
Logic for Verification 3
Nisansala Yatapanage
ANU Logic Summer School

Today’s lecture

We’ll look at the following:
- LTL (linear temporal logic)
- CTL (computation tree logic)
- CTL*
- Transition systems
- Bisimulation

What is temporal logic?

Types of temporal logic include:
 Linear Temporal Logic (LTL)
 Computation Tree Logic (CTL)
 CTL*
 Lots of others too.

CTL*

CTL LTL

What are States?
Consider this program:
P1: int x = 4;
P2: int y = 3;
P3: if (x > 2){
P4: x = x + 2;

}
P5: y = y – 1;
P6: System.out.println(y);

x = 4; y = 3 State after P2
(before P3)

x = 4; y = 3
P3

x = 6; y = 3

x = 6; y = 2

x = 6; y = 2

State after P4

State after P5

State after P6

P4

P5

P6
Note: These states are not really
identical – the program counter
values are different (not shown
here).

What are States?
Consider this program:
P1: int x = 4
P2: boolean y = getInput();
P3: if (y){
P4: x = x + 2;

}
P5: y = false;
P6: System.out.println(x);

x = 4; y = true

x = 4; y = true

P3

x = 6; y = true

x = 6; y = false

x = 6; y = false

P4

P5

P6

x = 4; y = false

x = 4; y = false

P3

x = 4; y = false

x = 4; y = false

P5

P6

This time there are two
possible traces:

State Transition Diagram
Consider this program:
P1: int x = 4
P2: boolean y = getInput();
P3: if (y){
P4: x = x + 2;

}
P5: y = false;

x = 4; y = true; pc1=2

x = 4; y = true; pc1=3

x = 6; y = true; pc1=4

x = 6; y = false; pc1=5

x = 4; y = false; pc1=2

x = 4; pc1=1

x = 4; y = false; pc1=3

x = 4; y = false; pc1=5

State Transition Diagram
Consider this program:
P1: int x = 4
P2: boolean y = getInput();
P3: if (y){
P4: System.out.println(x);

}
P5: y = false;

x = 4; y = true; pc1=2

x = 4; y = true; pc1=3

x = 4; y = true; pc1=4

x = 4; y = false; pc1=2

x = 4; pc1=1

x = 4; y = false; pc1=3

x = 4; y = false; pc1=5

States

x = 0
y = 0

x = 1
y = 0

x = 2
y = 0

x = 2
y = 1

x = 3
y = 1

s0 s1 s2 s3 s4 s5 and so on...

and so on...

For non-temporal logics, we are thinking of the value just at one point,
but for temporal logics, we need to think of the value across different
points in time.

States

Simple Formulas
Does the property x = 0 hold at state s0?

x = 0
y = 0

x = 1
y = 0

x = 2
y = 0

x = 2
y = 1

x = 3
y = 1

s0 s1 s2 s3 s4 s5 and so on...

and so on...

Does the property x = 0 hold at state s2?

Does the property (x = 2 AND y = 0) hold at state s2?

Yes

Yes

No

Simple Formulas
Does the property (x = 0) hold on the execution trace starting at s0?

x = 0
y = 0

x = 1
y = 0

x = 2
y = 0

x = 2
y = 1

x = 3
y = 1

s0 s1 s2 s3 s4 s5 and so on...

and so on...

This means the property must hold at s0.
The rest of the states don’t matter because there was no G operator
(explained soon!)

Yes

Simple Formulas
Does the property (x = 2) hold on the execution trace starting at s0?

x = 0
y = 0

x = 1
y = 0

x = 2
y = 0

x = 2
y = 1

x = 3
y = 1

s0 s1 s2 s3 s4 s5 and so on...

and so on...

Does the property (x = 0 AND y = 0) hold on the execution trace
starting at s0?
Does the property (x = 2 AND y = 0) hold on the execution trace
starting at s0?

Yes

No

No

A Simple Case Study
Case study: A microwave oven.

door = closed
light = off
oven = idle

Does (door = closed) hold on this transition system?

door = closed
light = on
oven = cooking

door = closed
light = on
oven = idle

Does (light = off) hold on this transition system?

Does (light = on) hold on this transition system?

Yes

No
Yes

s0 s1 s2

Assume that it
means
starting at the
first state, s0.

Safety Properties
A labelled transition system is a tuple (S, I, A,→), where S
is a set of states, I is the set of initial states, A is a set of actions and
→⊆ S x A x S is the transition relation.

A Kripke Structure, is a tuple T = (S, AP, L, I, →), where S is a set of states,
AP is a set of atomic propositions, L is a labelling function which labels
each state with the set of atomic propositions that hold in that state, I is a set
of initial states and →⊆ S x S is the transition relation.

A doubly-labelled transition system labels both states and actions.

Safety Properties
A labelled transition system is a tuple (S, I, A,→), where S
is a set of states, I is the set of initial states, A is a set of actions and
→⊆ S x A x S is the transition relation.

A Kripke Structure, is a tuple T = (S, AP, L, I, →), where S is a set of states,
AP is a set of atomic propositions, L is a labelling function which labels
each state with the set of atomic propositions that hold in that state, I is a set
of initial states and →⊆ S x S is the transition relation.

A doubly-labelled transition system labels both states and actions.

CTL* Properties

A CTL* state formula ψ is defined as follows, where p ∈ AP is an
atomic proposition, ψ1 and ψ2 are state formulas and φ is a path
formula:

ψ = true | p | ψ1 ∧ ψ2 | ! ψ1 | Eφ

A CTL* path formula is defined as follows, where φ1 and φ2 are
path formulas and ψ is a state formula:

φ = ψ | φ1 ∧ φ2 | ! φ1 | Xφ1 | φ1 U φ2

CTL* Formulas

Let T = (S, AP, L, I, →) be a transition system. A CTL* state formula ψ holds in
a state s ∈ S, denoted T, s ⊨ ψ, or simply s ⊨ ψ, according to the following,
where ψ1 and ψ2 are CTL* state formulas and φ is a CTL* path formula:

s ⊨ true,
s ⊨ a ∈ AP iff a ∈ L (s),
s ⊨ ! ψ1 iff s ⊭ ψ1,
s ⊨ ψ1 ∧ ψ2 iff s ⊨ ψ1 and s ⊨ ψ2,
s ⊨ Eφ iff there exists a path π = < s0, s1, s2, ... >, such that s0 = s and π ⊨ φ.

