. The
purpose of the organization of the local supporting nodes is for ease of computer programming.

Now take the derivation of the quadrature rule in x direction as an example, by performing a
‘nodal loop’ (the name coming from computer programming). If the local y co-ordinates of the two
adjacent nodes change the sign, then these two nodes can be organized as an ‘element’ (the linear
element 5–6), which intersects with the x-axis at a point (the fictitious point a in Figure 1(a)).
Then by continuing the nodal loop, if the local y co-ordinates of next two adjacent nodes change
the sign again, then another linear element 8–1 and a cross point, the fictitious point b, can be
obtained.

The local quadrature rule can be written, for the kth derivatives in x direction about the reference
node I, as

�ku I

�xk
= A(k)

I a ua + A(k)
I I u I + A(k)

I b ub (1)

where ui denotes the function values at node i , A(k)
I i the weighting coefficients of the quadrature

rule (see Appendix A at the end of this paper or refer to [2, 7, 9, 16] for the details of A(k)
I i ). It needs

to be pointed out that in the global DQM, any derivative at a mesh point can be approximated
by a weighted linear sum of all the functional values along a mesh line. But in the local DQM,
the derivative at a mesh point is approximated only by a weighted linear sum of the functional
values on local nodes. The difference lies in the nodal number used in the quadrature rules between
the two. However, the form of formulations for computing the weighting coefficients is exactly
the same in both the global and local DQMs since it can be proved easily that the weighting
coefficients are in reality the derivatives of the coefficients of Lagrange interpolation along that
straight line.
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As the function values at the fictitious points a and b are not the nodal values, they should be
computed by Lagrange interpolation. Therefore, the local quadrature rule becomes

�ku I

�xk
= A(k)

I a (�a
1u5 + �a

2u6) + A(k)
I I u I + A(k)

I b (�b
1u8 + �b

2u1) (2)

where �a
j and �b

j ( j = 1, 2) denote the shape functions of the corresponding linear elements,
respectively. The local quadrature rule in y direction can be derived (Figure 1(a)) in the same way,
for the kth derivatives about the reference node I, as

�ku I

�yk
= B(k)

I c (�c
1u7 + �c

2u8) + B(k)
I I u I + B(k)

I d (�d
1u3 + �d

2u4) (3)

where B(k)
I i also represents the weighting coefficients. Equations (2) and (3) construct the LDQ

rules with the aid of linear interpolation. Similarly, if three nodes are organized consecutively as
a quadratic ‘element’ in performing the ‘nodal loop’ as shown in Figure 1(b), the LDQ rules with
the aid of quadratic interpolation can be constructed as follows:

�ku I

�xk
= A(k)

I a (�c
1u4 + �c

2u5 + �c
3u6) + A(k)

I I u I + A(k)
I b (�d

1u8 + �d
2u1 + �d

3u2) (4)

�ku I

�yk
= B(k)

I c (�a
1u6 + �a

2u7 + �a
3u8) + B(k)

I I u I + B(k)
I d (�b

1u2 + �b
2u3 + �b

3u4) (5)

where �a
j , �b

j , �c
j and �d

j ( j = 1, 2, 3) denote the shape functions of the corresponding quadratic
elements, respectively. The local quadrature rule for the boundary nodes can be derived in much
the same way as shown in Figure 2, the local co-ordinate system B − nt is established along the
normal and the tangential direction of the boundary �, respectively, about the reference point B.
After selecting local nodes and organizing them as quadratic elements, the local quadrature rule
for the outward normal can be written as

�uB

�n
= N (1)

Be ue + N (1)
BBuB + N (1)

Bh uh

= N (1)
Be (�e

1u1 + �e
2u2 + �e

3u3) + N (1)
BBuB + N (1)

Bh (�h
1u4 + �h

2u5 + �h
3u6) (6)

where N (1)
Bi denotes the weighting coefficients of the quadrature rule along the outward normal

direction at the reference node B. This paper is confined to the case where the governing equation
is of second-order derivatives, so that only first-order derivatives are considered in the expression
of the local quadrature rule for the boundary nodes.

