
Chapter 1

Introduction

The goal of this introduction is to give a quick light presentation of the main ideas
developed in this book. Thus we focus on laying out the structure for a basic nonlinear
control problem which has the remarkably jargony name, the “two block problem”.
This is a nice level of generality for an introduction, because it contains most of the
ideas behind the more general four block problem (which is treated in detail in the
book), the formulas are simpler, and the linear two block problem corresponds to the
paradigm problem of classical control. This paradigm problem is often called the
“mixed sensitivity problem”, and Chapter 9 is devoted to its solution. We turn now to
our overview of the theory which is the subject of this book. We postpone historical
discussion and motivation to

�
1.11. Linear systems are discussed in

���
1.2, 1.3.6.

1.1 The Standard Problem of Nonlinear ��� Control

Now we introduce a special case of the standard problem of ��� control. It entails
a description of the plant and controller models, and definitions of the control objec-
tives. This is motivated in

�
1.8 and actually done carefully in Chapter 9. The standard

control problem corresponds to the Figure 1.1, which we now explain.

� �
�

	




�

� 
� �

Figure 1.1: The Closed-Loop System ����� ���
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1.1.1 The Plant

Let’s consider nonlinear plants � with a two block structure

� �
������ �����
����
	 � � ������ � � � � ���� � � � �
��
� � � � ��������� � � � �
���
� � � � ��� �

(1.1)

Here, � ��� �����! denotes the state of the system, and is not in general directly mea-
surable; instead an output � �"� �#�$�&%

is observed. The additional output quantity �"� �'�(�!) is a performance measure, depending on the particular problem at hand.
The control input is � ��� �*�+�-, , while � ��� �.�/�10 is regarded as an opposing distur-
bance input. Detailed assumptions concerning the functions appearing in (1.1) will
be given in Chapter 2, however we mention here that the origin is an equilibrium and
the two block structure requires2

� � � �43� ����� � � ��56���7� � � �98(:<; (2.5)

(More generally, in the four block case the coefficient of � in the third equation of
(1.1) is a matrix

� �=�
which will satisfy a condition (2.3) given in Chapter 2.)

1.1.2 The Class of Controllers

The plant � was described by an explicit state space model and is assumed given.
However, in the spirit of optimal control theory, we do not prescribe a state space
model for the controller

�
, since it is an unknown to be determined from the control

objectives. Rather, we simply stipulate some basic input-output properties required
of any admissible controller, namely that the controller must be a causal function of
the output � � � �?> �A@B � �C> �
and the resulting closed loop system be well-defined in the sense that trajectories and
signals exist and are unique. The controller

�
will be said to be null-initialized if� � : � � : , regardless of whether or not a state space realization of

�
is given.

1.1.3 Control Objectives

The ��� control problem is commonly thought of as having two objectives: find a
controller

�
such that the closed loop system ��� � ��� is

(i) dissipative, and

(ii) stable.
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In
�
1.2 we define what is meant by these terms in the case of linear systems. We now

describe their meanings for nonlinear systems; this gives an extension of � � control
to nonlinear systems.

�
The closed loop system ����� ��� is � -dissipative if there exist � 8 : and a function� � ��� ���(: � � : � � : , such that���� ���

����
	���  �� � � ��� �� � � ����
	��� � �� � � ���  � � � ��� �
for all � ���9��� 	 and all � �(:<; (1.2)

This definition is saying that the nonlinear input-output map ��� � ��� � � @B  defined
by the closed loop system has finite

� �
gain with a bias term due to the initial state ���

of the plant � .

While dissipation captures the notion of performance of a control system, another
issue with ��� control is stability of the system. The closed loop system will be called
weakly internally stable provided that if � is initialized at any ��� , then if � �C> � �� ��� : ��� � , all signals � �C> � � � �?> � �  �C> � in the loops as well as � �C> � converge to

:
as � B� . By internal stability we mean that the closed loop is weakly internally stable and

in addition if the controller has a state space realization, then the controller state will
converge to an equilibrium as � B � .

Dissipation and stability are closely related; see, e.g. [Wil72], [HM76], [HM77],
[vdS96]. Indeed, dissipative systems which enjoy a detectability or observability
property also enjoy a stability property. In our context, suppose the system ����� ��� is -detectable, that is, � �C> � and  �C> �*� � � � : ��� � imply � �C> � �!� � � : �"� � and � ��� �AB :
as � B � . By  -observable we mean that if � �C> � � :

, �C> � � :
, then � �C> � � :

. If
��� � ��� is � -dissipative and  -detectable, then ��� � ��� is weakly internally stable (see
Theorem 2.1.3).

1.1.4 A Classic Example#
� � �$� %&'( )+* , * -. *

Figure 1.2: Mixed Sensitivity Setup

The book is written for readers with many different interests, so it is worth em-
phasizing for the reader with a classical control bent that the problem/

The term “nonlinear 021 control” has no precise mathematical meaning, but it has come into com-
mon use in the control engineering community and refers to nonlinear generalizations of 0 1 control
(which has precise meaning for linear systems).
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Given plant
�

, find a controller
�

achieving a given ��� performance
specification (see Figure 1.2).

is of the type we just introduced. In linear ��� control the designer selects certain
weights and optimizes a worst case frequency domain performance. This is called the
mixed sensitivity problem of ��� control; see Chapter 9. If the weights are chosen
correctly for a mixed sensitivity problem then one gets the standard two block problem
of ��� control which we just presented. Choice of weights is a serious business in
practice, and some serious investigation of how this should be done for nonlinear
systems is in its infancy. In

�
1.8 and Chapter 9 we describe some basic considerations

in selecting weights.

1.2 The Solution for Linear Systems

The � � problem is well understood when the systems are linear. The plant is linear
provided 	 � � � � 	�� � � � � � � � � � � � � � � � � � � � � ��� � � � � �� � �� � � � � �� � ����� � � � � ����� �
where 	 � � � � � � � �� � �� � ����� �
are matrices of appropriate dimension. We recall here the well-known solution to
the � � control problem for the two block linear systems, see [DGKF89], [PAJ91],
[GL95], etc. (these references also contain the “standard assumptions”).

1.2.1 Problem Formulation

The class of admissible controllers
�

are those with finite dimensional linear state
space realizations

� � �� � �� � 	���� ���� � � ���� � �
� � ��� ��� � �

Given � 8(: , the ��� control problem for � is to find, if possible, a compensator�
such that the resulting closed loop system � � � ��� � � @B  satisfies:

(i) Dissipation: The required dissipation property is expressed in the frequency do-
main in terms of the � � norm of the closed loop transfer function ��� � ��� �� �
as follows: �

� � � ���
��� 1 �
	���������� ,���� � ��� � ��� ����� ��� � � ;

(ii) Stability: We require that the closed loop system

����� ��� is internally stable
;
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Some discussion of the classical transfer function (classical loop shaping) pictures vs
the state space picture of control is found in

�
1.8.

1.2.2 Background on Riccati Equations

Recall a few facts about Riccati equations. An algebraic Riccati equation� 	 � 	 � �������+��� � : (1.3)

with real matrix entries 	 � � � � and
� � � selfadjoint, meeting suitable positivity and

technical conditions (see, e.g., [ZDG96, Chapter 13]), has upper and lower solutions� � � � ) so that any other self adjoint solution
�

lies between them� � � � � � ) ;
The bottom solution is called the stabilizing solution because it has and is character-
ized by the property 	 ����� � (1.4)

is asymptotically stable. Likewise
� ) is antistabilizing in that� � 	 ����� ) � (1.5)

is asymptotically stable.

1.2.3 Standard Assumptions

There are a number of “standard assumptions” that are needed for the necessity and
sufficiency theorems about ��� control. These can be expressed in various ways and
here we follow [PAJ91].

The first condition we have already seen, viz. the rank condition (2.5). The
� ���

rank condition ensures that the cost term �  � � is strictly positive definite in the control� (while the more general 4-block condition (2.3), Chapter 2, relates to the solvability
for � given � � � in the output equation �1� � � � ������� � ).

Next are two important technical conditions which take the form

rank

�	 	 � � ��
 ��
� � �����

� ��� ��� for all � �(: � (1.6)

and

rank

�	 	 � ����
 ��
� � �!�=�

� ��� ��� for all � �(:<; (1.7)

The condition (1.6) can be replaced by a stronger � � state feedback assumption
(Chapter 5), while (1.7) can be replaced by a stronger � � filtering assumption (Chap-
ter 11). These two conditions are commonly used in � � control and filtering, and
concern the controllability and observability of underlying systems.
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1.2.4 Problem Solution

The necessary and sufficient conditions for solvability of the � � problem under the
standard assumptions are:

Condition 1: State feedback Control. There exists
��� � :

solving the control-type
Riccati equation

� 0�� ��� � � � � � 3� � 	 �  �
2
� �� � 5 ��� � � � 5 � � ��� � � 	 �  �

2
� �� � 5 ��� � � �

�	�
� � ��� ��? 5� � ��
2
� ��  5� ���
� � � 5� � 
 � �����

2
� �� � 5 ��� � � � � : (1.8)

which is stabilizing, i.e.,

	 � ��
2
� �� �15��� � � � � � � � ��?&5� � �� 2 � �� &5� ���
� is asymptotically stable

;
(1.9)

Condition 2: State Estimation. There exists � � � : solving the filter-type Riccati
equation

��� 0�� ��� � �
3� � 	 � �� � � � � � � � � � 	 � �� � � � 5 � � � � � � � � 5� � � � � 5� � � � � � � :

(1.10)
which is stabilizing, i.e.,

	 � �� � �9� � � � � � � � 5� � � � � 5� � ��� is asymptotically stable
;

(1.11)

Condition 3: Coupling. The matrix
��� � � has spectral radius strictly less than � .

