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Background and Motivation

The need for robustness in quantum control systems

The “H-infinity” approach to robust control system design



Linear Quantum Models

We consider noncommutative stochastic systems of the form

dx(t) = Ax(t)dt + Bdw(t)

dz(t) = Cx(t)dt + Ddw(t) (1)

where A, B, C and D are real matrices, and

x(t) =


x1(t)

...

xn(t)


is a vector of possibly noncommutative plant variables.
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The initial system variables x(0) are Gaussian with state ρ, and satisfy the

commutation relations

[xj(0), xk(0)] = Cxx
jk = 2iΘjk, j, k = 1, . . . , n,

where Σ is a real antisymmetric matrix.

For example, a system with one classical variable and two conjugate quantum variables

is characterized by

Θ =


0 0 0

0 0 1

0 −1 0

 .
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The vector quantity w describes input channels and is assumed to admit the

decomposition

dw(t) = βw(t)dt + dw̃(t)

where βw(t) is the self-adjoint finite variation part, and w̃(t) is the (Gaussian) noise

part of w(t) with Ito table

dw̃(t)dw̃T (t) = Fw̃dt,

where Fw̃ is a non-negative Hermitian matrix.

For instance,

Fw̃ =


1 0 0

0 1 i

0 −i 1


describes a noise vector with one classical component and a pair of conjugate quantum

Gaussian noises.
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Physical systems

Preservation of commutation relations imposes constraints on plant matrices

A, B, C,D:

Assume [xi(t), βw,j(t)] = Cxβw
ij for all t ≥ 0. Then

[xi(0), xj(0)] = Cxx
ij implies [xi(t), xj(t)] = Cxx

ij

for all t ≥ 0 if and only if

ACxx + CxxAT −B(Cxβw)T + CxβwBT + 2BTw̃BT = 0.
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Physical realizability

When seeking to build controllers from linear models we need to know when such a

model is physically realizable.

We regard all classical systems as physically realizable, at least approximately via

classical electronics.

We shall say that a system is physically realizable if it corresponds to a completely

positive evolution.

The commutation relations can be used to characterize physical realizability, for

example:

Assume that Σ is invertible and n is even, and Cxβw = 0. Then the system is

physically realizable if and only if the condition

ACxx + CxxAT + 2BTw̃BT = 0

holds.
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Dissipation Properties

We wish to characterize the effect of inputs on 
system behavior 

We generalize the notions of “dissipation” widely 
used in classical control and formalized by J.C. 
Willems, 1972.

This keeps track of power flows and stored energy

e.g. effect of disturbances on performance
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Definition

Given an operator valued quadratic form

r(x, βw) = [xT βT
w ]R

 x

βw


where

R =

 R11 R12

RT
12 R22


is a given real symmetric matrix.

We say the system is dissipative with supply rate r(x, βw) if there exists a positive

operator valued quadratic form V (x) = xT Xx (where X is a real positive definite

symmetric matrix) and a constant λ > 0 such that

〈V (x(t))〉 +

∫ t

0

〈r(x(s), βw(s))〉ds ≤ 〈V (x(0))〉 + λt ∀t > 0,

for all Gaussian ρ.

We say that the system is strictly dissipative if there exists a constant ε > 0 such that

the above inequality holds with the matrix R replaced by the matrix R + εI.
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Theorem

The system is dissipative with supply rate r(x, βw) if and only if there exists a real

positive definite symmetric matrix X such that the following matrix inequality is

satisfied:  AT X + XA + R11 R12 + XB

BT X + RT
12 R22

 ≤ 0.

Furthermore, the system is strictly dissipative if and only if there exists a real positive

definite symmetric matrix X such that the following matrix inequality is satisfied: AT X + XA + R11 R12 + XB

BT X + RT
12 R22

 < 0
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Moreover, if either of the above holds then the required constant λ ≥ 0 can be chosen

as

λ = tr

 BT

GT

X
[

B G
]
F


where the matrix F is defined by the following relation:

Fdt =

 dw

dv

[
dwT dvT

]
.
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The proof depends on the following identity

〈V (x(t)〉 != (ρ⊗ φ)(V (x(t))) = 〈ρ, E0[V (x(t))]〉,
where E0 denotes expectation with respect to φ, and on the following

Lemma

Consider a real symmetric matrix X and corresponding operator valued quadratic form

ηT Xη. Then the following statements are equivalent:

1. There exists a constant λ ≥ 0 such that

〈ρ, ηT Xη〉 ≤ λ

for all Gaussian states ρ.