It is obvious that the construction of the local quadrature rule in the present work relies on
the suitable arrangement and organization of the local supporting nodes, which can be performed
automatically in the computer program (let the computer do it!). The local quadrature rule was
tested and found to be very robust, because there is no drawback of obtaining an ill-posed set of
local nodes, as possibly encountered in the generalized finite difference method using scattered
nodes [22]. Using whole derivative formulas, Liu and Li [23] constructed a mesh-free method,
which is in fact equivalent to the LDQ rules, with the aid of linear interpolation, Equations (2)
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Figure 2. Schematics of deriving the quadrature rule on the boundary.

and (3). However, the derivation of the present method is much more concise and versatile, and
it can easily be extended not only to cases of the quadrature rule with quadratic interpolation
(Equations (4)–(5)), but also to the derivation of higher-order quadrature formulas. For example,
the local nodes 1–8 in Figure 1(b) form a loop (the first loop), which can be considered the first
layer. Obviously, one can form the second layer (the second loop) by another set of local nodes
with slightly greater distances from the reference node, to construct a higher-order local quadrature
formula. But in the present work, only the low-order local quadrature formula is considered.

3. NUMERICAL EXAMPLES

Two simple numerical examples of boundary-value problems are presented to demonstrate the
validity and the potential of the LDQ method developed in this paper. The problem area is an
elliptical domain, �, with a quarter elliptical cut as shown in Figure 3, with the long axis 1 and the
short axis 0.6, discretized by irregularly distributed nodes. As reported earlier [2], the DQM can
yield highly accurate results with quite a small number of sampling points. However, to describe
the irregular geometry correctly, the total node numbers cannot be so small as those used for
describing regular geometry such as rectangular. Four total node numbers, n = 55, 72, 106 and
186, were used in the present work.

3.1. Convection–diffusion equation

A convection–diffusion equation with varying parameters was numerically tested using the
developed LDQ method. The controlling differential equation and the boundary conditions are
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Figure 3. Discretization of the problem domain (total node number n = 72).

as follows:
∇2u + yu,x +xu,y = (1 − y) exp(−x) + (1 − x) exp(−y) (7)

u(x̄) = ū (x̄ ∈ �u),
�u(x̄)

�n
= q̄ (x̄ ∈ �q) (8)

where �u and �q represent Dirichlet and Neumann boundaries, and ū and q̄ are prescribed values
at the corresponding boundaries, respectively. The problem has an analytical solution:

u = exp(−x) + exp(−y) (9)

By substituting the quadrature formulas (4) and (5) with quadratic interpolation, for example, into
Equation (7), the controlling equation in discrete form about the reference node I (Figure 1(b))
can be written as

(A(2)
I a + yI A

(1)
I a )(�c

1u4 + �c
2u5 + �c

3u6) + (A(2)
I I + yI A

(1)
I I )uI

+ (A(2)
I b + yI A

(1)
I b )(�d

1u8 + �d
2u1 + �d

3u2)

+ (B(2)
I c + xI B

(1)
I c )(�a

1u6 + �a
2u7 + �a

3u8) + (B(2)
I I + xI B

(1)
I I )uI

+ (B(2)
I d + xI B

(1)
I d )(�b

1u2 + �b
2u3 + �b

3u4)

= (1 − yI ) exp(−xI ) + (1 − xI ) exp(−yI ) (10)

Similarly, the Neumann boundary condition about the node B (Figure 2) in discrete form can be
written as

q̄B = N (1)
Be (�e

1u1 + �e
2u2 + �e

3u3) + N (1)
BBuB + N (1)

Bh (�h
1u4 + �h

2u5 + �h
3u6) (11)
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Figure 4. Comparison of nodal function values along the Neumann boundary.

Figure 5. Comparison of nodal errors along the Neumann boundary.

By collecting globally all the discrete equations for the domain and boundary nodes with Neumann
condition, incorporated with the Dirichlet boundary condition, the system equations in matrix form
can be obtained:

Ax=b (12)

The problem was solved by the quadrature rules with the aid of both linear and quadratic inter-
polations. The numerical solutions using different total node numbers with linear interpolation are
compared with the exact solution in Figure 4 along the Neumann boundary. The relative errors of
the two interpolations using the total node number n = 186 are shown in Figure 5. The maximum
and the root mean square errors for all the internal and Neumann boundary nodes are summarized
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Table I. Comparison of relative errors between linear and quadratic interpolation for
the convection–diffusion equation.