CTL* Formulas

A CTL* path formula φ holds for a path π = < s0, s1, s2, ... >, denoted π⊨φ,
according to the following,
where φ1 and φ2 are CTL* path formulas and ψ1 is a CTL* state formula:

π ⊨ ψ1 iff s0 ⊨ ψ1,
π ⊨ φ1 ∧ φ2 iff π ⊨ φ1 and π ⊨ φ2,
π ⊨ ! φ1 iff π ⊭ φ1,
π ⊨ Xφ1 iff π[s1…] ⊨ φ1,
π ⊨ φ1 U φ2 iff ∃j > 0 such that π[sj…] ⊨ φ2 and ∀i, where 0 ≤ i < j, π[si…] ⊨ φ1.

CTL* Formulas

All LTL formulas implicitly hold over all paths.

All CTL path operators have to be preceded by an A or E.

Some formulas can be expressed in LTL but not CTL and vice versa.

FGp (liveness) is a valid LTL formula but cannot be expressed in CTL.

E(Xp ∧ XXq) can be expressed in CTL* but not in CTL.

CTL Formulas

p p

p

p

EFp AFp

p

CTL Formulas

p p

p

p

EGp AGp

p

p

p

p

p

p p

p

Global Operator

Does the property G(x = 0) hold on this execution trace?

x = 0
y = 0

x = 1
y = 0

x = 2
y = 0

x = 2
y = 1

x = 3
y = 1

s0 s1 s2 s3 s4 s5 and so on...

and so on with no further changes
to y.

No

Does the property G(y < 2) hold on this execution trace? Yes

 If the question doesn’t mention other states, assume it means s0.

G means Globally – holds on all states.

A Simple Case Study

door = closed
light = off
oven = idle

Does G(door = closed) hold on this transition system?

door = closed
light = on
oven = cooking

door = closed
light = on
oven = idle

Does G(light = off) hold on this transition system?

Does G(light = on) hold on this transition system?

Yes

No

s0 s1 s2

Compare that to the answers if there is a G operator:

No

A Simple Case Study

door = closed
light = off
oven = idle

Does G((door = closed) AND (light = off)) hold on this transition system?

door = closed
light = on
oven = cooking

door = closed
light = on
oven = timeout

Counterexample: s0, s1.

No

s0 s1 s2

This is because at s1 the property is violated.
G means look at all the states.

It is also violated at
s2 but the
counterexample
stops at the first
violation.

Case Study

door = closed
light = off
oven = idle

door = closed
light = on
oven =
cooking

door = closed
light = off
oven = timeout

door = open
light = on
oven = open

Each of those traces corresponds to a possible path in the
transition system.
Here is a more complex transition system for the oven:

s0 s1
s2

s3

Execution Traces
What are the possible execution traces?

door = closed
light = off
oven = idle

s0 s1 s2 s0 s1
and so on...

Some are: s0, s1, s2, s0,
s0, s1, s3, s0,

door = closed
light = on
oven = cooking

door = closed
light = off
oven = timeout

door = closed
light = off
oven = idle

Global Operator

G(door = closed) holds on the execution trace below, but does it hold
for all the possible traces?

door = closed
light = off
oven = idle

s0 s1 s2 s0 s1

door = closed
light = on
oven = cooking

door = closed
light = off
oven = timeout

door = closed
light = off
oven = idle

Global Operator
When we ask: does G(door = closed) hold, we are talking about all the
possible execution traces.

door = closed
light = off
oven = idle

s0 s1 s2 s0 s1

door = closed
light = on
oven = cooking

door = closed
light = off
oven = timeout

door = closed
light = off
oven = idle

See whether you can find a trace where it doesn’t hold – if no such
trace exists, the property holds. Otherwise, it is false and that trace is
a counterexample.

Global Operator
G(door = closed) holds on the execution trace below, but does it hold
for all the possible traces?

door = closed
light = off
oven = idle

s0 s1 s3 s0 s1

door = closed
light = on
oven = cooking

door = open
light = on
oven = open

door = closed
light = off
oven = idle

What about this one below?
This is a counterexample. The property is false.

Global Operator

door = closed
light = off
oven = idle

door = closed
light = on
oven =
cooking

door = closed
light = off
oven = timeout

door = open
light = on
oven = open

What about G(door = open OR door = closed)?

s0 s1
s2

s3

Yes
On every trace, on all the steps, either door = open or door = closed.

Future Operator
A new operator: F (Future or eventually).

x = 0
y = 0

x = 1
y = 0

x = 2
y = 0

x = 2
y = 1

x = 3
y = 1

s0 s1 s2 s3 s4 s5 and so on...

and so on...

Does F(x = 3) hold on the trace below? Yes

Starting at s0, we can eventually get to a state where x = 3.

Future Operator

x = 0
y = 0

x = 1
y = 0

x = 2
y = 0

x = 2
y = 1

x = 3
y = 1

s0 s1 s2 s3 s4 s5 and so on...

and so on with no states where x = 2
again.

Does F(x = 2) hold on the trace below? Yes

Starting at s0, we can eventually get to a state where x = 2.

What about G(F(x = 2))?

Future Operator

x = 0
y = 0

x = 1
y = 0

x = 2
y = 0

x = 2
y = 1

x = 3
y = 1

s0 s1 s2 s3 s4 s5 and so on...

and so on with no states where x = 2
again.

What about G(F(x = 2))?
Remember what we do for G(p) – the property p must hold on
every state, not just the first one.
So at every state, check whether you can reach x = 2. No – not from s4.