2. The matrix X is negative semidefinite.
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For H∞ control, we need the following special case:

Definition

The system is said to be Bounded Real if it is dissipative with supply rate

r(x, βw) = βT
z βz − βT

wβw

= [xT βT
w ]

 CT C CT D

DT C DT D − I

 x

βw

 .

It is Strictly Bounded Real if it is strictly dissipative with this supply rate.
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Corollary

The system is bounded real if and only if there exists a positive definite symmetric

matrix X ∈ Rn×n such that the following matrix inequality is satisfied: AT X + XA + CT C CT D + XB

BT X + DT C DT D − I

 ≤ 0.

Furthermore, the quantum stochastic system is strictly bounded real if and only if there

exists a positive definite symmetric matrix X ∈ Rn×n such that the following matrix

inequality is satisfied: AT X + XA + CT C CT D + XB

BT X + DT C DT D − I

 < 0.

Moreover, in both cases the required constant λ ≥ 0 can be chosen as

λ = tr

 BT

GT

X
[

B G
]
F

 .
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Corollary

The following statements are equivalent

1. The system is strictly bounded real.

2. A is a stable matrix and ‖C(sI − A)−1B + D‖∞ < 1.

3. I −DT D > 0 and there exists a positive definite matrix X > 0 such that

AT X + XA + CT C

+(XB + CT D)(I −DT D)−1(BT X + DT C) < 0.

4. The algebraic Riccati equation

AT X + XA + CT C

+(XB + CT D)(I −DT D)−1(BT X + DT C) = 0

has a stabilizing solution X ≥ 0.

Furthermore, if these statements hold then 0 < X.
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H-Infinity Controller Synthesis

Given a plant and gain g, find a controller such that the closed loop 
system from w to z has gain less than g.

Given a system (plant), find another system (controller) so that the gain from w to z is

small. This is one way of reducing the effect of uncertainty or environmental influences.

/environment
!

!

"

"
" "

!!

plant

w z

y

v

vK

u

controller

uncertainty

Classical: Zames, late 1970’s

Quantum: D’Helon-James, 2005; James-Petersen, 2006

14

(to reduce effect of 
environment/uncertainty)

Problem: 



Form a closed loop system consisting of the plant 
and controller (of prescribed form - a standard 
approach)

Apply the strict bounded real lemma

This (partly) determines linear equations for 
controller

Complete, if possible, physical realization of 
controller

Idea of solution: 



Plant model

dx(t) = Ax(t)dt + B0dv(t) + B1dw(t) + B2du(t);

x(0) = x;

dz(t) = C1x(t)dt + D12du(t);

dy(t) = C2x(t)dt + D20dv(t) + D21dw(t)

?? picture ??

13



Controller model

dξ(t) = AKξ(t)dt + BK1dvK(t) + BKdy(t)

du(t) = CKξ(t)dt + BK0dvK(t)

?? picture ??
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Controller model

dξ(t) = AKξ(t)dt + BK1dvK(t) + BKdy(t)

du(t) = CKξ(t)dt + BK0dvK(t)

?? picture ??
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Closed loop system

Write

η(t) =

 x(t)

ξ(t)

 .

Then

dη(t) = Ãη(t)dt + B̃dw(t) + G̃dṽ(t)

dz(t) = C̃η(t)dt + D̃dṽ(t)

where

ṽ(t) =

 v(t)

vK(t)

 ; Ã =

 A B2CK

BKC2 AK

 ;

B̃ =

 B1

BKD21

 ; G̃ =

 B0 B2BK0

BKD20 BK1

 ;

C̃ =
[

C1 D12CK

]
; D̃ =

[
0 D12BK0

]
.
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Assumptions

1. DT
12D12 = E1 > 0.

2. D21DT
21 = E2 > 0.

3. The matrix

 A− jωI B2

C1 D12

 is full rank for all ω ≥ 0.