Maximum errors Root mean square errors

Total nodal number 55 72 106 186 55 72 106 186

Linear interpolation 0.0609 0.0296 0.0273 0.0257 0.0411 0.0199 0.0188 0.0177
Quadratic interpolation 0.0134 0.0096 0.0072 0.0072 0.0091 0.0055 0.0042 0.0008

in Table I. The numerical results of the convection–diffusion equation show that the proposed
method is robust, accurate and efficient. The accuracy with quadratic interpolation is consistently
better than that with linear interpolation, which shows almost no change with the increase in total
node numbers. It can be seen that the LDQ method retains mesh-free features and has the potential
to become an efficient approach for solving PDEs.

3.2. A nonlinear partial differential equation

The second example considered is a nonlinear differential equation with the Dirichlet boundary
condition as follows:

L(u) = 4u�u − 10u,x u,y +5= 0, u(x̄) = ū (x̄ ∈ �u) (13)

with an exact solution u = cos(x + 0.5y). The domain in consideration is the same as the previous
problem as shown in Figure 3. With the proposed LDQ method, this nonlinear problem can be
solved by applying the quadrature rules (2) and (3) or (4) and (5) without much difficulty. However,
the numerical solution of (13) should follow some iterative procedure. For this purpose, we
adopt Newton’s approach wherein, beginning with an assumed field u(0) consistent with the
boundary condition, the successively refined solutions can be obtained through the following
iterative scheme:

u( j+1) = u( j) + �( j) (14)

where � = �(x, y) is the refinement of u and j is the iteration count. The refinement � is determined
by the solution of the following equation written in the operator form as

�L ′(u) + L(u) = 0 (15)

where L ′ represents the Frechet derivative defined as [2]

�L ′(u) = �
��

L(u + ��)|�=0 (16)

Substituting the Frechet derivative (16) and (13) into (15), a linear equation in terms of the
refinement � is obtained

4u�� − 10u,y �,x −10u,x �,y +4�u� =− (4u�u − 10u,x u,y +5) (17)
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By applying the quadrature rules (4) and (5), for example, into (17) at the reference nodal point I
(Figure 1(b)), the discrete equation yields as follows:

(4uA(2)
I a − 10u,y A

(1)
I a )(�c

1�4 + �c
2�5 + �c

3�6) + (4uA(2)
I I − 10u,y A

(1)
I I )�I

+ (4uA(2)
I b − 10u,y A

(1)
I b )(�d

1�8 + �d
2�1 + �d

3�2)

+ (4uB(2)
I c − 10u,x B

(1)
I c )(�a

1�6 + �a
2�7 + �a

3�8) + (4uB(2)
I I − 10u,x B

(1)
I I )�I

+ (4uB(2)
I d −10u,x B

(1)
I d )(�b

1�2+�b
2�3 + �b

3�4)+4�u�I =− (4u�u − 10u,x u,y +5) (18)

where the following boundary condition for the �-variables has been included in (19):

�(x, y) = 0, (x, y ∈ �u) (19)

In the iteration scheme of Newton’s method, the following convergence criterion was employed:∑
(�k)

2 � 10−10 (20)

The relative errors of the linear and the quadratic interpolations using the total node number
n = 186 along the skew line, l (y/x = tan 30, Figure 3), for the nonlinear equation are shown in

Figure 6. Comparison of errors along the skew line, l, for the nonlinear equation.

Table II. Comparison of relative errors between linear and quadratic interpolation
for the nonlinear partial differential equation.

Maximum errors Root mean square errors

Total nodal number 55 72 106 186 55 72 106 186

Linear interpolation 0.1074 0.0051 0.0043 0.0040 0.0796 0.0031 0.0026 0.0025
Quadratic interpolation 0.0066 0.0023 0.0018 0.0017 0.0023 0.0013 0.0006 0.0007
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Figure 6. The maximum and the root mean square errors for all the internal nodes are compared in
Table II. The numerical results of the nonlinear differential equation show again that the accuracy
with quadratic interpolation is consistently better than that with linear interpolation. With its really
mesh-free features, the LDQmethod can be consistently applied successfully to linear and nonlinear
problems without the limitation in solution domain of the conventional DQM.