THEOREM 1.2.1 ([DGKF89]) ([DGKF89], [PAJ91], [GL95]) The � � control prob-
lem for � , meeting certain technical conditions is solvable if and only if the above
three conditions are satisfied. If these conditions are met, one controller, called the
central controller, is given by

� � � ������ �����
������� 	 � &� � �9� � � � � � � � 5� � � � � 5� � � ��� ��� � &� � � � � 5� � � � � ��9� � � � � � � 5� ������� �
� � �

2
� �� � � 5 ��� � � �� 5� �
� � � 
 � � � � � ���
� � � � �� ; (1.12)

We sometimes refer
� �

as the “DGKF” central controller, after its discoverers J. Doyle,
K. Glover, P. Kargonekar and B. Francis, [DGKF89].
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1.2.5 The Linear Solution from a Nonlinear Viewpoint

Of course the solution to the nonlinear control problem which we present in this
book when specialized to linear systems solves the linear ��� control problem. The
solution looks a bit different from the classical one we just saw. The linear solution
has been put in coordinates which make degenerate cases appear un-pathological.
However, it is not easy to change coordinates in nonlinear solutions, so what we get
is forced upon us. Let us see what the linear specialization of the nonlinear solution
looks like.

If � ��8(: , and hence invertible, the coupling condition is equivalent to

� � � � � �� � � � �(:<;
This foreshadows the nonlinear theory in that it focusses on the inverse of � � . More-
over, we shall see that one does not actually need the stabilizing properties of

���
and

� � ; positive definite inequalities will do. Indeed if we take the main results of this
book given in Chapter 4,

�
4.10, and specialize them to the linear case we get:

THEOREM 1.2.2 A solution to the linear ��� control problem exists (and there are
formulas for producing it) if there exists solutions

� � :
and � 8 :

to the DGKF
Riccati equations which satisfy strict coupling

� � � � � � � � �(:<;
(1.13)

Conversely, if a solution to the linear ��� control problem exists the stabilizing solu-
tions

�
�
and � � to the Riccati equations are nonnegative definite and if � �-8 : , we

have � � � � � �� � �
� �(:<;
(1.14)

Note that the lower bounding properties

�
� � � and � � � �
of
�
� ��� � imply � � � � � �� ���
� � � � � � � � � � �(:<;

So the DGKF Theorem 1.2.1 has for simplicity presented the extreme case of the
possible solutions.

As we soon see this funny way of writing the
� ��� coupling condition is exactly

the way it presents itself for general nonlinear systems. Also we have only discussed
� 8$:

. Actually, for the theory to hold � need not be invertible. This may sound
like a fine point but a rank one or two � contains much less information than a rank
seventeen � , and such economies of information translate into major computational
savings in the nonlinear case. Thus in the book we give considerable attention to the
“singular cases”, that is where � �

�
is “not finite”.
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1.3 The Idea of the Nonlinear Solution

This section is the heart of the introductory outline of the book, and contains a discus-
sion of the main ideas of the solution to the nonlinear � � control problem defined
above.

State feedback control. The nature of the information available to the controller
has a very significant bearing on the complexity of the problem, and of the resulting
controller. Accordingly, we begin with an easier problem in which the controller is
allowed to read the state of the plant. This simpler problem is known as the state
feedback � � control problem (essentially one with full information), and is well-
understood in the literature.

Estimation - the information state. Next we turn to the general output feedback
problem. Here the state is not known perfectly and so we must estimate it. This
estimation is done with something called the information state, a function on the state
space of the plant � which satisfies a PDE. Thus the information state is produced by
an infinite dimensional controlled dynamical system. Much of this book is concerned
with properties of this dynamical system and how it can be used to solve the � �
control problem.

Coupling - information state feedback. Using the information state, the output
feedback problem is converted to state feedback problem for a new system. This new
system uses the information state as its state variable, and the solution of the new state
feedback problem leads to the solution of the output feedback � � control problem.
This is a coupling of control and estimation.

This indicates the layout of the remainder of the Introduction.

1.3.1 The State Feedback Control Problem

The state feedback ��� has been extensively studied in the literature and is well un-
derstood; see [vdS96] and the references contained therein.

1.3.1.1 Problem Statement

A block diagram illustrating the state feedback ��� problem is given in Figure 1.3.
The state space model for the plant is

� � �� � ����
	 � � ������ � � � � ���� � � � �
��
� � � � ��������� � � � � ; (1.15)

The controller can read measurements of the plant state � , so that

� � � � � �=;
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(For simplicity we only consider static state feedback controllers. Alternatively, one
could work with full information controllers, where

�
is a causal function of the

disturbance, and this would yield the same optimal controller, under appropriate reg-
ularity assumptions.)

�

� ������ � ��� � ��� � ��� �
� ���,

. 	


 


�

� � � � �

Figure 1.3: The State Feedback Closed-Loop System ����� ��� .

The state feedback � � control problem is to find a controller � � � � � � which
is dissipative in the sense of

�
1.1 and stable in the sense that the vector field	 ���� � is asymptotically stable

;
1.3.1.2 Problem Solution

The solution is determined by the state feedback Hamilton-Jacobi-Bellman-Isaacs
PDE (HJBI PDE)
 ��� > � 	 � ��

2
� �� � 5 ��� � � � � ��  ��� > � � � � ��? 5� � �� 2 � ��  5� � >  ��� 5� �� � 5� � 
 � �����

2
� �� � 5 �7� � � � � :<; (1.16)

If one can find a strictly positive proper smooth solution � ( � � � � 8 :
if ���� :

,
� � : � � : ) which makes the vector field	 � ��

2
� �� �15�7� � � � � � � � ��?&5� �  � 2 � �� &5� �� ��� 5 asymptotically stable

then a solution to the state feedback problem is:

1.3.1.3 The State Feedback Central Controller

� � � � � ��� �0�� ��� � � � � � � 2 � � � � � � � ����� � � ��5 � � � � ������ � � ��5� ��� � � ��5 �
Using this controller, the closed loop system ��� � � �0 � becomes�� � �� �
	 � � � ���� � � � � � �� � � �

2
� � � � � � � ����� � � � 5 � � � � ���� � � � � 5  ��� � � � 5 �

��
� � � � � � ����� � � �
2
� � � � � � � ���7� � � � 5 � � � � ������ � � � 5  ��� � � � 5 �
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and integration of the PDE (1.16) yields the dissipation inequality

� � � �"� � � � �� � 	� �  ��� � � �"� ��� � � �� � 	� � � ��� � � �"� � � � � � � : � �=;
The desired dissipation property (1.2) follows from this on setting

� � � since � �:
. Also, stability of the vector field 	 �� � � � follows (see, e.g., [vdS96]).

It is important to note for practical reasons that the designer can solve for � off
line (i.e. not in real time). This requires the solution of a PDE in � -dimensions.

EXAMPLE 1.3.1 For linear systems (cf.
�
1.2), the state feedback HJBI PDE has a

quadratic solution
� � � � � �� � 5 � �

if it has any solution at all. One can substitute
 ��� � � � � � 5 � , into the HJI, which

we illustrate when
� ��� � 
 � �!�=� , and get: � �� � 5 � 	 �  � � � � 5  � � � � 5 � ��  � � � � � 	 � �� � � � �
� ��  � � � � � � � � ��?&5� � �� &5� �� � � � �75

� �� � � 5 � 	 � �� � � ��5 � � � � 5 � � 	 � �� � � � �
� � 5 � � � � �  � &5� �  � &5� ��� � �

i.e.
: � �� � 5 � 0�� ��� � � � � �

which is the DGKF state matrix Riccati equation
� 0 � ��� � � � � � :

. Take
�
� �$:

to
be the stabilizing solution of this Riccati equation to get the optimal state feedback
controller � � � � � ��� �0�� ��� � � � � � � � � � ��&5� �
� � � ;

�

REMARK 1.3.2 Actually to solve the state feedback ��� problem it is enough to find
a function � � � � � :

, � � : � � :
satisfying the HJBI PDE (1.16) plus a detectabil-

ity assumption. For example, if the closed loop system � � � � �� � is detectable (here� �
� � � � is determined by the solution � � � � : � �� � � � � � 2 � � � � � � � ����� � � � 5 � � � � � � � � � �� � � � � ��� ), then one can obtain stability of 	 �  � � �� from the dissipation

inequality analogously to what is done in Theorem 2.1.3. This approach will be used
frequently in the sequel. Note, however, that it is in general difficult to check de-
tectability; however, the generic system is detectable (which of course does not imply
that a system derived from some generic optimization process is detectable). Another
addition to solutions of the HJBI which produce solutions to the state feedback con-
trol problem is the class of strict positive � with � � : � � :

solving the strict HJBI
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inequality

 ��� > � 	 � ��
2
� �� � 5 ��� � � ��� ��  ��� > � � � � &�  5 � � �� 2 � ��  5� � >  ��� 5� �� � 5� � 
 � �����

2
� �� � 5 ��� � � � � :<;

�

1.3.2 The Information State

We return to the output feedback problem. To solve it, we use an information state.
This converts the output feedback problem to a new state feedback problem with a
new state, namely the information state (this methodology is an old one from stochas-
tic optimal control). We now give definitions which lead directly to the construction
of the controller dynamics.

1.3.2.1 Reversing Arrows

We start by defining the reverse arrow system. It is a new system
�
� which, in two

block case, is obtained from � by reversing the � and � arrows. While the definition
is algebraic, pictures help a lot, see Figures 1.4 (a) and (b).

The reverse arrow system is defined by

�
� �

������ �����
�� � 	 � � ���&�� � � � � � �� � � � � �
��
� � � � ��������� � � � �
� � � � � � � ��� � ;

(1.17)

with 	 �
defined by 	 � 3� 	 � �� � � ;

Note that � and
�
� have the same state space. Clearly this is derived by substituting� � � � � � � � � into the � dynamics to produce

���� 	 � � ���� � � � � � � � � � � � ��� �� � � � � �
which is the same as the dynamics defined above in (1.17) for

�
� .
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�

� �

�

� ��� � ��� � ��� � � � �
� ��� � � �=� ���,

.
) � � ��� ��� ' .
	

