
Logic for Verification 1a
Nisansala Yatapanage
ANU Logic Summer School



My Background
80’s and 90’s – logic puzzles, BASIC programming. 

BE in Software Engineering, UQ.

2004 – Research in formal methods, UQ and Griffith.

Research in concurrency, Newcastle Uni, U.K.

Lecturer, De Montfort Uni, U.K.

Back home in Australia – ANU.

PhD, Griffith Uni.

https://users.cecs.anu.edu.au/Nisansala.Yatapanage



What is verification?
Verification allows us to ensure that a program is correct 
according to its specification.

It’s different to testing – testing cannot prove the absence of 
errors.

Types of verification include:
- model checking (automatically search the whole state space),
- program reasoning approaches (using theorem proving or 
manual reasoning).



Why do we need verification?

There are many examples of software that has gone wrong.

Some systems require a high degree of assurance, e.g. safety-
critical systems, such as air-traffic control and industrial 
systems.

Other systems have security concerns, e.g. financial systems.

Even small, simple programs can have unexpected behaviour if 
the code and design are not verified properly.



Lecture Plan

Wednesday lectures:  Hoare logic, concurrency, rely/guarantee.

Thursday lectures:  Rely/guarantee, examples – concurrent 
garbage collection, problems with full separation vs. problems 
with interference.

Friday lectures:  Temporal logic (LTL), model checking, 
verifying safety-critical applications including failure analysis.



Hoare Logic
A Hoare triple consists of:
- an assertion (pre condition p),

- an assertion (post condition q) and
- a program statement, S.

{p} S {q}



Hoare Triples
Examples:

{x = 0}   x := x + 1   {x = 1}

{x = 2 ˄ y = 4}   x := y   {x = 4}

{x = 2 ˄ y = 4}   x := y - 1   {x = 3}



Rules

premise

conclusion

If the premise holds, then the conclusion holds.



Assignment
Axiom of Assignment

{P[e\v]}  v := e {P}

Example: To show:  {x = 2}   x := x + 3  {x = 5}

{x + 3 = 5}   x := x + 3  {x = 5}
{x = 2}   x := x + 3  {x = 5}



Sequential Composition
Rule of Composition

{P}  S; T  {Q}

Example: To show:  {x = 2 ˄ y = 4}   y := y + 1; x := y {x = 5 ˄ y = 5}

{x = 2 ˄ y = 4}   y := y + 1  {x = 2 ˄ y = 5}
{x = 2 ˄ y = 5} x := y  {x = 5 ˄ y = 5}

{P} S {R}      {R} T {Q}

{y = 5} x := y  {x = 5 ˄ y = 5} by the assignment axiom.
by the rule of consequence.

by the assignment axiom.



Strengthening pre conditions and weakening post 
conditions

Rule of Consequence:

Example: To show:  {x = 2}   x := x + 3  {x > 0}

{x = 2}   x := x + 3  {x = 5}
{x = 2}   x := x + 3  {x > 0}

P’ ⇒ P      {P} S {Q}      Q ⇒ Q’

{P’} S {Q’} 

by the assignment axiom.
by the rule of consequence.



Strengthening pre conditions and weakening post 
conditions

P’ ⇒ P      {P} S {Q}      Q ⇒ Q’

{P’} S {Q’} 

Example: To show:  {x = 2 ˄ y = 4}   y := y + 1; x := y {x = 5 ˄ y = 5}

{x = 2 ˄ y = 4}   y := y + 1  {x = 2 ˄ y = 5}

{x = 2 ˄ y = 5} x := y  {x = 5 ˄ y = 5}

{y = 5} x := y  {x = 5 ˄ y = 5} by the assignment axiom.

by the rule of consequence.

by the assignment axiom.



While Rule
Rule of Iteration:

 Need to find an invariant – it should hold every time the 
loop runs, i.e. {I ˄ C} S {I}

{I ˄ C} S {I} 

{I} While C { S } {I ˄ ¬C} 

Note: Using the Rule of Consequence, we can show:
{P} While C do S od {Q}  if P => I  and I ˄ ¬C => Q.