4. CONCLUSION

The local differential quadrature (LDQ) method was successfully developed using irregularly
distributed nodes, where any spatial derivative at a nodal point is approximated by a linear weighted
sum of the functional values of nodes in the local physical domain, which retains mesh-free features.
Numerical results show that the accuracy with quadratic interpolation is consistently better than
that with linear interpolation. It is validated that the proposed method is robust, accurate and
efficient and has the potential to become an efficient approach for solving partial differential
equations (PDEs). The LDQmethod can be consistently applied successfully to linear and nonlinear
problems and is in fact a mesh-free method without the limitation in the solution domain of the
conventional DQM.

APPENDIX A

Suppose xi (i = 1, . . . , n) are distinct points along a straight line in parallel with one of the
co-ordinates. We first write the coefficients of Lagrange interpolation within an interval which
only includes three adjacent local points xi−1, xi and xi+1:

A(0)
i−1(x) = (x − xi )(x − xi+1)

(xi−1 − xi )(xi−1 − xi+1)
(A1)

A(0)
i (x) = (x − xi−1)(x − xi+1)

(xi − xi−1)(xi − xi+1)
(A2)

A(0)
i+1(x) = (x − xi−1)(x − xi )

(xi+1 − xi−1)(xi+1 − xi )
(A3)

The differentiation of A(0)
k (x) with respect to x yields

A(1)
i−1(x) = 2x − xi − xi+1

(xi−1 − xi )(xi−1 − xi+1)
(A4)

A(1)
i (x) = 2x − xi−1 − xi+1

(xi − xi−1)(xi − xi+1)
(A5)

A(1)
i+1(x) = 2x − xi−1 − xi

(xi+1 − xi−1)(xi+1 − xi )
(A6)
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Then the weighting coefficients of the local quadrature rule corresponding to the first derivative
can be obtained

A(1)
i−1,i−1 = A(1)

i−1(xi−1) = 2xi−1 − xi − xi+1

(xi−1 − xi )(xi−1 − xi+1)
(A7)

A(1)
i,i−1 = A(1)

i−1(xi ) = xi − xi+1

(xi−1 − xi )(xi−1 − xi+1)
(A8)

A(1)
i+1,i−1 = A(1)

i−1(xi+1) = xi+1 − xi
(xi−1 − xi )(xi−1 − xi+1)

(A9)

A(1)
i−1,i = A(1)

i (xi−1) = xi−1 − xi+1

(xi − xi−1)(xi − xi+1)
(A10)

A(1)
i,i = A(1)

i (xi ) = 2xi − xi−1 − xi+1

(xi − xi−1)(xi − xi+1)
(A11)

A(1)
i+1,i = A(1)

i (xi−1) = xi+1 − xi−1

(xi − xi−1)(xi − xi+1)
(A12)

A(1)
i−1,i+1 = A(1)

i+1(xi−1) = xi−1 − xi
(xi+1 − xi−1)(xi+1 − xi )

(A13)

A(1)
i,i+1 = A(1)

i+1(xi ) = xi − xi−1

(xi+1 − xi−1)(xi+1 − xi )
(A14)

A(1)
i+1,i+1 = A(1)

i+1(xi+1) = 2xi+1 − xi − xi−1

(xi+1 − xi−1)(xi+1 − xi )
(A15)

The weighting coefficients of the local quadrature rule corresponding to the second derivative can
be obtained in the same way. As only three local points are involved in the quadrature rule, the
coefficients are all constants:

A(2)
i−1(x) = 2

(xi−1 − xi )(xi−1 − xi+1)
(A16)

A(2)
i (x) = 2

(xi − xi−1)(xi − xi+1)
(A17)

A(2)
i+1(x) = 2

(xi+1 − xi−1)(xi+1 − xi )
(A18)

Moreover, it is easy to prove that

i+1∑
j=i−1

A(k)
j (x)=

{
1 (k = 0)

0 (k � 1)
(A19)
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