(a) The Original System � .




� 


�� � ��� � ��� � ��� � ��� �
� ��� � � �=� ���,

. � ) ( � ��� �	�
)
	

(b) The Reverse Arrow System 
� .

Figure 1.4: Reversing arrows.
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1.3.2.2 Definition

Given time � ��: , past measurement � � � � � : �C� � and past control signal � � � � � : �C� �
introduce a function � � � � � ��� � � �?� � on the states � of the plant � by

� � � � � ����� � � � : � � � �� � �� � � � � � � �� � ��������� � � �� � � � �� � � � � � � � � �� � � � � � � �� � � � � � � 
� initial state energy

� � �� � output
� � input

� � � 
given � � � over

� : �?� � and given
� ��� � � � ;

(1.18)
Here

�
follows the state trajectory from

:
to � of the reverse arrow system (1.17) with

final state
� ��� � � � . This is the tricky part. Given � to define � � � � � we must run the�

� system backwards for � time units, using the given � , � . We see how much energy
2
� � � ��� was consumed by the system and what state

� � : � the trajectory hits, with energy
2 � . Then

� � � � � �
2 � � 2 � � � ��� �

the sum of two cost terms. This function is called the information state for the � �
control problem and plays the role of a “sufficient statistic”, [JBE94], [JB95]. In
[BB89], this function is called the “cost to come”. For � � ��� �C> �C� � to be defined
everywhere we must assume that for each � � � � � � � : �?� � the differential equation
(1.1) has trajectories whose end points at time � sweep out the whole state space
provided the endpoints at time

:
do. (See Theorem 3.1.8.) Figure 1.5 illustrates some

of the common shapes of information states; generally they are bounded above, point
downwards, and may take the value � � .

If the information state � � � � � is smooth then it satisfies the information state PDE

� � � � � �
� � �	� � � � � � ��� � � � ��� � � 3� �  � � � � � � > � 	 � � � � ���� � � � � ��� � ���� � � � � �"� ���

� �� � � � � � � �����7� � � � � ��� � � � � � � �� � � �"� � � � � � � � � �
(1.19)

which is readily obtained by differentiating (1.18). Often we write this differential
equation even when � is not smooth, but one should interpret it as the integral equation
(1.18), or perhaps in the viscosity sense (see Appendix B). We can think of the PDE
(1.19) as describing an infinite dimensional dynamical system, which can be written
in shorthand form �� �	� � � � � � � �=;
This system has a “state” � belonging to an infinite dimensional function space, and
it is driven by input signals � and � . The solution of the � � problem depends on
properties of this system. Some references include [JB95], [BB89], [DBB93].
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(a) Nonsingular (everywhere finite).

(b) Purely Singular (equal to � � everywhere except at ��� � ).

(c) Mixed Singular (finite on a subset of ��� and equal to � � elsewhere).

Figure 1.5: Common Information States. (The information state is a function � � � �
defined on the plant state space, the horizontal plane in the figure, with coordinates� � � � � � ; ; ; � �  � .)
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1.3.3 The Central Controller

We now give a high level formula for the structure and dynamics of a controller which
(as the book unfolds) turns out to be a good candidate for the solution of the � �
problem.

State Space is a space
� �

of functions � � � � � � on the state space
�  

of the plant
� .

Dynamics are the PDE �� � � � � � � � � �=;
Output � is function � � � � � �

defined (on a subset of) the information state space
� �

.

We call this the information state controller, illustrated in Figure 1.6.


 






�� � � � � � � � � ��� �

�

Figure 1.6: Information State Controller

In
�
1.3.5 we show how � is constructed. Ultimately we shall focus on particular

information state controller called the central controller; it is obtained by optimization
(yielding � � � � � ) and suitable initialization.

An important point is that for this controller to be implementable one must solve
the information state PDE online. This is a PDE in � -dimensions.

1.3.4 Equilibrium Information States

Our definition of the controller dynamics is not complete because in order to define
its dynamics we must specify an initial information state � � . As we shall see careful
choice of this initial state ��� makes a big difference in the implementability of the
controller and strongly affects the dynamical behavior. Thus we devote substantial
effort and several subsections to the question: which initial state � � do we use?

An obvious requirement of ��� stemming from the null initializing property
� � : � �:

is

� � � � � � : for all � when � � solves
�� �	� � � � : � : � initialized at ��� .
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However a stronger highly desirable condition is

: �	� � ��� � : � : � and � � ��� � � :<;
That is, ��� is said to be an equilibrium solution �

�
to the information state PDE. This

is the correct initialization of the central controller: � �+��� � . (Below we discuss
convergence of � � to �

�
—stability.)

As we shall see the equilibria for two block information states have a surprising
form. It is surprising enough that we had better retreat to an example before describing
it; this is done in

�
1.3.6. In the meantime, we consider the problem of choosing the

controller output function � � � � .

1.3.5 Finding � � and Validating the Controller

We give now some details on the construction of the function � � � � which is a key
component of the information state and central controllers. This is chosen optimally
as follows (so that we will take � ��� � ): solve an infinite dimensional state feedback
control problem. The HJBI PDE for this problem is

�����
������� 	 ��

	 ����
  %� � � � � � � � � � � � � � � : in ����� � ; (1.20)

Here,
 %� � � � is interpreted as a Frechet derivative (more general interpretations are

discussed in Chapters 4 and 10). One attempts to solve this PDE for a smooth function
� � � � defined on a domain ����� � , a subset of the state space, and satisfying auxiliary
conditions such as � � � ��� 	 �� �� � � � ��� , and � � ��� � � : for some ��� � ����� � . The
function � � � � is called the value function for the ��� control problem, and can be
regarded as an analog of the state feedback value function � � � � (see

�
1.3) for the

information state system. The information state feedback function � � � � � is obtained
by

� � � � � ������� � ���
� � � � � 	 ��	 � � 


 % � � � � � � � � � � � � �����
� �  % � � � � � 2 � � � � �  % � � � � � � � 5 ��� � � �� 5�  � � 5 ��;

Necessary and sufficient conditions for the solvability of the � � control problem
can be expressed in terms of the function � � � � and the PDE (1.20). The following
“metatheorem” states the main idea without the clutter of technical details:
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RESULT 1.3.3 If there exists some controller which solves the
� � problem, then there exists a function � � � � solving the PDE
(1.20) (in some sense) as well as auxiliary technical conditions.
If the function � � � � is smooth, then the central controller

� �%
�

obtained from � � � � solves the ��� problem. Key to this is the
“coupling condition”ensuring that the controller is well-defined
for all time and along trajectories of the closed-loop system,

� � � � �"� � � � 	 ��� � � � � � ��� � � � � � � � � � � � � � � � � (1.21)

where � �"� � ��� � � � � � . Conversely, if one can solve the PDE (1.20)
for a smooth function � � � � satisfying some auxiliary technical
conditions, then the central controller

� �%
�

obtained from � � � �
solves the ��� problem.

The major objective of this book is to present intuition and theory for results of this
type.

1.3.5.1 Construction of the Central Controller

Now we summarize the procedure for building the central controller:

(i) Obtain a function � � � � and � � � � � solving the PDE (1.20) and the coupling
(1.21).

(ii) Compute �
�

and check � � � � � � � : .
(iii) Use � � as the output term of the central controller.

(iv) The information state PDE (1.19) initialized at � � � � � gives the dynamics of
the controller

� �%
�
.

1.3.5.2 Validating the Controller

We review the context in which we sit. Let � �?> �*� � � and ��� �+�  be given. These
determine signals � �C> � ,  �?> � , and � �C> � and trajectories � �C> � , � � from the dynamics of
the closed loop ����� � �%

�

�
with ���'� � � , � �?> � � � � � � �

�
. The idea behind confirming

dissipativity of the closed loop system is:

(i) Integrate the PDE (1.20) along the trajectory � � :
� � � � � � � � ��� � � � � � � � � � � ;
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Then use the property

� � � � ��� � � � 	 ��� � � � � � ��� � � � � � � � � � � � � � : (1.22)

and the definition of the information state to obtain

� � � � � : � � � �� � �� � � � � � � �� � ��������� � � �� � � � �� � � � � � � � � �� � � � � � � �� � � � � � � 
��� � � � � � � � � � �

where
� �C> � is the solution of (1.17) with

� ��� � � � . Now if � �C> � is input to the
plant � with initial state � � we obtain signals � �C> � � � �%

�
� � �C> � � and state � �C> �

in closed-loop, and so if we set ��� � �"� � we have
� �C> � � � �C> � and so�� � �� � � � � � � �� � � ��� �7� � � �� � � � �� � � � � � � � � �� � � � � �  � � � � � � � � � � � � : � �

� � � � � ��� �
which is the dissipation inequality (1.2) with

� � � � � .
(ii) If �

�
is nonsingular and if ��� � � �% �

�
is detectable, then

� �%
� solves the ���

control problem. If �
�

is singular, then with extra work and stronger conditions
it is possible to prove that

� �%
�

solves the � � control problem. See Chapter 4.

(iii) The stability results discussed in
�
1.5 below for the information state system

are used to deduce the asymptotic behavior of the information state in closed
loop (Chapter 4).

