
Logic for Verification 1b
Nisansala Yatapanage
ANU Logic Summer School

Concurrent Programs

The programs we’ve seen so far are sequential programs.

This means the statements are executed one after the other.

Now we’re going to look at concurrent programs.

A concurrent program consists of a set of sequential processes
all executing together.

Why does this make things more complicated?

Concurrent Programs
Concurrent vs. Parallel

Parallel systems – several processes (threads) each running
on separate processors

- useful to make the computation faster.

Concurrent systems – several processes (threads) with
interleaving statements, often sharing the same resource
- not necessarily running in parallel, e.g. it could be

running on a single processor
- much more interesting behaviour
- difficult to reason about.

Concurrent Programs

Concurrency models use interleaving statements as if they all
execute on a single processor.

We need to verify that the program is correct under all
interleavings. Just running it again wouldn’t necessarily mean
that the same sequence would run.

thread 1 does line 1
thread 2 does line 1
thread 1 does line 2

thread 1 does line 1
thread 1 does line 2
thread 2 does line 1

thread 2 does line 1
thread 1 does line 1
thread 1 does line 2

Concurrent Programs

A process can have multiple threads. In Java, there is a concept
of threads.

Reasoning about concurrent programs depends on the level
of abstraction of the model.

An atomic statement cannot be interrupted by another
process. What is considered atomic depends on the
abstraction level of the model, e.g. is n = n + 1 atomic or not?

Sequential Example

Consider the following sequential program:

int n = 0;

n = 1;
n = 2;

What is the final value of n?

Initialisation

p1
p2

Sequential Example

Consider the following sequential program:

int n = 0;

n = 1;
n = 2;

There is only one possibility:
p1 executes, n = 1
p2 executes, n = 2
Final value of n is 2.

Initialisation

p1
p2

Sequential Example

The state transition diagram for the program:

n = 0 n = 1 n = 2
p1 p2

Note: The states are not showing the program statements
– it just looks like it in this case!

The states are showing the current values of the variables.

The program statements are what happens in between.

Sequential Example
What if there was more than one variable?

int n = 0;
int m = 1;
n = 1;
n = 2;

init1

p1
p2

init2

n = 0
m = 1

n = 1
m = 1

n = 2
m = 1

p1 p2

This is a state
transition diagram
starting at the state
just after init2.

Concurrent Example

Consider the following concurrent program:
int n = 0;

What is the final value of n?

p1 q1n = 1; n = 2;
Process p Process q

Is it 1 or is it 2?

Concurrent Example

It could be p1 first or q1 first. We don’t know!

Trace 1:
p1: n = 1
q1: n = 2

Trace 2:
q1: n = 2
p1: n = 1

Final value for n is 2 Final value for n is 1

There’s no way to know which one it will be.

Sequential Example

Consider the following sequential program:

int n = 0;

n = n + 1;
n = n + 1;

What is the final value of n?

Initialisation

p1
p2

Trace 1:
p1: n = 1
p2: n = 2

This is the only possible trace, so the final value is 2.

Sequential Example

The state transition diagram for the program:

n = 0 n = 1 n = 2
p1 p2

The final answer for n is clear: n = 2.

Concurrent Example
Consider the following concurrent program:

int n = 0;

What is the final value for n?

p1 q1n = n + 1; n = n + 1;
Process p Process q

Is it 2?

Concurrent Example

Let’s assume that each statement happens in one go.

Trace 1:
p1: n = 1
q1: n = 2

Trace 2:
q1: n = 1
p1: n = 2

Final value for n = 2 Final value for n = 2

Great – both traces end up with n = 2.

Can we really assume the statement happens in one go?

Concurrent Example

When n = n + 1 executes, there are three steps:

 reading the value of n into a register (load),
 incrementing it and
 storing the result into n (store).

Address
of n

Temp
Register

Temp
Register

Address
of n

Concurrent Example
Here is the code at the load/store level:

int n = 0;

p1 q1load (read) n into register reg1
increment register
store (write) register value into n

load n into reg2
increment reg2
store reg2 value into n

Process p Process q

Let’s work out the possibilities…

p2
p3

q2
q3

Concurrent Example

Trace 2:
p1: reg1 = 0, reg2 = null, n = 0
q1: reg1 = ?, reg2 = ?, n = ?
p2: reg1 = ?, reg2 = ?, n = ?
p3: reg1 = ?, reg2 = ?, n = ?
q2: reg1 = ?, reg2 = ?, n = ?
q3: reg1 = ?, reg2 = ?, n = ?