Future Operator

door = closed
light = off
oven = idle

door = closed
light = on
oven =
cooking

door = closed
light = off
oven = timeout

door = open
light = on
oven = open

Does G(F(oven = idle) hold?

s0 s1
s2

s3

Yes
On every trace, on all the steps, eventually you can get to oven = idle.

Future Operator
G(F(oven = idle):

door = closed
light = off
oven = idle

s0 s1 s2 s0 s1

door = closed
light = on
oven = cooking

door = closed
light = off
oven = timeout

door = closed
light = off
oven = idle

Here is one trace. The state s0 is continuously reached, so from any
state, you can eventually reach oven = idle.

Future Operator

door = closed
light = off
oven = idle

s0 s1 s3 s0 s1

door = closed
light = on
oven = cooking

door = open
light = on
oven = open

door = closed
light = off
oven = idle

G(F(oven = idle):

Here is another trace. The state s0 is continuously reached, so from
any state, you can eventually reach oven = idle.

This is called infinitely often.

Future Operator

door = closed
light = off
oven = idle

door = closed
light = on
oven =
cooking

door = closed
light = off
oven = timeout

door = open
light = on
oven = open

Does G(F(door = open) hold?

s0 s1
s2

s3

There is a counterexample!
No

Future Operator
G(F(door = open):

door = closed
light = off
oven = idle

s0 s1 s2 s0 s1

door = closed
light = on
oven = cooking

door = closed
light = off
oven = timeout

door = closed
light = off
oven = idle

Here is the counterexample.
This trace can go on forever without reaching s3, where the door is
open.

Future Operator

door = closed
light = off
oven = idle

door = closed
light = on
oven =
cooking

door = closed
light = off
oven = timeout

door = open
light = on
oven = open

Counterexamples for F always have an infinite cycle, because
we have to show that something will never happen.

s0 s1
s2

s3

Counterexamples
A counterexample is an execution trace showing how the property is
violated.

Look for the shortest counterexample if possible.

For properties like G(p) where p is an atomic proposition, then the
counterexample is just a trace going up to the state where p does not
hold.

Counterexamples must be full traces – start from the starting state.

Counterexamples

door = closed
light = off
oven = idle

door = closed
light = on
oven =
cooking

door = closed
light = off
oven = timeout

door = open
light = on
oven = open

What is the counterexample for G(door=closed AND light=off)?

s0 s1
s2

s3

Counterexamples
What is the counterexample for G(door = closed AND light = off)?

s0 – door=closed; light=off; oven=idle

s1 – door=closed; light=on; oven=cooking

The property was violated!
Therefore the counterexample is: s0, s1.

Look for the first state where the conditions don’t hold and stop the
trace there.

Counterexamples

door = closed
light = off
oven = idle

door = closed
light = on
oven =
cooking

door = closed
light = off
oven = timeout

door = open
light = on
oven = open

What is the counterexample for
G(door=closed => (light=off OR oven = cooking))?

s0 s1
s2

s3

Proved!

Counterexamples
What is the counterexample for
G(door=closed => (light=off OR oven = cooking))? Proved!

This is proved because on states s0 to s2, the door is closed and
either the light is off or the oven is cooking. On state s3, the
door is not closed, so the antecedent is false. Therefore, it
doesn’t matter that the light is not off and the oven is not
cooking.

Counterexamples

door = closed
light = off
oven = idle

door = closed
light = on
oven =
cooking

door = closed
light = off
oven = timeout

door = open
light = on
oven = open

What is the counterexample for G(F(oven = timeout))?

s0 s1
s2

s3

Counterexamples

s0 – door=closed; light=off; oven=idle

s1 – door=closed; light=on; oven=cooking

s3 – door=open; light=on; oven=open

Counterexample:
s0, s1, s3, s0, … cycle with
s1, s3, s0.

Counterexamples for F always need a cycle to show that it never
reaches a state where the condition holds.

What is the counterexample for G(F(oven = timeout))?

s0 – door=closed; light=off; oven=idle

… continue as a cycle.

Implies with Globally
What about if it was G(x = 2 => y = 0)?

x = 0
y = 0

x = 1
y = 0

x = 2
y = 0

x = 2
y = 1

x = 3
y = 1

s0 s1 s2 s3 s4 s5 and so on...

and so on...

Does the property hold on the path below?

At s0, s1 and s2 it holds, but not at s3.

No

Implies with Globally

x = 0
y = 0

x = 1
y = 0

x = 2
y = 0

x = 2
y = 1

x = 3
y = 1

s0 s1 s2 s3 s4 s5 and so on...

and so on with no further changes
to x or y.

At s0, s1 and s2 it holds, but not at s3.
Counterexample: s0, s1, s2, s3.

Why does it hold at s0 and s1 when x is not 2? Remember how implies
works.

G(x = 2 => y = 0)

Implies with Future

x = 0
y = 0

x = 1
y = 0

x = 2
y = 0

x = 2
y = 1

x = 3
y = 1

s0 s1 s2 s3 s4 s5 and so on...

and so on with no further changes
to x or y.

G(x = 2 => F (y = 1)) Proved

From every state where x = 2 holds, we can eventually reach a state
where y = 1 holds (sometimes it is the same state).

Implies with Future

x = 0
y = 0

x = 1
y = 0

x = 2
y = 0

x = 2
y = 1

x = 3
y = 1

s0 s1 s2 s3 s4 s5 and so on...

and so on with no further changes
to x or y.

G(x = 0 => F (y = 0)) Proved

Implies with Future

x = 0
y = 0

x = 1
y = 0

x = 0
y = 1

x = 2
y = 1

x = 3
y = 1

s0 s1 s2 s3 s4 s5 and so on...

and so on with no further changes
to x or y.

G(x = 0 => F (y = 0)) False

No way to get from this state where x = 0 to
one where y = 0.