1.3.5.3 Storage Functions

Associated with a dissipative system are functions � � � � � � on its state space called
storage functions. Of course we are interested in the closed loop system ����� � �%

�

�
and a storage function � for it is defined to be non-negative and satisfy the “dissipation
inequality”:

� � � �"� � � � ��� � � � �� � �� �  �� � � ���  � � � ��� � � � ��� � � �� � ���� � �  � � ���  (1.23)

for all � � :
and all � ���4� � : �?� � . It is fairly remarkable that there is a storage

function � � � � � � for the closed loop system ����� � �%�� � which has a very simple and
explicit formula:

� � � � � � � � � � � ��� � � � � ;
It is interesting to note that the content of (1.23) is the same as that of (1.22) as
can be verified by adding minus the information state equation which � � satisfies
to (1.21). Also compare (1.23) with the dissipation inequality (1.2) of

�
1.1 (note� � � � ��� � � � � � � � � � � � � � ). This storage function gives a handy tool for validating

that
� �%�� is � -dissipative provided ��� � ��� � is finite.
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1.3.6 Example: Linear Systems

1.3.6.1 � � � � for linear systems

The information state for linear systems are quadratic and will be described immedi-
ately below. For now we discuss the form of � . One has

� � � � � � ���� � � � � ��� �� � 5 �
� � � ;
Thus

(i) The integrated form of (1.20)

� ��� � � � � � � ��� � � � � � � � � ���� � � � � � ��� �� � 5 � � � �
� � � ��� � � � ���� � ��� � � ��� �� � 5 �
� � �

is equivalent to � � � � being finite, and
���

being positive semidefinite.

(ii) The equilibrium information state is �
� � � � � �� � 5 � � �� � where � � solves the

DGKF � equation. � � � � � finite is equivalent to the matrix � � � � � �� � � �
being negative semidefinite. If � is suboptimal, then this is negative definite
since, small perturbations of this will be negative.

Thus we have that the DGKF conditions 1, 2 and 3 (except for the strictness) of
�
1.2.4

are implied by the existence of (finite) � and the existence of �
�

solving (1.20) and
(1.21). The converse is true and can be checked with a little effort.

1.3.6.2 The Information State

For linear systems, one can check that if � ��� � is invertible, then solutions to the
information state equation have the form

� � � � � � � � � �� � � � �� ��� � � 5 � ��� � � � � � � �� ��� ��� ��� ��� �
whenever ��� has this form, where��� � � 	 � � � � � � � � 5� � � � � 5� � � ��� �� �

� � �� � � � 5� � � � �  �9� � � � � � 5� ������� �
�� � 	 � � � � 	 � 5 � � � � � � � 5� � � � � 5� � ��� � ;

Now we compare this to the dynamics of the DGKF central controller (1.12) to the
linear ��� problem. The

�� equation is exactly (1.12) if we take � ��� � equal to � � , the
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stabilizing solution to the DGKF � equation (1.10). The above Riccati differential
equation for � �"� � can be initialized in many ways which lead to a solution to the
� � control problem. However, the equilibrium solution has the great advantage
that

�
� � �
� � � :

so we have no � differential equation to solve in real time (since
� ��� � � � � for all � � : ).

Now comes a crucial pair of exercises. They are so crucial that the reader should
think for a minute and not race to the answers:

Exercise 1. Suppose 	 �
is a stable matrix. What is � � ?

Answer: � � � : . The reason is that the DGKF � equation is homogeneous in � ,
so � � � : certainly satisfies it. But is it stabilizing? Well yes since 	 �

is stable even
without perturbing it.

Exercise 2. 	 �
has no pure imaginary eigenvalues. What can we say

about � � ?
Answer: � � is

:
on the stable eigenspace of 	 �

.

In the first exercise the DGKF � equation disappears when � � � � � since the
stabilizing solution � � is zero, so the controller formulas will only involve the DGKF�

equation. In the second exercise � � is usually low rank, so maybe the controller
will have a low dimension (in some sense) if we initialize � � � � � . For the nonlinear
case this suggests a big simplification since � determines the state estimator (the
online part of the computation).

We return to the equilibrium information state �
�
, which in the linear case is

formally of the form
� � � � � � � � � �� � 5 � � �� � �

and immediately worry because � � is typically not invertible. Indeed if � � � :
we

suspect that �
� � � � � � � . While this is close to correct it is not quite and so we now

embark on definitions and a discussion of singular functions. Later we give precise
formulas for singular information states and resulting controllers.

1.4 Singular Functions

When � � is not of full rank, the function �
� � � � � � � � �� � 5 � � �� � interpreted as a

singular function. In the first exercise 	 �
is stable and corresponds to � � � : , so we

define then
� � ����� �

where

��� � � � � �� � :
if � � : �

� � if � �� :<;
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Figure 1.7: The singular function � � .

In the second exercise
� � � ������� ���� � ;
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Figure 1.8: The singular function �

� ��� � �
� ���� � .
Here

� � ��� � � � �
�� � :

if � ��	 � 0 �
� � if � ���	 � 0

and
	 � 0 is the antistable subspace of 	 �

and
�� � is a quadratic form on

	 � 0 (the
analogous notation ��� � � ��� will be used frequently where

	 �$�  
and

�� is a
function defined on

	
).

We emphasize again that in mixed sensitivity control applications
	 � 0 is usually

low dimensional! Thus ���*��� � is supported on a very thin set.
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1.4.1 Singular Equilibrium Information States

For the nonlinear two block problem we shall assume that

	 �
is a hyperbolic vector field

with global stable
	 0 and antistable

	 � 0 submanifolds. As we shall see the equilib-
rium information state �

�
is given by

� � ��������� � �� �
where

	 � 0 is the antistable submanifold of 	 �
and

�� � is a smooth function on
	 � 0 .

There are two important special cases:

(i) when 	 �
is stable, �

� ����� is a purely singular function, and

(ii) when 	 �
is antistable, �

�
is a finite, smooth, nonsingular function.

In any case once
	 � 0 is computed

�� � can be determined by computing for each � �	 � 0 the integral

�� � � � � � ���� �
� �
� � � � � � �� � � � � � � � � � � � � �� � � � � � �  �

where
� �?> � is the solution in backward time to�� � 	 � � � � � � � : � � � � 	 � 0 ;

See
�
3.2 for a derivation.

1.4.2 The Central Controller Dynamics

The central controller is obtained by initializing the optimal information state con-
troller ( � � � � ) at equilibrium, � � � � � , and is denoted

� �%
�
. If �

�
is singular, the

resulting information state dynamics is still quite concrete to write down, manipulate,
and compute numerically.

The formula for the dynamics.

Suppose ��� ��� � ��� � ��� � �� � . Then for any � � � ���9� , � � is of the form

� �
�

���� �C> �C� �
where

	 � 3� � � ��� � � �� � 	 � � � ������ � � � � ���� � � � � � : �  � � � � � : �9� 	 � 0 � �
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and also
�� �C> �C� � is the function on

	 � 0 given by

�� � � �C� � � �� � � � � : � � � �� � �� � � � � � � �� � ��������� � � �� � � � �� � � � � � � � � �� � � � � � � �� � � � � � � 
� initial state energy

�
the energy it takes to get from

� � : � to
� ��� � � �

where
� �� � , : �  � � , is given by the reversed system dynamics (1.17) with

� ��� � �� � 	 � .
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Figure 1.9: Flow of Singular Information States

This evolution of functions
�� � on the

	�� �
	
together with the evolution (2.6) con-

stitute a “reduced dimensional” picture of the compensator dynamics (to be discussed
further in Chapter 10).

1.4.2.1 Computational Requirements

The amount of computation required for a singular function indeed is less than for a
nonsingular function. This is because one need only solve a � � � � -dimensional
PDE (in real time). Intuitively, the singularity of information states reflects a degree
of knowledge concerning the state trajectory, and this means that less computational
effort is required.

To be more specific, suppose one wishes to approximately compute the compen-
sator state � 	 � � �� � � by numerically solving the ODE���� 	 � � � ���� � � � � � �� � � � � �
which propagates

	 � . Then
�� � is computed by evaluating the integral recursively, i.e.,

one only needs to update the integral at each time step. One begins such a numerical
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computation by laying out a grid on
	 � . For example, if

	 �.� 	 � 0 is � dimensional
and one chooses

�
equally spaced grid points in each dimension, then if

	 � is �
dimensional choosing

� 	
grid points would be natural. One initializes the ODE at

each grid point ��� and solves the ODE numerically as the values of � ��� � and � ��� �
become known. Since the ODE is a ��� � system at any time its solution is an � -
dimensional vector; and we get one of these per grid point. Thus the memory and
operation requirements scale like ��� � � 	 �=;
This is a striking improvement over the � � �  � required to solve the PDE (3.9) for a
smooth solution in

�  
.

1.5 Attractors for the Information State

A very important issue is whether or not the equilibrium � � is an attractor for the
information state dynamics (1.19). By this we mean roughly that there exist a set� ��� � ) � � � � of initial states ��� and a nonempty set of signals � , � in

�4�
for which the

resulting information state trajectory � � converges to �
�

(in an appropriate sense). We
call an equilibrium �

�
a control attractor if for all � � � in

�4�
� � B � � ��� � �	� as � B �

for some constant
� �#�

(depending on � � � � ��� ), for ��� �
� ��� � ) � � � � .
For the nonlinear two block problem with 	 �

hyperbolic we shall prove roughly:

Suppose 	 � � 	 � �� � � is hyperbolic, that the initial function ���
satisfies � � � � � : � : � � :

, and that certain technical conditions hold. If� � � are supported on
� : � � � , then the solution � � to�� �	� � � � � � � �

with smooth initial condition ��� has the stability property

� � B � � �	� 3� � � ��� ���� � �	� as � B �
where

	 � 0 is the antistable manifold of 	 �
, and

�� � is a function on
	 � 0

and
�

is a real number depending on � , � and ��� .
It is important to note that the special case 	 �

antistable leads to nonsingular
equilibria �

�
, whereas when 	 �

is stable �
� � � � is purely singular. Moreover,

stronger results are proven (Chapter 11):

� With restrictions on � � it is possible to prove convergence for arbitrary � , � in�9�
.
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� Initial states ��� in
� ��� � ) � � � � are characterized.