Trace 1:
p1: reg1 = 0, reg2 = null, n = 0
p2: reg1 = 1, reg2 = null, n = 0
p3: reg1 = 1, reg2 = null, n = 1
q1: reg1 = 1, reg2 = 1, n = 1
q2: reg1 = 1, reg2 = 2, n = 1
q3: reg1 = 1, reg2 = 2, n = 2

What is the final value?The final value of n is 2.

What other traces are possible?

Concurrent Example

Another example:
int n = 0;

p1 q1int x = 2;
n = x;

int y = n;
n = y + 1;

Process p Process q

x and y are local variables while n is a shared variable.

p2 q2

What possible values could n have when it finishes?

Concurrent Example

Now try this example:
int n = 0;

p1 q1for (int i = 0; i < 5; i++){
n = n + 1;

}

Process p Process q

p2 q2

What possible values could n have when it finishes? Just 10 like
for a sequential program? Is it possible to end up with n = 2?

for (int i = 0; i < 5; i++){
n = n + 1;

}

This problem is taken from Ben-Ari’s concurrency book.

No bread Problem

A and B want the following:
- Only one person buys bread when there is no bread.
- Someone always buys bread when there is no bread.

A and B live together. A comes home and finds no bread and
goes to buy bread. B comes home and finds no bread and goes
to buy some. Both come home and have too much bread.

Problem taken from: Taubenfield G. Synchronisation Algorithms
and Concurrent Programming, Pearson, 2006.

No bread Problem

if (no note){
if (no bread){

leave note;
buy bread;
remove note;

}
}

Process ASolution 1:
if (no note){

if (no bread){
leave note;
buy bread;
remove note;

}
}

Process B

Problem: They might still both buy bread.

No bread Problem

leave note A
if (no note B){

if (no bread){
buy bread;

}
}
remove note A;

Process ASolution 2:
leave note B
if (no note A){

if (no bread){
buy bread;

}
}
remove note B;

Process B

Problem: They might end up with no bread.

No bread Problem

leave note A
if (no note B){

if (no bread){
buy bread;

}
}
remove note A;

Process ASolution 3:
leave note B
while(note A){

skip;
}
if (no bread){

buy bread;
}
remove note B;

Process B

Problem: They might end up with no bread.

No bread Problem
Solution 4: Use 4 notes: A1, A2, B1, B2

If A finds that there is no B1, then A buys bread.
Otherwise, if both A1 and B1 are there, the decision is made
according to A2 and B2.
- If both A2 and B2 are there or neither then B buys bread;
otherwise A buys bread.

No bread Problem
Solution 4:

A: Leaves A1. If B2 is there, leaves A2; otherwise removes A2.
Then A checks for notes over and over as long as B1 is there
and either both A2 and B2 are there or neither.
When either of the conditions fails, A checks if there is bread. If
not, A buys bread and removes A1.

B: Leaves B1. If not A2, leaves B2; otherwise removes B2.
Then B keeps checking for notes as long as A1 is there and either
A2 or B2 but not both.
When either of the conditions fails, B checks if there is bread. If
there is no bread, B buys bread and removes A1.

No bread Problem
Fridge door: Empty

A comes home and leaves A1. Fridge door: A1

A checks for B2. It’s not there so
removes A2.

Fridge door: A1

A checks for B1. It’s not there so A
doesn’t wait.
A goes to buy bread.

Fridge door: A1

Fridge door: A1

Meanwhile B comes home. Fridge door: A1

No bread Problem
B leaves B1. Fridge door: A1, B1
B checks for A2 and doesn’t finds it,
so leaves B2

Fridge door: A1, B1, B2

B keeps checking while there is A1
and either A2 or B2 but not both.

Fridge door: A1, B1, B2

A comes home and removes A1. Fridge door: B1,B2

B checks if there is bread and there
is, so removes B1.

Fridge door: B2

No bread Problem
The next day, B comes home and
leaves B1.