Implies with Future

door = closed
light = off
oven = idle

door = closed
light = on
oven =
cooking

door = closed
light = off
oven = timeout

door = open
light = on
oven = open

Does G(oven = idle => F(door = closed)) hold?

s0 s1
s2

s3

The only state where oven = idle is s0. From here, it is always possible to
eventually reach a state where door = closed.

Yes

Implies with Future

door = closed
light = off
oven = idle

door = closed
light = on
oven =
cooking

door = closed
light = off
oven = timeout

door = open
light = on
oven = open

Does G(door = closed => F(oven = open)) hold?

s0 s1
s2

s3

Counterexample: s0, s1, s2, then an infinite cycle with s0, s1, s2.

No

Implies with Future

door = closed
light = off
oven = idle

door = closed
light = on
oven =
cooking

door = closed
light = off
oven = timeout

door = open
light = on
oven = open

Does G(door = closed => F(oven = timeout)) hold?

s0

s1 s2

s3

Even on paths that go through s3, s2 is always still reached.
Yes

Implies with Future

door = closed
light = off
oven = idle

door = closed
light = on
oven =
cooking

door = closed
light = off
oven = timeout

door = open
light = on
oven = open

Does G(light = on => F(oven = cooking)) hold?

s0

s1 s2

s3

At s1, oven is already cooking, but from s3, we could keep missing
oven = cooking. Counterexample: s0, s3, cycle s2, s0, s3.

No

Next Operator
Another new operator: X (NeXt).

x = 0
y = 0

x = 1
y = 0

x = 2
y = 0

x = 2
y = 1

x = 3
y = 1

s0 s1 s2 s3 s4 s5 and so on...

and so on...

Does X(x = 1) hold on the trace below? Yes

Starting at s0, in the next state, x = 1.

If the formula has just an
X by itself like this one,
then you only look at the
2nd state (s1 in the
example).

Implies with Next
What about if it was G(x = 2 => X(y = 1))?

x = 0
y = 0

x = 1
y = 0

x = 2
y = 0

x = 2
y = 1

x = 3
y = 1

s0 s1 s2 s3 s4 s5 and so on...

and so on with no changes to x or y.

Does the property hold on the trace below?

Find the states where x = 2 holds and then look at the next states after them.

Yes

Implies with Next
Now try G(y = 0 => X(y = 1))?

x = 0
y = 0

x = 1
y = 0

x = 2
y = 0

x = 2
y = 1

x = 3
y = 1

s0 s1 s2 s3 s4 s5 and so on...

and so on with no changes to x or y.

Does the property hold on the trace below?

Find the states where y = 0 holds and then look at the next states after them.

Implies with Next
Now try G(y = 0 => X(y = 1))?

x = 0
y = 0

x = 1
y = 0

x = 2
y = 0

x = 2
y = 1

x = 3
y = 1

s0 s1 s2 s3 s4 s5 and so on...

and so on with no changes to x or y.

Does the property hold on the trace below?

Counterexample: s0. At this state, y = 0 but on the next state, s1, y is not 1.

No

Implies with Next

door = closed
light = off
oven = idle

door = closed
light = on
oven =
cooking

door = closed
light = off
oven = timeout

door = open
light = on
oven = open

Does G(oven = idle => X(door = closed)) hold?

s0 s1
s2

s3

The only state where oven = idle is s0. From here, the only next step is s1.
Yes

Implies with Next

door = closed
light = off
oven = idle

door = closed
light = on
oven =
cooking

door = closed
light = off
oven = timeout

door = open
light = on
oven = open

Does G(door = closed => X(light = on)) hold?

s0 s1
s2

s3

Counterexample: s0, s1, s2.

No

At s0, light = on in the next state, but not at
s1 or s2. Alternative longer counterexample: s0, s1, s2, s0.

Implies with Next

door = closed
light = off
oven = idle

door = closed
light = on
oven =
cooking

door = closed
light = off
oven = timeout

door = open
light = on
oven = open

Does G(light = off => X(oven = cooking)) hold?

s0 s1
s2

s3

Counterexample: s0, s1, s2, s0.

No

No cycle is needed for X.

Until Operator
U (Until) p U q – p holds until q holds.

x = 0
y = 0

x = 1
y = 0

x = 2
y = 0

x = 2
y = 1

x = 3
y = 1

s0 s1 s2 s3 s4 s5 and so on...

and so on with no further
changes to x and y.

Does (y = 0) U (x = 2) hold on the trace below? Yes

y = 0 holds on all states until it reaches a state where x = 2 holds (s2).

Until Operator

x = 0
y = 0

x = 1
y = 0

x = 2
y = 0

x = 2
y = 1

x = 3
y = 1

s0 s1 s2 s3 s4 s5 and so on...

and so on with no further
changes to x and y.

Does (y = 0) U (x = 4) hold on the trace below?

Remember that if the second clause (x = 4) doesn’t ever hold, then the
property is false.

No

Until Operator

x = 0
y = 0

x = 1
y = 0

x = 2
y = 0

x = 2
y = 1

x = 2
y = 1

s0 s1 s2 s3 s4 s5 and so on...

and so on with no
further changes to x
and y.

Does G((y = 0) U (x = 2)) hold on the trace below?

From any state, y should stay 0 until x is 2.

x = 3
y = 1

x = 2
y = 1

Is this true at s4?

No

How about s5?

Until Operator

x = 0
y = 0

x = 1
y = 0

x = 2
y = 0

x = 2
y = 1

x = 2
y = 1

s0 s1 s2 s3 s4 s5 and so on...

and so on with no
further changes to x
and y.

Does G(x = 1 => ((y = 0) U (x = 2))) hold on the trace below?

We’re only interested in looking at s1. From here, y stays 0
until x is 2.

x = 3
y = 1

x = 2
y = 1

Yes

Until

door = closed
light = off
oven = idle

door = closed
light = on
oven =
cooking

door = closed
light = off
oven = timeout

Does G(light = off U oven = cooking) hold?

s0 s1
s2

The light stays off until s1, where the oven is cooking.

