
Logic for Verification 2
Nisansala Yatapanage
ANU Logic Summer School

Concurrency: Separation vs. Interference

 Concurrency can be viewed as a spectrum with full separation
on one end and full interference on the other.

 Understanding which logics are best for which problems is
essential.

More separation More interference

Abstraction and Refinement

 We can work at the level of program code, but that’s not the
best way to understand a program.

 Look at the next slide’s program. How easy is it to understand
compared to the diagram?

Separation – Reynold’s list reversal

Separation – Reynold’s list reversal

Separation - Reynold’s list reversal

Separation - Reynold’s list reversal

Separation - Reynold’s list reversal

Separation - Reynold’s list reversal

Separation - Reynold’s list reversal

Separation - Reynold’s list reversal

Abstraction and Refinement

 Abstraction makes the core concepts clearer.

 Several concrete specifications can be refinements of the
same abstract specification.

 For example, a stack could be implemented in many ways, but
must maintain the same abstract behaviour:

push a value
pop an item from the stack

Abstract level

 On this level, r and s are assumed to be separate.

More concrete level
 Srep (a sub-heap)

Relating concrete and abstract levels

A minimal heap is constructed that contains the pointers in sr and
rr, which are disjoint.

Separation - mergesort

Separation - mergesort

 Again, this was modelled using three levels:
- Abstract level
- Level with Sreps
- Level with the heap and pointers.

Separation - mergesort

 Since mergesort is concurrent, we need to have rely and guar
conditions to specify the interference.

 Only this process changes the sequence starting with p.

Concurrency: Separation vs. Interference
 The interference and separation carried through from the

abstract to the concrete levels.

 It can help to start with a sequential version and then introduce
the concurrency.

 Understanding the core issues are essential for understanding
the different problems, the different approaches and which
work well with each.

Concurrency: Separation vs. Interference

 Viewing separation in terms of abstraction – helps to
understand it.

 Looking at problems at the boundaries reveals the core
issues:

 Non-blocking algorithms that lie on the border of what
rely/guarantee can handle.

 Ben-Ari’s garbage collection algorithm – revealed that
standard rely guarantee cannot be applied without some
additions.

Concurrency: Separation vs. Interference

Free is a set of free
memory, Busy is
memory in use.

Free

BusyLost

Mutator uses memory

Mutator loses memory

Collector
reclaims
memory

Looking at problems at the boundaries reveals the core issues.

Abstract Specification of the Collector

guar-Collector ensures that
free addresses will be
preserved, but more can be
added to the set.

rely-Collector ensures that
any addresses the Mutator
adds to busy are taken from
free.

If it was sequential, post-Collector could be written as: free’ = Addr – busy

However, remember the Mutator could take things out of free.

Concurrency: Separation vs. Interference
The Collector is in the Marking phase. Meanwhile, the Mutator
changes some links…

a

b c

d

a

b c

d

Original state: Collector marks a’s
children.

a

b c

d

Mutator changes link.

Concurrency: Separation vs. Interference

a

b c

d

Mutator changes link.

a

b c

d

Mutator removes link.

a

b c

d

Collector marks b’s
children.

Concurrency: Separation vs. Interference

a

b c

d

Collector marks b’s
children.

a

b c

d

Collector finishes and
goes into Sweep phase.

a

b

Node c is deleted!

Concurrency: Separation vs. Interference

It can’t happen if the Mutator marks in between changes:

a

b c

d

a

b c

d

Original state: Collector marks a’s
children.

a

b c

d

Mutator changes link
(and marks).

Concurrency: Separation vs. Interference

a

b c

d

Mutator changes link
(and marks).

a

b c

d

Mutator removes link.

a

b c

d

Collector marks b’s
children.

Concurrency: Separation vs. Interference

a

b c

d

Collector marks b’s
children.

a

b c

d

Collector finishes but the
marked nodes has increased
so does another run.

a

b c

Sweep phase:
only d is
removed.

Concurrent Collector

Introduce a shared ghost variable tbm.

The Mutator sets tbm atomically when it changes a link.

Rely-collector can now use tbm.

Shared Ghost Variables

Concurrency: Separation vs. Interference

 Result: Standard rely/guarantee conditions are not enough.

 Proposed solutions all break compositionality.

 This study makes it clearer what the core issues are.
- allows us to identify the features that make a program
suitable for a particular logic.

 Similarly to the separation as abstraction work, this showed
how interference carried through the refinement
- possible values was needed even at abstract levels.

Concurrent Garbage Collector
Key observations:

The interference carried through all the way from the
abstract model – shows that it is an inherent property of the
problem. – Note that possible values were needed even on the
abstract version.

Abstraction helps to reason about the core issues without
worrying about program level details.

Compositionality cannot be fully maintained in the presence
of strong inteference.

Concurrency: Links between techniques

 Non-blocking algorithms such as the Treiber stack, Herlihy-
Wing Queue

- these also lie on the border of rely/guarantee.

 Investigating the common properties and how they can be
verified using rely guarantee is important.

 There appears to be a link between rely/guarantee and
linearisability.

- Note that Simpson’s 4-slot algorithm can be verified.

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Abstract Specification of the Collector
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Concurrent Collector
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33