Various notions of convergence are required, but these are mainly confined to the more
theoretical sections of the book. In particular, we make use of the max-plus notion
of weak convergence (analogous to weak convergence of probability measures), and
hypoconvergence (from optimization); see Appendix C.

1.6 Solving the PDE and Obtaining ���

The value function � � � � and the infinite dimensional PDE (1.20) offer a high level
framework for solving nonlinear ��� control problems. The function PDE (1.20)
is to be solved offline for � � � � , and hence � � � � � can be constructed offline. As
mentioned, the only online part of the central controller

� �%
� is the information state

dynamics (1.19). We now discuss three situations in which � � � � vastly simplifies.

The significance of these results is that the infinite dimensional PDE (1.20) can be
solved in terms of a PDE on a finite dimensional space (i.e. one on

�  
). Solving such

PDE is a traditional pursuit of mathematics and engineering and it bears directly on
the (offline) construction of the central controller. Solving these PDE give formulas
for � � in terms of the optimal state feedback � �0 control law applied to carefully
selected states. Of course, the PDE for the information state.

1.6.1 Certainty Equivalence

Under the certainty equivalence assumption, Whittle [Whi81], Basar-Bernhard [BB89],
it is possible to use the function

�� � � � � 	 ��� � � � � ��� � � � ���
as a value function for the ��� control problem. Here, � � � � is the state feedback
value function of

�
1.3 which determines the state feedback controller � �0 � ��� � � � � . The

certainty equivalence assumption requires that the minimum stress estimate

�� ��� � ������� � ���� ��� � � � � � � ��� � � � � �
is unique. If this assumption holds, then the certainty equivalence controller

��� � ��� � ��� �0�� ��� � � �� ��� � �
coincides with the central controller described above. Further, the function

�� � � �
solves the PDE (1.20).
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The certainty equivalence controller has dynamics����� 	 � ��
2
� �� � 5� � � � � � � � � ��? 5� �  � 2 � ��  5� �� ��� 5� � ��?� 5�=� � � � �  �� � � � � �  � � �0 5 � � � � � �0 �� � ��9� �  �� � � � � �  � � �0 5 2 � � � � � � �0 � � (1.24)

where the RHS is evaluated at � � �� ��� � , and � ��� � � �C� � solves a PDE obtained by
combining the PDEs for � � � � � and � � � � (see Chapter 7). This yields the concrete
formula for the � � : � � � � � ��� �0�� ��� � � �� �
since

�� � �� � � � .
REMARK 1.6.1 A generalization of certainty equivalence to cases of multiple max-
ima has been considered in [HV95].

�

1.6.2 Bilinear Systems

There are some classes of systems for which the information state is finite dimen-
sional. Two such classes are those consisting of bilinear and linear systems. The
plant is bilinear provided

	 � � � � 	�� � � � � � � � � � � � � � � � � � � � � ��� � � � � �� � �� � � � � ��9���� � � ����� � � � � ����� �
where 	 � � � � � � � �� �  � � �� � ����� �
are matrices of appropriate dimension, and we assume for simplicity that � is one
dimensional (

� � � ).
If ��� � � � � � � � �� � 5 � � �� � with � � 8 : then the information state is given explic-

itly by
� � � � � � � � � �� � � � �� ��� � ��5 � ��� � � � � � � �� �"� � ����� ��� � � (1.25)

where �������"	 � � � � �� � �9� � � � � � � 5� � � � � 5� � � ��� ��� � �� � � � 5� � � � �  � � � � � � � 5� ������� � � (1.26)

�� � � 	 � � � � �� � � � � � � � 	 � � � � �� � ��� 5� � � � � � � 5� � � � � 5� � � � � (1.27)

�� � �� � � � �� �����7� � � � � � � �� � � � � � �� � � ; (1.28)
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Here, we have written 	 � � � � 	 �  � � . Thus the information state � � projects
to a finite dimensional triple � �� ��� � � � . Consequently, the online computation of the
information state is drastically simplified and feasible.

If the value function is defined for the triple � �� ��� � � � , call it
�� � �� ��� � � � , then

corresponding PDE for
�� � �� ��� � � � is defined on a finite dimensional space

�  ��  � � � and has the form

�����
� ��� � 	 ��	 ����
  ���� � � � ��� �� � �� ��� � � � � �� � �� ��� � � � � � � ��� � : (1.29)

where
�
� � �� ��� � � � � � � � denotes the dynamics defined by (1.26), (1.27), (1.28). Evalu-

ating the infimum in the RHS of the PDE (1.29) yields the central controller function

� � � �� ��� � � � � ����� � ���
� � 	 ��	  ���� � � � ��� �� � �� ��� � � � � �� � �� ��� � � � � � � �����

� �
2
� �� � � 5 ��� � � �� � �  5� � � � � � 5 ��� � � � � �� 5  5� �� �� �� � �� ��� � � � 5

� �� �� � �� ��� � � � > � �� � � �  5� ���
The PDE (1.29) for a function

�� � �� ��� � � � can seldom be solved explicitly and
so approximations and numerical methods must be used. However, it is important
to note that this is already feasible in applications where the state space is very low
dimensional. In general, it is not possible to solve this explicitly.

REMARK 1.6.2 For linear systems (
 � � :

), the value function is given explicitly
by �� � �� ��� � � � � �� �� 5 �
� � 
 � � � � � �
� � � � �� ��� �
where

��� �(:
is a solution of the

�
Riccati equation (1.8).

�

1.7 Factorization

While engineers have a deep love for feedback diagrams like Figure 1.1 this is not
familiar to the average mathematician. Most mathematicians are, however, quite fond
of factoring. They will try to factor numbers or mappings or most objects you put
in front of them. Fortunately, the ��� control problem for the plant � in (1.1) is
equivalent under various hypotheses to a type of factorization problem for the reversed
arrow system

�
� in (1.1) or more accurately because of possible degeneracies to what

we call a decomposition of
�
� . To be more specific we start with a given system

� � �
�

and seek another system
� �

so that the composition
�
	 � ��� � � is dissipative with

respect to a certain signed bilinear form and so that
� �

satisfies a fairly weak partial
left invertibility type of assumption. If

� �
is invertible, this is equivalent to

�
having

the factorization
� � �
	� � � � � � � .
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Notice that if
�

is a system whose input space is
� % � ,

, then the output space of� �
is constrained to be

�-, � %
, but its input space can be of any dimension. Tradi-

tionally, investigators found factors whose input space is
�1, � %

, which if
� �

is linear
means that its transfer function has values which are square matrices. The square
case does not correspond precisely to the � � control problem in Figure 1.1, but it
can be used to parameterize many solutions to the problem; thus having a good square
factoring is more than is needed to solve the control problem. The bulk of Chapter
8 treats square factorization. Actually equivalent to the control problem is having a
good factor

� �
whose input space is

�&%
. This is described in

�
8.10.

Factoring of various types as a subject independent of control is presented in the
first and last parts of Chapter 8. The middle part of the chapter treats the connection
between factoring and control. A mathematician with little interest in control could
skip directly to the factoring chapter after reading the introduction. Much of it is self
contained with only a few (key) proofs requiring machinery from the first of the book.

1.8 A Classical Perspective on ��� Control

Most people who learn ��� control these days for linear systems see state space prob-
lems and state space theory. In fact the subject began as a purely input-output fre-
quency domain theory; ��� engineering began with amplifier design and later came
into control and gained prominence there, see

�
1.11. In this section we sketch some of

these ideas. We start with ��� control and then mention a few ideas and connections
with broadband impedance matching, an ingredient of classical amplifier design.

1.8.1 Control

One is given a system (plant)
�

and wishes to find a controller
�

so that the closed
loop transfer function� ����� � 3� � � � � � � ����� � � � � � ����� � � ��� � � � �

�
of the system in Figure 1.2 has a certain “shape”. The desired shape corresponds to
the specs layed out in the control problem. A typical situation is illustrated by the
Bode plot in Figure 1.10. It contains two plots which contain equivalent information
but in different coordinates.

You see in the top picture of Figure 1.10 that the absolute value of
� 3� � �

must
be bigger than the heavy line at low frequency and below the other heavy line at high
frequency. At midrange frequencies there is a bit of flexibility so precise constraints
are typically not drawn in. Algebraically the low and high frequency constraints are
written as � � � � � ��� 8 8 � � ��� �� � � � � ��� � � � � � � � �
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����� � � % � �

� � % �
� ' % ��

Sensitivity
constraint
dominates

Stability
margin
dominates

Complementary
sensitivity constraint
dominates

��� ���
	 � �

� � ���
	 � �

	

	

Figure 1.10: Bode diagram (transfer function magnitude vs. angular frequency).

where � � and ��� are given. The bottom figure contains the same information as the top
figure but in terms of � , which we now see using simple algebra. At low frequency� � � � � � � � � � �� � � � � ��� � � � ��� � � � � � � �
so � � � � � � � � � � � � � ��� � � � � � � � � � � � ��� � � � ��� � � � � � � �
is small if � � is large. At high frequency� � � � ��� � � � � � � � �
is small if � � is near

:
. This high frequency constraint is often called the rolloff or

bandwidth constraint.

We rephrase the constraint on � in the form� � ��� � � � � � � � � � � � � � (1.30)
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where � � � � � are positive weight functions and � is a function which is
�

at low
frequencies, zero at high frequencies and interpolates smoothly in between. Note that
(1.30) contains a constraint on frequencies at midrange and the Bode plot above does
not. Actually (1.30) constitutes a well posed problem while the Bode plot constraints
do not. Adding midrange (like stability margin) constraints to the Bode plot gives a
well posed problem. Note � � ��� � �AB � as � B � to force the envelope containing� to pinch to zero at � .