While Rule
{x ≥ 0 ˄ x = x0}
y = 0;
while(x > 0) {

y = y + x;
x = x – 1;

}
{x = 0 ˄ y = x0(x0 + 1) / 2}

y = 0; x = 5
y = 5; x = 4
y = 5 + 4; x = 3
y = 5 + 4 + 3; x = 2
y = 5 + 4 + 3 + 2; x = 1
y = 5 + 4 + 3 + 2 + 1; x = 0

What is the invariant?          



While Rule
What is the invariant?          y = 0; x = 5

y = 5; x = 4
y = 5 + 4; x = 3
y = 5 + 4 + 3; x = 2
y = 5 + 4 + 3 + 2; x = 1
y = 5 + 4 + 3 + 2 + 1; x = 0

Invariant:  (y = x0(x0 + 1) / 2  – x(x + 1) / 2)  ˄ x ≥ 0



While Rule
Proof of {I ˄ C} S {I}:

{(y = x0(x0 + 1) / 2  – x(x + 1) / 2)  ˄ x ≥ 0}

{(y = x0(x0 + 1) / 2  – (x – 1)(x – 1 + 1) / 2)  ˄ (x - 1) ≥ 0}  

≡ {(y = x0(x0 + 1) / 2  – x(x – 1) / 2)  ˄ (x - 1) ≥ 0}  
≡  {(y = x0(x0 + 1) / 2  – x(x – 1) / 2)  ˄ x ≥ 1}  

{I ˄ C} y := y + x; x: = x - 1 {I}

x: = x - 1

by the assignment axiom.

{(y = x0(x0 + 1) / 2  – (x – 1)(x – 1 + 1) / 2)  ˄ (x - 1) ≥ 0}  



While Rule

{y = x0(x0 + 1) / 2  – x(x + 1) / 2) ˄ x ≥ 1}  

≡ y = x0(x0 + 1) / 2  – x(x – 1) / 2 – x ˄ x ≥ 1
≡ y = x0(x0 + 1) / 2 – (x(x – 1) + 2x) / 2 ˄ x ≥ 1
≡ y = x0(x0 + 1) / 2 – (x2 – x + 2x)/ 2 ˄ x ≥ 1
≡ y = x0(x0 + 1) / 2 – (x2 – x)/ 2 ˄ x ≥ 1
≡ y = x0(x0 + 1) / 2  – x(x + 1)/ 2 ˄ x ≥ 0

y: = y + x
{(y = x0(x0 + 1) / 2  – x(x + 1) / 2)  ˄ x ≥ 0 }  

Using the assignment axiom:
{y + x = x0(x0 + 1) / 2  – x(x – 1) / 2)  ˄ x ≥ 1}  

x ≥ 1 => x ≥ 0



While Rule

Proof of I ˄ ¬C ⇒ Q:         

(y = x0(x0 + 1) / 2  – x(x + 1) / 2)  ˄ x ≥ 0    ˄ x ≤ 0    

¬C 

≡ (y = x0(x0 + 1) / 2  – x(x + 1) / 2)  ˄ x = 0    

≡ (y = x0(x0 + 1) / 2)      because x = 0



While Rule

{x ≥ 0 ˄ x = x0} y := 0 {(y = x0(x0 + 1) / 2  – x(x + 1) / 2)  ˄ x ≥ 0}

(0 = x0(x0 + 1) / 2  – x(x + 1) / 2)  ˄ x ≥ 0

Using the assignment axiom:

≡ (x0(x0 + 1) / 2  =  x(x + 1) / 2)  ˄ x ≥ 0

≡ x = x0 ˄ x ≥ 0



While Rule

Therefore, by the Rule of Consequence:

{x ≥ 0 ˄ x = x0}
y = 0;
while(x > 0) do

y = y + x;
x = x – 1;

od



Exercise

Prove the following Hoare triple:

{x = m ˄ m ≥ 0 ˄ y = 1 ˄ z ≠ 0} 
while x > 0 do

y := y * z;
x := x – 1

od
{x = 0 ˄ m ≥ 0 ˄ y = zm ˄ z ≠ 0} 

This problem is from:
de Roever, W.-P. Concurrency. Introduction 
to Compositional and Non-compositional 
Methods, Cambridge University Press, 
2001. (Chapter 9 exercises).


	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21