Yes

Until

door = closed
light = off
oven = idle

door = closed
light = on
oven =
cooking

door = closed
light = off
oven = timeout

door = open
light = on
oven = open

Does G(light = off U oven = cooking) hold?

s0

s1 s2

s3

Counterexample: s0, s3, s1.

No

Implies with Until

door = closed
light = off
oven = idle

door = closed
light = on
oven =
cooking

door = closed
light = off
oven = timeout

door = open
light = on
oven = open

Does G(oven = open => (light = on U oven = timeout)) hold?

s0

s1 s2

s3

Yes

LTL Operators Overview
G(p) – p must hold on every state.

G(p => q) – on every state, if p holds then q holds.

p p p p p

¬p p¬p ¬p
¬q qq ¬q

¬p
¬q

Remember that it
doesn’t matter
whether q holds or
not on the states
where p doesn’t hold.

LTL Operators Overview
F(p) – p must eventually hold. There must be a state in the future
where p holds.

¬p p¬p ¬p
G(p => F(q)) – on every state, if p holds then eventually q holds.

¬p p ¬p
¬q q¬q

¬p
¬q

p doesn’t have to hold
in the same state as q
but it can.¬p

¬q

LTL Operators Overview

X(p) – p must hold on the next state.

p

G(p => X(q)) – on every state, if p holds then in the next state q holds.

¬p p ¬p
¬q q ¬q

¬p
q

p
¬q

If there’s no G then it just means the next
state after the starting state.

LTL Operators Overview

p U q – p must hold until q holds.

p

G(p U q) – from every state, p must hold until q holds.

p ¬p
¬q q

¬p
q¬q

pp
q

p ¬p

q

Remember that from
every state, q must
hold eventually.

Behavior Trees
R1. There is a single
control button available for
the user of the oven. If the
oven is idle with the door
closed and you push the
button, the oven will start
cooking (this is, energize
the power-tube for one
minute).

R2. If the button is pushed
while the oven is cooking it
will cause the oven to cook
for an extra minute.

R1. There is a single
control button available for
the user of the oven. If the
oven is idle with the door
closed and you push the
button, the oven will start
cooking (this is, energize
the power-tube for one
minute).

R2. If the button is pushed
while the oven is cooking it
will cause the oven to cook
for an extra minute.

Requirement Behavior Trees

Integrated Behavior Tree

Informal
Requirements

Integration

Behavior Tree Syntax

C
[s]

C
??? s ???

C
? s ?

C
> e <

C
< e >

C
<< e >>

C
>> e <<

(a) State-realisation (b) Selection (c) Guard

(d) Internal Input Event (e) Internal Output Event

(f) External Input Event (g) External Output Event

State-realisation Selection Guard

Internal Output EventInternal Input Event

External Input Event External Output Event

Behavior Tree Syntax

Door
??? Closed ???

Light
[Off]

R1

R1

Oven
[Ready]R1

When the door is open,
the light goes off.

Behavior Trees

Behavior Trees is a language for writing about the requirements of
a system.

Door
??? Closed ???

Light
[Off]

R1

R1

Oven
[Idle]R1

Microwave Oven requirement 1:

When the door is closed, the light should go
off and the oven goes into an idle state.

Behavior Trees

Oven
[Idle]

Button
??? Pushed ???

R1

R1

Light
[On]R1

Microwave Oven requirement 2:

When the oven is idle, when the button is
pushed, the light should go on and the oven
should begin cooking.

Oven
[Cooking]R1

Behavior Trees

Oven
[Cooking]

Button
??? Pushed ???

R1

R1

Oven
[Increase time]R1

Oven
??? Timeout ???

Oven ^
[Cooking]R1

Light
[Off]R1

Oven
[Idle]R1

Door
??? Open ???

Oven
[Idle]

R1

R1

Making the System

Requirements Design Implementatio
n (Software)

public void
closeDoor(){

door.closeDoor();

light.turnOff();
}

A Safety-Critical System
The motor is off. The plunger is at the
bottom.

Top sensor
low

PONR sensor
high

Bottom
sensor
high

The user has released
the button.

Bottom
sensor
low

A Safety-Critical System

The motor turns on. The plunger
starts rising.

Top sensor
low

PONR sensor
high

The user has released
the button.

Bottom
sensor
low

A Safety-Critical System

The motor turns on. The plunger
starts rising.

Top sensor
low

PONR sensor
low The user has released

the button.

Bottom
sensor
low

A Safety-Critical System

The motor turns on. The plunger
starts rising.

Top sensor
low

PONR sensor
low The user has released

the button.

Top sensor
high

Bottom
sensor
low

A Safety-Critical System

The motor stays on.
The plunger stays at the top.

PONR sensor
low

The user has released
the button.

Top sensor
high

Bottom
sensor
low

A Safety-Critical System

The motor stays on.
The plunger stays at the top.

PONR sensor
low

The user pushes the
button.

Top sensor
low

Bottom
sensor
low

A Safety-Critical System

The motor turns off.
The plunger starts falling.

PONR sensor
low

The user pushes the
button.

Top sensor
low

Bottom
sensor
low

A Safety-Critical System

The motor turns back on.
The plunger rises again.

PONR sensor
low

The user releases the
button.

Safety abort:

Top sensor
high

Bottom
sensor
low

A Safety-Critical System

PONR sensor
low The plunger is falling below the

PONR. The motor is off.

The user releases the
button below the PONR.

Safety abort:

Top sensor
low

Bottom
sensor
low

A Safety-Critical System

DANGER: The motor cannot turn on
below the Point-of-no-return.

PONR sensor
high

The user releases the
button.

Top sensor
low

Bottom
sensor
low

A Safety-Critical System

DANGER: The motor cannot turn on
below the Point-of-no-return.

PONR sensor
high

The user releases the
button.

Top sensor
low

Bottom
sensor
high

A Safety-Critical System

The plunger reaches the bottom
and immediately starts rising again.