Fridge door: B1, B2

B checks for “not A2”. It’s not there
so leaves B2.

Fridge door: B1, B2

B doesn’t wait because A1 is not
there.

Fridge door: B1, B2

B checks if there is bread and goes
to buy it.

Fridge door: B1, B2

A comes home and leaves A1. Fridge door: A1, B1, B2

No bread Problem

A checks for B2. It’s there so A
leaves A2.

Fridge door: A1, B1, B2, A2

A waits while B1 is there and both
A2 and B2.

Fridge door: A1, B1, B2, A2

B comes home and removes B1 Fridge door: A1, A2, B2

A checks for bread. It’s there so
removes A1.

Fridge door: A2, B2

No bread Problem

leave note A1;
if (B2){

leave note A2;
}else{

remove note A2;
}
while(B1 and ((A2 and B2) or

(not A2 and not B2))
){

skip;
}
if (no bread){

buy bread;
}
remove note A1;

Process ASolution 4: Process B
leave note B1;
if (no A2){

leave note B2;
}else{

remove note B2;
}
while(A1 and ((A2 and not B2) or

(not A2 and B2))){
skip;

}
if (no bread){

buy bread;
}
remove note B1;

Rely/Guarantee

What is interference?

Interference occurs when one process writes to a variable
at the same time as another one, or when one process
reads a variable while another is writing to it.

If A is reading variable x, while B is writing a new value to
it, which value will A see? The old one or the new one?

We don’t know – that’s interference.

Concurrency: Separation vs. Interference

A rely/guarantee spec consists of: pre, post, rely and guar conditions.

Note that post conditions are now binary conditions, unlike Hoare logic.
x’ > x means that the new value of x is greater than the old value.

program steps

environment steps

rely

guar

postpre

Concurrency: Separation vs. Interference

A rely/guarantee spec consists of: pre, post, rely and guar conditions.

Rely – specifies the interference that this progam can tolerate.

Guar – specifies the interference this program inflicts on the
environment.

program steps

environment steps

rely

guar

postpre

Rely/Guarantee
What’s it saying exactly?
Let’s look at the program on the left on the last slide.

The blue ones are steps made
by this program.

The red ones are steps made
by the other program (called
the environment).

The rely states what will happen on the red steps (the environment).
The guar states what will happen on the blue steps (this program).

Rely/Guarantee

Recap: A rely tells us what the other program should do.
A guar tells us what this program guarantees to do.

Can the two programs below run concurrently together?

Program A has:
Rely: x’ < x
Guar: y’ = y

Program B has:
Rely: y’ >= y
Guar: x’ < x

Yes, because A’s guar satisfies B’s rely and B’s guar satisfies A’s
rely.

Rely/Guarantee

What about these two?

Program A has:
Rely: x’ < x
Guar: y’ >= y

Program B has:
Rely: y’ = y
Guar: x’ < x

No, because A is saying that it will either keep y the same or
increase it, but B requires y to stay the same only. Therefore
they can’t work together!

Recap: A rely tells us what the other program should do.
A guar tells us what this program guarantees to do.

Rely/Guarantee - History

Cliff B. Jones invented rely/guarantee in the early 80’s.

Previous approaches include the Owicki-Gries method.

The disadvantage with Owicki-Gries is that if one component
changes, all the proofs have to be re-done.

Rely/guarantee is compositional. The interference is
expressed as a boolean predicate.

There are many variants, e.g. assume-guarantee, deny-
guarantee, variants used with separation logic, etc.

The original version is based on VDM. An algebraic representation
has been developed by Ian Hayes, et al.

Rely/Guarantee - Rules
Now, instead of {P} S {Q}, we have:
{P, R} S {G, Q}
R is the rely. G is the guarantee.

R and G are both binary relations.

P and R are what this program needs from the
environment.
G and Q are what this program promises to do.

The rely and guarantee conditions must be transitive.

Rely/Guarantee - Rules

The parallel rule:

{p, rl} sl {gl, ql}
{p, rr} sr {gl, qr}
r ∨ gr => rl
r ∨ gl => rr
gl ∨ gr => g
p ∧ ql ∧ qr ∧ (r ∨ gl ∨ gr)* => q

{p, r} sl || sr {g, q}

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40