We would like to show how the problem of finding a stable closed loop system
meeting the constraint (1.30) translates to a familiar state space � � problem. Actu-
ally there is a subtle issue on what we mean by the closed loop system being stable.
Certainly we want � to have no poles in the closed right half plane � � � � � , but we
need in addition that small perturbations of

�
and

�
also have this property. This

is one version of internal stability . We will not belabor this view point because
that would be time consuming and because internal stability corresponds directly to
stability of the state space equations for the closed loop system as was previously
defined.

�
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–
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�
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�
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�

�

�

�
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Figure 1.11: Mixed sensitivity embeds in the standard problem.

The next step in conversion of the ��� problem to state space form is embedding
our � � control problem in the standard problem described in

�
1.8. Figure 1.11

indicates how this is done. The transfer function ���  � incorporates all information in
the weights � � , � � and plant

�
. One can read off the precise formula for � from

Figure 1.11 and there is no reason to record it here, since we explicitly give the state
space version of the formula in Chapter 9. Thus we have shown that our classical � �
problem is equivalent to finding

�
which makes the closed loop system in Figure 1.11� -dissipative, or equivalently internally stable with � B  transfer function having

sup norm less than � . Now Figure 1.11 has the form of Figure 1.1 and we see that the
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classical ��� control problem has the form of the standard problem of ��� control in�
1.1

1.8.2 Broadband Impedance Matching

A basic problem in classical circuit theory is: given an amplifying device, connect it
with a passive circuit that produces a total (closed loop) amplifier which maximizes
the worst gain over all frequencies. An easier problem which often bears heavily on
the amplifier problem is the broadband impedance matching problem: Transfer as
much power as possible from a given source to a passive (dissipative) load.

Resistor� �
Impedance� � � � �

� � � � �

� / is the
minimum sensitivity

Amplifier

GIVEN
Load

Dissipative

�

�

�

�

FIND

�

GIVEN
�

not lossless

GIVEN
Load

Dissipative
���

�
�
�

Amplifying Device

	

	

Plant 	

Lossless
FIND

�

Lossless
FIND

�

Closed loop is

Controller

internally stable

Control has the “same” topology:


��������� �

������

�����
�! #"%$&

' 
(��)��� � � '+*� �
/

Figure 1.12: Amplifier

This problem is illustrated by Figure 1.12. The top picture shows an amplifier
gain maximization problem. The middle picture illustrates the impedance matching
problem associated with the amplifier problem. The last picture draws the middle
picture in a way which looks much like Figure 1.2 and the classical control problem
we discussed in

�
1.8.

One thing to mention is that the key tradeoff in impedance matching goes under
the name gain-bandwidth limitations. They have been studied (under this name for
decades) and the basic “rule of thumb” is the Bode–Fano integral constraints (an
analog of the Freudenberg–Looze constraints of control theory). Gain–Bandwidth
limitations are quite literal analogs of performance–rolloff constraints in control.
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1.9 Nonlinear “Loop Shaping”

As mentioned in
�
1.8, in classical linear control the main objectives (in order of im-

portance) are to make the controlled system

(i) stable,

(ii) have prescribed rolloff, and

(iii) achieve high performance at low frequencies.

A metaphor for their implications is that if we design an airplane that fails to be stable
it will crash immediately, if rolloff is poor then it will probably crash eventually, and
if performance is mediocre the plane will waste something, maybe fuel or time.

Controller design classically often consisted of choosing a candidate controller,
and then checking the closed loop transfer function to see if it met given performance
and rolloff specs; hence the term loop shaping. � � control originated with the goal of
making loop shaping more systematic. The � � formalism involves weight selection,
which is reasonably intuitive. Once sensible weights are picked solutions to the � �
problem often are not so far from desired that a few natural iterations gives a solution.

Of course there are serious tradeoffs between stability, rolloff, and performance
constraints. While frequency and hence rolloff have no meaning for nonlinear sys-
tems, it is hard to believe that when systems are nonlinear that these tradeoffs dissap-
pear. They must be important in some form.

What is nonlinear loop shaping? This is the subject of much current research and
discussion, although the word loop shaping is not used. Indeed the issue is enough in
flux that we do not presume to say anything definitive here. Our goal in this section is
just to introduce a few issues. The main issues actually emerge in the state feedback
problem, say for a system of the form�� �
	 � � � ���� � � � � �

��
� � � � � ��� ��� � � � � �
so we focus on state feedback in this presentation rather than on the more complicated
measurement feedback problem (the next section considers this briefly).

Much attention goes to stabilizing a system and stability might be viewed as a
type of performance constraint. This can be facilitated by solving a control Lyapunov
inequality,

� 	 � � ���� � � � � � � >  � � � � ��� � � � � � : (1.31)

where
� � :

. Given � and
�

this can be done explicitly. For example, for single
input systems (dim � � � ),

� � � � � � � � � � � >  ��� � � � � 	 � � � >  ��� � � ��� � � � � �
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for � �� : .
More challenging is to decipher the analog or function in nonlinear control of

rolloff constraints. Mathematically, rolloff constraints for a linear system look some-
thing like

	���0 � � �
�
�
�
�

�

� � �  �  � �� � ���� � � �
or �

� &����� 0
�
�
�
�

�

� � �  �  � �� � � �� � ���� � � � �
In time domain terms these inequalities punish the size of�  � �  ���� � � ��� � �
that is one has rate bounds on the output of the system. The output of the system is� � � � ��� � � � ����� � ��� � and a rate bound is implied by a rate bound on � ��� � and � ��� �
separately. Thus it suffices to impose constraints of the form� � � � � � � � �� � � � � � and � ��� �
where

�
is a carefully chosen region in state and input space.

In our discussion we shall focus on bounding
�� , since this is an actuator rate

bound and these are very common; so set � � � : , � ��� � � , and � � � . We begin by
considering a rate saturation constraint � �� � � � and use the standard trick of making� a state and adding an input � to get ��#� �

with � meeting the saturation constraint � � � � � . Incorporate this into the control
Lyapunov inequality (1.31), to get

� 	 � � ���� � � � � � � >  ��� � � � � ��� �
 � � � � � � ��� � � � � � :<;

Next we use the saturation constraint on � and the inequality to get that it is sufficient
that � satisfy the first order PDI

� 	 � � ������ � � � � � >  ��� � � � � � � �  � � � � � � � � � � � � � � : � (1.32)

with
�
� � � � � � � � sign �  � � � � � � � � ;

The corresponding controller satisfies is

� ��� � � � � : ��� � �� �
� � � �� � � � �  � � �  ;

We emphasise that we are just giving sufficient conditions for solution.
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In fact many more formulas much more thoughtfully crafted than this can be
written out in a large variety of circumstances. This is an effort pioneered by E. Sontag
and collaborators, see [LS91], [LS95] for cases like those we have just treated. Other
very direct approaches to finding control Lyapunov functions for systems with special
structures are described in [KKK95].

Now we describe another approach to imposing constraints on � . Rather than
directly impose a hard rate bound � �� � � � we just punish “large” rates in some way,
for example, we combine a cost of the form� � �� � �� � �� � � � � (1.33)

with the control Lyapunov inequality (1.31). This gives

� 	 �� � � >  ��� � �
 � � � � � �� � � � � � :

with
�� � � . Just as before we optimize over � , but with this approach there is no

constraint on � , so the maximizing � is

�
� � � � � � � � �  � � � � � � �

and the PDI becomes

� 	 �� � � >  ��� � �
� � � �  � � �

� � � � : (1.34)

which is similar to a nonlinear Riccati inequality.

Similarly, we could be more cautious and treat disturbances � entering the system�� �
	 � � � ���� � � � � �� � � � � � �
��
� � � � � ��� �7� � � � � �

thereby getting � � type inequalities

� 	 �� � � �� � � � >  � � � �
 � � � � �� �� � � � � �� �� � � � � � :

maximize over � and minimize over � to get

�
� � � � � � � � ��  � � � � � � � � � � � � � � � � � � �� &� >  ��� � � � � �

and the PDI

� 	 �� � � � >  ��� � � � � � � �� � �
�
�  � � � � � � � � �

� �� � ��  ��� � � � � � ��� 5�  ��� � � � � ��� � � � � � :<;
We summarize all of this by saying that solution of the stabilization problem to-

gether with a rate saturation constraint amounts to solving a particular first order PDI.
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The bottom line is that to handle constraints on � it is very likely that some first order
PDI or comparably difficulty problem must be addressed. What we have done here is
done with the intention of provoking thought and is hardly conclusive.

While this book treats HJBI inequalities much of what is done applies to large
classes of first order PDI. The most extreme example is Bellman inequalities, since
they are just the special case where

 � � : . The next section expands on this theme.

1.10 Other Performance Functions

A wide range of problems can be cast into a form that involves the use of optimiza-
tion techniques, such as optimal control, game theory, and in particular, the dynamic
programming method. In this book we emphasize measurement feedback problems,
solved using the information state framework. This framework applies to a range of
stochastic (or � � ) problems, and as we discuss in detail in this book, deterministic
minimax problems.

The integrand
�� �  � � � � � �� � � � � in the cost functional used in this book (see (3.1))

has special meaning due to the
�4�

dissipation inequalities and connection to the ���
norm (a frequency domain concept) in the case of linear systems. Any integrand� � � � � � � � could be substituted in principle for

�� �  � � � � � �� � � � � and the corresponding
solution could be derived using similar methods. In particular, a suitable information
state can be defined:

� � � � � ��� � � � � : � ��� �� � �� � � � �� � � � �� � � � �� � � � � � � �  � � � � 
given � � � over

� : �C� � and given
� ��� � � � �

where as discussed above the trajectory
� �C> � is a solution of the reversed-arrow dy-

namics (1.17).