PONR sensor
high

The user releases the
button.

The System

Controller
PONR sensor

Top sensor

Bottom
sensor

Plunger

Button

Motor

Operator

Communicating by Message-Passing

Concurrent processes can communicate by shared-variable
or message passing.

The plunger falls below the PONR.
The PONR sensor detects this and changes to the high state
(modelled by the plunger sending a message out to the PONR
sensor).
The PONR sensor sends a message to the controller.

Example Trace

Example trace:
Plunger = falling
Plunger = atBottom
BottomSensor = high
Controller reads BottomSensor
Controller sends out TurnOn message to the motor
Motor = on
Plunger = risingBelowPONR
BottomSensor = low
Plunger = risingAbovePONR
PONRSensor = low

Model checking

Th1: Uncommanded closing: Plunger should not start
falling without the operator pressing the button.

Th2: Motor on below PONR: The motor should not turn
on when the plunger is falling below the PONR.

Th3: Loss of abort: If the plunger is falling above the
PONR and the operator releases the button, the motor
should turn on.

Th4: Plunger falling before reaching the top: The motor
should not turn off unless the plunger is at the top.

th1: THEOREM behavior |- G((plunger=plunger_at_top AND
operator=operator_released_button) =>
(electric_Motor=electric_Motor_on));

th2: THEOREM behavior |- G((plunger=plunger_falling_fast) =>
(electric_Motor=electric_Motor_off));

th3: THEOREM behavior |- G(F(plunger=plunger_falling_fast)) =>
G((plunger=plunger_falling_slow AND
operator=operator_released_button) =>
U(plunger=plunger_falling_slow, electric_Motor=electric_Motor_on));

th4: THEOREM behavior |-
G(NOT((plunger=plunger_rising_below_PONR OR
plunger=plunger_rising_above_PONR) AND
(electric_Motor=electric_Motor_off)));

Safety property in natural
language Temporal logic

specification

Specification Model checker

Proved

Counterexample

Safety Properties

Th1: Uncommanded closing: The plunger should not start falling
without the operator pressing the button.

Th2: Motor on below PONR: The motor should not turn on when the
plunger is falling below the PONR.

Th3: Loss of abort: If the plunger is falling above the PONR and the
operator releases the button, the motor should turn on.

Th4: Plunger falling before reaching the top: The motor should
not turn off unless the plunger is at the top.

Safety Properties

G((plunger = atTop AND operator = releasedButton) => (electric_Motor
= on));

Th1: Uncommanded closing: The plunger should not start falling
without the operator pressing the button.

Safety Properties

G((plunger = fallingFast) => (electric_Motor = off));

Th2: Motor on below PONR: The motor should not turn on when the
plunger is falling below the PONR.

Safety Properties

G((plunger = fallingSlow AND operator = releasedButton) =>
(plunger = fallingSlow U electric_Motor = on));

Th3: Loss of abort: If the plunger is falling above the PONR and the
operator releases the button, the motor should turn on.

G((plunger = fallingSlow AND operator = releasedButton) =>
F(electric_Motor = on));

Safety Properties

G(NOT((plunger = risingBelowPONR OR plunger =
risingAbovePONR) AND (electric_Motor = off)));

Th4: Plunger falling before reaching the top: The motor should not
turn off unless the plunger is at the top.

Top sensor
low

Bottom
sensor
high

What can go wrong?

Everything looks ok. What can go wrong?

PONR sensor
high

What if the sensors are broken?

What if the Bottom Sensor is stuck high?

Bottom Sensor stuck high
The motor is off. The plunger is at the
bottom.

Top sensor
low

PONR sensor
high

Bottom
sensor
high

The user has released
the button.

Bottom
sensor
high

Bottom Sensor stuck high

The motor turns on. The plunger
starts rising.

Top sensor
low

PONR sensor
high

The user has released
the button.

Bottom
sensor
high

Bottom Sensor stuck high

The motor turns on. The plunger
starts rising.

Top sensor
low

PONR sensor
low The user has released

the button.

Bottom
sensor
high

Bottom Sensor stuck high

The motor turns on. The plunger
starts rising.

Top sensor
low

PONR sensor
low The user has released

the button.

Top sensor
high

Bottom
sensor
high

Bottom Sensor stuck high

The motor stays on.
The plunger stays at the top.

PONR sensor
low

The user has released
the button.

Top sensor
low

Bottom
sensor
high

Bottom Sensor stuck high

The plunger starts falling. The
controller thinks it has reached the
bottom and turns on the motor.

PONR sensor
low

The user pushes the
button.

No hazard, but the plunger won’t
fall.

Top sensor
low

Bottom Sensor stuck high half-way

PONR sensor
high

The controller thinks the plunger
reached the bottom and turns on
the motor.

What if the bottom sensor breaks
after the plunger has fallen below
the PONR?

The user is still pushing
the button.

Bottom
sensor
high

Top sensor
low

Bottom Sensor stuck high half-way

DANGER: The motor cannot turn on
below the Point-of-no-return.PONR sensor

high

Bottom
sensor
high

Bottom Sensor stuck high

Th2: Motor on below PONR: The motor should not turn on when the
plunger is falling below the PONR.

The bottom sensor problem can violate Th2.

This is a serious safety hazard.

Another failure that can cause this is the PONR sensor stuck low.

Safety Properties

G((plunger = fallingFast) => (electric_Motor = off));

Th2: Motor on below PONR: The motor should not turn on when the
plunger is falling below the PONR.

Counterexample: The plunger is falling fast, then the bottom sensor
turns high, the controller reads the bottom sensor as high and turns on
the motor.

PONR Sensor stuck low
The motor is off. The plunger is at the
bottom.

Top sensor
low

Bottom
sensor
high

The user has released
the button.

PONR sensor
low

Bottom
sensor
high

PONR Sensor stuck low

The motor turns on. The plunger
starts rising.

Top sensor
low

The user has released
the button.