Further, measurement feedback versions of stabilization and loop shaping can
also be developed. To illustrate, consider a robust version of the hard-constrained rate
saturation example discussed above, where � �� � � � , with plant model����
	 � � ����&� � � � � ���� � � � �

� �
� � � � � �
and Lyapunov integrand

� � � � . The minimax cost associated with this problem for an
output feedback controller

� � � �C> � @B � �C> � is

� %�� � ��� � 	���	 � � � � � �

� � ��� � ��� ��� � 	� � � � � �� � � � � � �� � � �� � � � � �  �
with information state (a function of � � � � � ) defined for � �?> � � � �C> �

� � � � � � � � ��� � � � : � � � � : � � � � �� � � � � �� � � � � � �� � � �� � � � � � �� � � � � � �  �
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where �� ��	 � � ������ � � � � ���� � � � ��� �
� �

for
: �  �(� and

� ��� � � � , � ��� � � � . The PDE for the information state is�� � �  � � � � � � � > � 	 � � ������ � � � � ���� � � � � � �  � � � � � � � > �� � � � � � � � � � � � � � � � � ;
The dynamic programming PDE is

�����
� � � � � 	 ��	 �  % � � � � � �  � � > � 	 �� � � � � � � �� � > � �  � � > �

� � � � � � � � � � � � � :<;
If we optimize over � � � � � we get

	 ��	 �  %� � � � � �  � � > � 	 ���� � � � � � ���� > � �  � � > �
� � � � � � � � � � � � � �  % � � � � � �  � � � � � : �

with optimizer
�
� � � � � � sign �  % � � � � � �  � � � � ;

This gives the controller

� �"� � � � � : � � � �� �
� � � 0 � �  ;

The integral-constrained control rate example (1.33) can be handled in the same
way.

1.11 History

The objective of this section is to give a history of developments preceding this book.
Initially the account follows that given in [HM98a]. We have attempted to mention the
main developments, and we appologize in advance if we have missed some references.

1.11.1 Linear Frequency Domain Engineering

In commonplace language � � engineering amounts to achieving prescribed worst
case frequency domain specs. Optimizing worst case error in the frequency domain
along its present lines started not with control but with passive circuits. One issue
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was to design amplifiers with maximum gain over a given frequency band. Another
was the design of circuits with minimum broadband power loss. Indeed � � control
is a subset of a broader subject, � � engineering, which focusses on worst case de-
sign in the frequency domain. In paradigm engineering problems this produces what
a mathematician calls an “interpolation problem” for analytic functions. These can
be solved by Nevanlinna-Pick techniques. The techniques of Nevanlinna-Pick inter-
polation had their first serious introduction into engineering in a SISO (single-input
single output) circuits paper of Youla and Saito [YS67] in the middle 1960’s. Further
development waited until the mid-seventies, when Helton [Hel76], [Hel78], [Hel81]
applied interpolation and more general techniques from operator theory to amplifier
problems. Here the methods of commutant lifting [And63], [SNF70], [Sar67] and
of Admajan-Arov-Krein [AAK68], [AAK72], [AAK78] were used to solve MIMO
optimization problems.

In the late 1970’s G. Zames [Zam79] began to marshall arguments indicating that
� � rather than � � was the physically proper setting for control. Zames suggested on
several occasions that these methods were the appropriate ones for codifying classical
control. These efforts yielded a mathematical problem which Helton identified as
an interpolation problem solvable by existing means (see [ZF81]). In 1981 Zames
and Francis [ZF83] used this to solve the resulting single input single output SISO
problem. In 1982 Chang-Pearson [CJ84] and Francis-Helton-Zames [FHZ84] solved
it for many-input, many-output MIMO system.

The pioneering work of Zames and Francis treated only sensitivity optimization.
In 1983 three independent efforts emphasized bandwidth constrains, formulated the
problem as a precise mathematics problem and indicated effective numerical methods
for their solution: Doyle [Doy83], Helton [Hel83], and Kwakernaak [Kwa83]. All of
these papers described quantitative methods which were soon implemented on com-
puters. It was these papers which actually laid out precisely the tradeoff in control
between performance at low frequency and roll off at higher frequency and how one
solves the resulting mathematics problem. This is in perfect analogy with amplifier
design where one wants large gain over as wide a band as possible, producing the
famous gain bandwidth trade off.

Another independent development was Tannenbaum’s [Tan80] very clever use of
Nevanlinna-Pick interpolation in a control problem in 1980. Also early on the � �
stage was Kwakernaak’s polynomial theory, [Kwa86]. Another major development
that dove tailed closely with the invention of � � control was a tractable theory of
plant uncertainty. A good historical treatment appears in [DFT92]. Another applica-
tion of these techniques is to robust stabilization of systems H. Kimura et al [Kim84].
An early book on � � control was [Fra84].

1.11.2 Linear State Space Theory

To describe the origins of state space � � engineering we must back up a bit. Once the
power of the commutant lifting-AAK techniques were demonstrated on engineering
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problems, P. de Wilde played a valuable role by introducing them to signal processing
applications, see [DVK78], and to others in engineering. The state space solutions
of � � optimization problems originated not in � � control, but in the area of model
reduction. The AAK work with a shift of language is in a paper on model reduc-
tion (though not in state space coordinates) by Bettayab-Safanov-Silverman [BSS80],
which gives a state space viewpoint for SISO systems. Subsequently Glover [Glo84]
gave the MIMO state space theory of AAK type model reduction. Since the � � con-
trol problem was already known to be solvable by AAK, this quickly gave state space
solutions to the ��� control problem. These state space solutions were described first
in 1984 by Doyle in a report [Doy84] which though never published was extremely
influential. Earlier in his thesis (unpublished) he had given state space � � solutions
based on converting the geometric (now it would be called behavioral by engineers)
version of commutant lifting-AAK due to Ball and Helton to state space.

There was a vast effort on state space � � control by many engineers and math-
ematicians. We mention now only a few major developments. In the beginning there
were only crude bounds on the dimension of the state space of the controller and nu-
merical recipes for the controller relied on substantial cancellation which of course
is bad. It was discovered by [LH88] that the dimension of an ��� optimal controller
equals that of the plant � . Next came the famous paper of [DGKF89] which gave an
elegant cancellation free formula for the controller (as discussed in

�
1.2). The formu-

las in this paper have become standard. Other closely related results also appeared
around this time or a little later, see [Tad90], [Sto92]. An excellent presentation is
given in [GL95].

1.11.3 Factorization

It might be mentioned that factorization (the subject of Chapter 8) was known from
early on to yield all controllers producing a certain performance, as well has other
problems, c.f. [HBJP87]. These methods were developed by Ball-Helton and H. Kimura
and coworkers in many papers during the 80’s and 90’s(see [BHV91], [Kim97] and
the references therein). This lead to an elegant proof of the original DGKF formulae
as well as the first discrete time DGKF formulas by Ball-Ran [BR87]. A

�
-spectral

factorization approach was presented in [GGLD90], [Gre92].

1.11.4 Game Theory

It was observed in [Pet87], [DGKF89] (and elsewhere) that there are close connec-
tions between � � control and differential games. Basically, the two quite distinct
problems can be solved using the same Riccati equations. These connections were
pursued in depth by a number of researchers, see e.g. [LAKG92], [BB89] (updated
in 1995). The game theory view of � � control is as a minimax game, where the
disturbance or uncertainty is modelled by a malicious opponent, and the aim of the
controller is to minimize the worst performance under these circumstances. This time
domain formulation is very important for nonlinear systems.
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1.11.5 Nonlinear
� � Control and Dissipative Systems

The efforts to extend ��� control to nonlinear systems begin in the middle 80’s
by mathematicians versed in linear commutant lifting and AAK techniques. Ball-
Foias-Helton-Tannenbaum formulated the nonlinear problem and showed that power
series (Volterra) expansions lead to reasonable approximate solutions, [BFHT87b],
[BFHT87a]. This effort has continued to the produce impressive results, [FGT95],
[FGT96], [FGT98]. Ball-Helton pursued several different approaches. One was what
would today be described in terms of behaviors or games in extensive form [BH88c].
Another was in state space form [BH92a], [BH92b], [BH88a], [BH88b]. This re-
duced the solution of the measurement feedback discrete time nonlinear problem for
a “strongly” stable plant � to solution of an HJBI equation.

For continuous time state feedback basic work was done by van der Schaft [vdS91],
[vdS92], [vdS96]. He reduced the solution of the state feedback problem for a nonlin-
ear plant � to solution of an HJBI equation. This work was influenced by Willems’
theory of dissipative systems, [Wil72], [HM76], [HM77], etc. Indeed, van der Schaft
emphasizes

�4�
-gain terminology and the Bounded Real Lemma, [AV73]. This is a

powerful and natural formulation. Indeed, it is the
� �

-gain inequality (which we refer
to as the dissipation inequality in this book) which makes sense for nonlinear systems,
whereas the frequency domain concept of ��� norm does not apply to nonlinear sys-
tems.

1.11.6 Filtering and Measurement Feedback Control

Classical control problems, as discussed earlier, are formulated in the frequency do-
main and are naturally measurement feedback problems. This is reflected in the Ball-
Helton papers of the 80’s. Optimal control with measurement feedback is difficult,
and this explains in part the length of time it took to obtain a nice state space solution
to the linear � � control problem (most of a a decade). The issue is how to represent
and use the information contained in the measurements.

Much of optimal control theory (including games) is concerned with state feed-
back problems. This is natural, since the state of a system is a summary of its status,
and together with the current input values can be used to determine future behav-
ior. Engineers are interested in feedback controllers, and solutions to state feedback
optimal control problems lead to state feedback solutions (via, say, dynamic pro-
gramming). However, given that the original problem of interest is a measurement
feedback one, there is the difficulty of what to do with the lack of full state infor-
mation. A common, but often suboptimal approach is to design a state estimator (or
observer), and plug the state estimate into the optimal state feedback controller. This
is called certainty equivalence. The solution of the Linear Quadratic Gaussian (LQG)
problem is an optimal certainty equivalence controller, [Won68]. First, an optimal
state feedback controller is designed, and then coupled with the output of the optimal
state estimator, i.e. the Kalman-Bucy filter, [Kal60] [KB60]. The certainty equiva-
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lence approach is not optimal for the deterministic Linear Quadratic Regulator (LQR)
problem. Deterministic LQR designs may employ a Luenberger observer, [Lue66].