PONR sensor
low

Bottom
sensor
high

PONR Sensor stuck low

The motor turns on. The plunger
starts rising.

Top sensor
low

PONR sensor
low The user has released

the button.

Bottom
sensor
high

PONR Sensor stuck low

The motor turns on. The plunger
starts rising.

Top sensor
low

PONR sensor
low The user has released

the button.

Top sensor
high

Bottom
sensor
high

PONR Sensor stuck low

The motor stays on.
The plunger stays at the top.

PONR sensor
low

The user has released
the button.

Top sensor
low

Bottom
sensor
high

PONR Sensor stuck low

The motor turns off. The plunger
starts falling.

PONR sensor
low

The user pushes the
button.

Top sensor
low

PONR Sensor stuck low

The controller thinks the plunger is
still above the PONR and allows the
abort. The motor turns on.

Bottom
sensor
high

PONR sensor
low

The user releases the
button.

Top sensor
low

PONR Sensor stuck low

DANGER: The motor cannot turn on
below the Point-of-no-return.

Bottom
sensor
high

PONR sensor
low

Safety Properties

G((plunger = fallingFast) => (electric_Motor = off));

Th2: Motor on below PONR: The motor should not turn on when the
plunger is falling below the PONR.

Counterexample when the PONR sensor is stuck low: The plunger is
falling fast, then the operator releases the button. The controller reads
the PONR sensor value as low and thinks it is ok to turn on the motor.
The controller turns on the motor.

What else can happen?

From: Grunske, L., Lindsay, P., Yatapanage, N. and Winter, K. (2005). An Automated Failure Mode and Effect Analysis based on High-Level Design
Specification with Behavior Trees. Integrated Formal Methods: 5th International Conference (IFM 2005), Proc., Lecture Notes in Computer Science.
Springer-Verlag. 3771:129-149.

Behavior Tree Syntax

Either…

Automatic Model
Checking

Or …

System Model with Injected
Component Fault Modes

Formalised Temporal
Logic Formulae

th1: THEOREM behavior |- G((plunger=plunger_at_top AND
operator=operator_released_button) =>
(electric_Motor=electric_Motor_on));

th2: THEOREM behavior |- G((plunger=plunger_falling_fast) =>
(electric_Motor=electric_Motor_off));

th3: THEOREM behavior |- G(F(plunger=plunger_falling_fast)) =>
G((plunger=plunger_falling_slow AND
operator=operator_released_button) =>
U(plunger=plunger_falling_slow, electric_Motor=electric_Motor_on));

th4: THEOREM behavior |-
G(NOT((plunger=plunger_rising_below_PONR OR
plunger=plunger_rising_above_PONR) AND
(electric_Motor=electric_Motor_off)));

Component Fault
Modes

Th1: Uncommanded closing: Plunger should not start
falling without the operator pressing the button.

Th2: Motor on below PONR: The motor should not turn
on when the plunger is falling below the PONR.

Th3: Loss of abort: If the plunger is falling above the
PONR and the operator releases the button, the motor
should turn on.

Th4: Plunger falling before reaching the top: The motor
should not turn off unless the plunger is at the top.

Safety and Security
Requirements

System Model

Identified unsafe behaviours

Hazard has
occurred

Proved

Program Slicing
Control

flow

Dependencies
Program Control

Flow Graph

Program
Dependence

Graph
Slice

Criterion

Slicing of BTs
Control

flow

Dependencies

Behavior
Tree CFG-BT

BTDG

LTL-X
Property

Slice

BT-Control Flow Graph
A BT-CFG is similar to a BT except:

Selections, guards and input events have an additional
branch to show the false behaviour.

Sensor
? High ?

Pump
[Off]

Sensor
? High ?

Pump
[Off]

END

False
True

Reversion / reference nodes are replaced by edges.

Control Dependence

Node q is control-dependent on node p iff:

p has at least 2 successors m and n, where
NOT(Alt(m,n)) and NOT(Conc(m,n)),

for all maximal paths from m, q always occurs and

there exists a maximal path from n on which q never
occurs.

Control dependence occurs if p is a guard, selection or
input event.

Program Slicing

Originally developed by Weiser (1981) for debugging
programs.

Automatically removes parts of the program which
are irrelevant to a given criterion.

Start at a slicing criterion and then follow back
dependencies, e.g. control & data dependencies.

Data Dependence
Node q is data/interference-dependent on node p iff:

Data dependence = same thread
Interference dependence = parallel threads

Interference dependence is intransitive, so can lead to
less precise, but still correct slices.

Other Dependencies
Node q is message-dependent on node p iff:

type(p) = internalOutput and behavior(q) = m

type(p) = internalInput and behavior(q) = m.

Node q is synchronisation-dependent on node p iff:
flag(p) = flag(q) = synchronisation and

matching(p,q).

Node q is alternate-dependent on node p iff:
p and q have the same parent node and

p and q are connected by an alternate branching point.

Creating the Slice

Start at nodes which modify variables that are in the
property.

Traverse BTDG backwards, collecting all the nodes
encountered.

Re-form into a Behavior Tree by adding blank place-
holder nodes.

Put reversions and reference nodes back into the slice,
unless the entire sub-tree is not in the slice.

Put for-all and for-some nodes back into the slice,
unless the parameter is no longer used in the sub-tree
below.

Creating the Slice

Bisimulation

Strong Bisimulation – matches every step
– preserves full CTL*

- Too restrictive for some applications,
e.g. slicing, where a model is reduced by eliminating
stuttering

–

CTL*

CTL LTL

Weak Bisimulation

Weak forms of bisimulation
– do not match every step
– are suitable for applications like slicing
– do not preserve the X operator

- e.g. Branching bisimulation with explicit divergence
- preserves CTL*-X

However, the next operator is useful in practice
- e.g. for safety properties such as failure => X(set-alarm)

Branching Bisimulation with Explicit
Divergence

If a state s takes a step 𝛼𝛼 to s’,
- then if 𝛼𝛼 = 𝜏𝜏, bb(s’, t) or

- there exist t’, t’’ such that t is followed by any number of
stuttering steps to t’, which is then followed by the 𝛼𝛼 step
to t’’, where bb(s, t’) and bb(s’, t’’)

- if there exists an infinite stuttering path after s then there
exists an infinite stuttering path after t.