The linear LQG problem is a stochastic optimal control problem. What is hap-
pening in Kalman’s solution is that the optimal state estimate, the conditional mean,
becomes the state of a new system, and the optimal controller for this new sys-
tem turns out to coincide with the optimal state feedback controller for the origi-
nal system. Actually, the optimal LQG controller feeds back the conditional prob-
ability distribution, which being a Gaussian distribution, is completely determined
by the conditional mean and covariance (finite parameters). For nonlinear optimal
stochastic control problems analogous to LQG, the optimal controller is a function
of the conditional distribution. Thus the conditional distribution serves as an “in-
formation state” for these optimal control problems. The measurement feedback
optimal control problem is transformed into a new state feedback optimal control
problem, with the information state serving as the state variable. The evolution
of the conditional distribution is described by a stochastic partial differential equa-
tion, called the Kushner-Stratonovich equation [Kus64], [Str68], or in unnormalized
form, the Duncan-Mortensen-Zakai equation, [Dun67], [Mor66], [Zak69]. These are
the stochastic PDEs of nonlinear filtering, and are the nonlinear counterparts to the
Kalman filter equations. Thus nonlinear filtering is infinite dimensional, and measure-
ment feedback optimal stochastic control involves the optimal state feedback control
of an infinite dimensional system.

The information state approach has been well known since at least the 60’s, both
in the West and East. A nice explanation of these ideas is given in [KV86]. Of the
many publications devoted to this problem, we mention only [Str65], [Nis76], [Ell82],
[FP82], [Fle82], [Hij90], [EAM95]. It is still a difficult mathematical problem, and
presents challenging implementation issues.

For nonlinear problems analogous to the deterministic LQR problem, there is no
information state solution, and one typically uses a suboptimal certainty equivalence
design as discussed above. A key difficulty here is the design of the state estimator or
observer. This is a major problem in nonlinear control, [KET75], [HK77], [KR85],
etc.

In contrast, it is relatively straightforward to write down a nonlinear filter, al-
though one is faced with computational difficulties for implementation. In 1968,
R.E. Moretensen derived a deterministic approach to nonlinear filtering, called min-
imum energy estimation, [Mor68]. This is essentially a least squares approach, and
leads to a filter which is a first order nonlinear PDE. An interesting study of this filter
was conducted in 1980 by O. Hijab, [Hij80]. These deterministic filters are related
to the stochastic filters via small noise limits. These limits are examples of the type
which occur in the theory of large deviations. J.S. Baras was intrigued by these filters
and their connections, and in [BK82] proposed using these methods as the basis of a
design procedure for nonlinear observers, [BBJ88], [JB88], [Jam91].
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1.11.7
� � Control, Dynamic Games, and Risk-Sensitive Control

In 1973, D.H. Jacobson, [Jac73], introduces a new type stochastic optimal control
problem with an exponential cost function, which today is often called the risk-
sensitive problem. He solved a Linear Exponential Quadratic Gaussian (LEQG) prob-
lem with full state feedback, and observed that his solution is the same as the solution
for a related dynamic game (same Riccati equation). It took until 1981 for the cor-
responding linear measurement feedback problem to be solved, by Whittle [Whi81].
The structure of the controller is again of the certainty equivalence type, although the
Kalman filter estimate is not used. Instead, the Kalman filter is modified with terms
coming from the control objective. Whittle’s solution was very interesting, since
the conditional distribution is not used as the information state. Later, connections
with � � control, were discovered, [GD88], [DGKF89]. Thus ��� control, dynamic
games, and risk-sensitive control are all related.

In the late 80’s and early 90’s Basar-Bernhard and coworkers developed the cer-
tainty equivalence principle for deterministic minimax games and � � control. The
key reference here is the 1989 monograph [BB89] (revised in 1995), as well as the
papers [Ber91], [DBB93], [BR95]. The book [BB89] contains an excellent account
of the minimax game approach and certainty equivalence mainly in the linear context,
with some nonlinear results in the second edition. The certainty equivalence solution
is very closely related to the solution of Whittle, and is the basis of an important
approach to measurement feedback nonlinear � � control.

In the early 90’s a number of researchers began exploring the connections be-
tween � � control, dynamic games, and risk-sensitive control in the nonlinear con-
text, beginning with Whittle [Whi90a], [Whi90b], [Whi91]. The connections made
use of small noise limits. This work inspired Fleming-McEneaney, leading to the
papers [FM92], [FM95], and also to papers studying viscosity solutions of the � �
PDEs and PDIs [BH96], [Jam93], [McE95b], [McE95a], [Sor96]. Independently,
J.S. Baras suggested investigating the risk-sensitive problem using small noise meth-
ods, in conjunction with earlier work on nonlinear filters. This led to the papers
[Jam92], [JBE94], [JB95], [JB96], [BJ97]. The paper [JBE94] solved the nonlin-
ear measurement feedback (discrete time) stochastic risk-sensitive problem, solved a
nonlinear measurement feedback deterministic minimax game, and established con-
nections between them via small noise limits. An information state was used for both
problems, and in the risk-sensitive case, the information state was not the conditional
probability distribution. The information state definition was inspired by the paper
[BvS85], which used a method which generalizes to nonlinear systems. In the min-
imax case, the information state coincides with Basar-Bernhard’s cost-to-come, and
is related to the risk-sensitive information state in a manner analogous to the link
between Mortensen’s minimum energy estimator and stochastic nonlinear filters dis-
cussed above. See also the publications [KS89], [Ber96]. A large number of papers
have since been written concerning various aspects of risk-sensitive control, filter-
ing, games, and their connections: [PMR96], [CE95], [CH95], [FHH97], [FHH98],
[Nag96], [RS91], [Run91], etc.
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1.11.8 Nonlinear Measurement Feedback
� � Control

While stable plant problems had been known to convert to HJBI inequalities since the
late 80’s, the unstable measurement feedback problem remained intractable. A sub-
stantial number of papers have been written, including: Isidori-Astolfi-Kang [IA92a],
[IA92b], [Isi94], [IK95], Ball-Helton-Walker [BHW93], Didinsky-Basar-Bernhard
[DBB93], Krener [Kre94], Lin-Byrnes [LB95], Lu-Doyle [LD94], Maas [Maa96],
Nguang [Ngu96]. These results illuminated various aspects of the measurement feed-
back problem, and indeed the results all specialized to the well known DGKF solution
when applied to linear systems. The results were generally of a sufficient nature, so
that if certain PDEs or PDI could be solved, then a solution to the nonlinear � � con-
trol problem would be produced. However, in general these results are far from being
necessary: � � controllers could exist but not be of the form given in these papers.
This is because nonlinear filtering, and hence optimal measurement feedback control,
is intrinsically infinite dimensional.

Information state controllers for nonlinear ��� control were obtained by a num-
ber of authors in the early 90’s. van der Schaft [vdS96] identified some of the key
measurement feedback equations, including the coupling condition, and obtained in-
formation state controller formulas assuming certainty equivalence. Didinsky-Basar-
Bernhard [DBB93] obtained information state controllers assuming certainty equiva-
lence and generalized certainty equivalence. The first general solution to the nonlinear
� � problem was given in [JB95] (see also [JBE94]). The information state was em-
ployed to give an intrinsically infinite dimensional solution, complete with a clean
set of basic necessity and sufficiency theorems. A number of related papers have ap-
peared since then, e.g. [Teo94], [TYJB94], [JY95], [Yul96]. In 1994 Helton-James
realized that the information state framework could be used for

�
inner outer factor-

ization, and preliminary results and formulas were published in [HJ94]. This initiated
a detailed investigation and development of the information state solution, leading to
the papers [HJ95], [HJ96b], [HJ96a], and ultimately, to this book.

1.11.9 Prehistory

Now we lurch back to sketch the origins of the HJBI equations which play such a big
role in this book. This is an extensive subject which is well described in many places,
so we give little account of the history and just list some references. Thus we urge the
curious to read [Bel57], [Isa65], [You69], [FR75], [FS93], [BO95].

1.12 Comments Concerning PDEs and Smoothness

In this book we make extensive use of optimal control methods and nonlinear PDEs
(Hamilton-Jacobi type). In general, solutions to such PDEs are not globally smooth,
and in Appendix B we discuss these equations and their solutions, in particular, the
concept of viscosity solution.
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We have attempted to minimize technical issues arising because of lack of smooth-
ness, to keep the focus of the book on control-theoretic ideas. In many places we use
PDEs on finite dimensional spaces (such as the PDE giving the dynamics of the infor-
mation state), and use integrated (i.e. dynamic programming) representations which
are meaningful without smoothness. In some results we assume smoothness to help
keep statements clear (and readily connected to the familiar linear case), and to sim-
ply proofs. However, readers should be aware that such results remain valid without
the smoothness assumptions, with appropriate interpretations and proofs.

PDEs on infinite dimensional spaces play a major role in this book. There are
many unresolved purely mathematical issues concerning these PDEs. We have not at-
tempted to describe in detail issues concerning the concept of solution for such equa-
tions (this is still an open question). Instead, we have stated a number of results which
have no need of smoothness (these make use of the integrated dynamic programming
equation). However, when one uses the dynamic programming PDE to obtain an opti-
mal feedback controller (such as our construction of the central controller) some form
of smoothness is required, so we formalize what we need and assume this in order to
develop the control-theoretic ideas. We have tried to make clear where smoothness is
or is not assumed.

We remark that the results in this book have discrete time analogs (see [JB95]),
and differentiability is irrelevant in discrete time. Thus discrete time controllers can
be obtained directly from discrete time analogs of the dynamic programming PDE
without the need for the value function to be differentiable.