The relation is symmetric.

It is defined so that branching logics can be preserved.
- It preserves CTL*-X.

Eliminating Stuttering

Eliminating Stuttering

In the previous example, all three transition systems are
related by branching bisimulation, but they don’t satisfy the
same properties with X.

- shows that the stuttering before an observable step is
important.

Eliminating Stuttering

Observable Steps

These examples illustrate the notion of observable step.

An observable step is one which either:
- performs an observable (non-stuttering) action,
- passes a critical branching point, or
- performs a relevant stuttering step with respect to a

particular formula.

Branching bisimulation covers only observable actions and
critical branching points (called bb-observable steps).

Next-preserving branching bisimulation additionally considers
relevant stuttering steps.

Relevant Stuttering Steps

The relevant stuttering steps are the ones which must be
preserved, determined according to the xdepth of a formula:

e.g. xdepth(Xp) = 1
xdepth((Xp) U (XXq)) = 2

Relevant Stuttering Steps

If a transition system has more than xdepth(𝜑𝜑) stuttering
steps before a bb-observable step, then the validity of 𝜑𝜑 does
not change along the excess stuttering steps (the stuttering
steps that are more than xdepth(𝜑𝜑) steps away from the bb-
observable step).

Next-preserving Branching Bisimulation

If a 𝜏𝜏 step occurs from s to s’, which is not bb-observable, and
s’ is npbb with depth xd to state t, then t is not required to do
a matching step.

The solid
ellipses
represent next-
preserving
branching
bisimulation.

If a bb-observable step 𝛼𝛼 occurs after s, possibly preceded by
non-bb-observable steps, then this must be matched by t,
also possibly preceded by non-bb-observable steps.
- The non-bb-observable steps which are xd-relevant must be
preserved.

Next-preserving Branching Bisimulation

- if j < xd then k = j
- if j ≥ xd then k ≥ xd

The dotted ellipse
represents branching
bisimulation with explicit
divergence.

Note that the relation is symmetric.

Next-preserving Branching Bisimulation

If j < xd, then all the stuttering steps are xd-relevant, so must
be matched.

Next-preserving Branching Bisimulation
(Paths)

Otherwise, only xd stuttering steps must be matched.

This gives rise to an alternative definition using
xd-equivalent partitions.

Next-preserving Branching Bisimulation
(Paths)

Each xd-equivalent partition of a path has to be matched by
an xd-equivalent partition in the other path.

When xd = 0, the equivalence coincides with branching
bisimulation with explicit divergence. This is the weakest next-
preserving branching bisimulation.

Next-preserving Branching Bisimulation

The parameterised next-preserving branching bisimulation
gives rise to a heirarchy.

When xd = ∞, the equivalence coincides with strong
bisimulation. This is the strongest next-preserving branching
bisimulation.

Next-preserving Branching Bisimulation

Next-preserving Slicing

The next-preserving branching bisimulation definition was
used to create a slicing method that preserves CTL*.

- requires extra stuttering nodes to be kept in the slice.

- Extra nodes are placed before critical nodes and branching
points in the transition system – equivalent to several
constructs in the BT diagram, i.e. alternative branching,
concurrent branching, conditional nodes.

Next-preserving Slicing

Alternative branching – need to look for cases where one
branch leads to an observable node where the other doesn’t.

Concurrent branching – non-determinism arises from the
interleaved execution of nodes in different threads
- Therefore any node in a concurrent branch is a branching

point
- but most cases are not critical since they do not prevent

the other nodes from executing

Next-preserving Slicing

Next-preserving Slicing

Conditional nodes – not really branching in the transition
system, except if it’s external input nodes.

Next-preserving Branching Bisimulation

- Proof of correctness that it preserves CTL* including X.

- Useful for applications where the X operator is required, e.g.
slicing.

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Slide Number 70
	Slide Number 71
	Slide Number 72
	Slide Number 73
	Slide Number 74
	Slide Number 75
	Slide Number 76
	Slide Number 77
	Slide Number 78
	Slide Number 79
	Slide Number 80
	Slide Number 81
	Slide Number 82
	Slide Number 83
	Slide Number 84
	Slide Number 85
	Slide Number 86
	Slide Number 87
	Slide Number 88
	Slide Number 89
	Slide Number 90
	Slide Number 91
	Slide Number 92
	Slide Number 93
	Slide Number 94
	Slide Number 95
	Slide Number 96
	Slide Number 97
	Slide Number 98
	Slide Number 99
	Slide Number 100
	Slide Number 101
	Slide Number 102
	Slide Number 103
	Slide Number 104
	Slide Number 105
	Slide Number 106
	Slide Number 107
	Slide Number 108
	Slide Number 109
	Slide Number 110
	Slide Number 111
	Slide Number 112
	Slide Number 113
	Slide Number 114
	Slide Number 115
	Slide Number 116
	Slide Number 117
	Slide Number 118
	Slide Number 119
	Slide Number 120
	Slide Number 121
	Slide Number 122
	Slide Number 123
	Slide Number 124
	Slide Number 125
	Slide Number 126
	Slide Number 127
	Slide Number 128
	Slide Number 129
	Slide Number 130
	Slide Number 131
	Slide Number 132
	Slide Number 133
	Slide Number 134
	Slide Number 135
	Slide Number 136
	Slide Number 137
	Slide Number 138
	Slide Number 139
	Slide Number 140
	Slide Number 141
	Slide Number 142
	Slide Number 143
	Slide Number 144
	Slide Number 145
	Slide Number 146
	Slide Number 147
	Slide Number 148
	Slide Number 149
	Slide Number 150
	Slide Number 151
	Slide Number 152