4. The matrix

 A− jωI B1

C2 D21

 is full rank for all ω ≥ 0.
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Riccati Equations

The following Riccati equations will be used to construct the controller:

(A−B2E
−1
1 DT

12C1)
T X + X(A−B2E

−1
1 DT

12C1)

+X(B1B
T
1 − g2B2E

−1
1 B′

2)X

+g−2CT
1 (I −D12E

−1
1 DT

12)C1 = 0;

(A−B1D
T
21E

−1
2 C2)Y + Y (A−B1D

T
21E

−1
2 C2)

+Y (g−2CT
1 C1 − CT

2 E−1
2 C2)Y

+B1(I −DT
21E

−1
2 D21)B

T
1 = 0.
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Controller

The controller matrices AK , BK and CK are determined as follows:

AK = A + B2CK −BKC2 + (B1 −BKD21)B
T
1 X;

BK = (I − Y X)−1(Y CT
2 + B1D

T
21)E

−1
2 ;

CK = −E−1
1 (g2BT

2 X + DT
12C1).

The remaining controller matrices BK0, BK1 and any required noise sources vK will be

discussed below.
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Theorem

Necessity. If there exists a controller of the above form such that the resulting closed

loop system is strictly bounded real with disturbance attenuation g, then the above

Riccati equations will have solutions X ≥ 0 and Y ≥ 0 satisfying

1. A−B2E
−1
1 DT

12C1 + (B1BT
1 − g2B2E

−1
1 B′

2)X is a stability matrix.

2. A−B1DT
21E

−1
2 C2 + Y (g−2CT

1 C1 − CT
2 E−1

2 C2) is a stability matrix.

3. The matrix XY has a spectral radius strictly less than one.
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Sufficiency. Suppose the Riccati equations have solutions X ≥ 0 and Y ≥ 0 satisfying

1. A−B2E
−1
1 DT

12C1 + (B1BT
1 − g2B2E

−1
1 B′

2)X is a stability matrix.

2. A−B1DT
21E

−1
2 C2 + Y (g−2CT

1 C1 − CT
2 E−1

2 C2) is a stability matrix.

3. The matrix XY has a spectral radius strictly less than one.

If the controller is such that the matrices AK , BK , CK are given by

AK = A + B2CK −BKC2 + (B1 −BKD21)B
T
1 X;

BK = (I − Y X)−1(Y CT
2 + B1D

T
21)E

−1
2 ;

CK = −E−1
1 (g2BT

2 X + DT
12C1).

then the resulting closed loop system will be strictly bounded real with disturbance

attenuation g.
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Physical Realization

Consider the case of a fully quantum controller, of dimension n = dimx = dimξ

(even), and no classical degrees of freedom. We take

Cξξ = 2idiag(J, . . . , J),

an n× n matrix, where

J =

 0 1

−1 0


The input and output channels are also fully quantum, with

Fy = I + idiag(J, . . . , J)

Fu = I + idiag(J, . . . , J)

FvK = I + idiag(J, . . . , J)
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We seek a Hamiltonian

Hcontroller =
1

2
ξT Rξ

and coupling operator vector

Lcontroller = Λξ

Here, the matrices R ≥ 0 and Λ are to be determined and compatible with the

controller matrices AK , BK and CK given above.

General form Edwards-Belavkin, 2005

dξ = −iCξξ(R + $(Λ†Λ))ξdt + Cξξ
[
−Λ† ΛT

]
Γ

 dvK

dy



du = P T
Nu

q

 Σ 0

0 Σ

 Λ + Λ∗

−iΛ + iΛ∗

 ξdt + Pnc

 dvK

dy


Σ = [ INu

q ×Nu
q

0Nu
q ×(nc−Nu

q ) ].
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The basic idea is to add additional noise channels to ensure the commutation relations

are preserved.

Theorem

The controller is fully quantum realizable if and only if

iCξξAK + iAT
K(Cξξ)T ≥ 0

Furthermore, if this condition is satisfied then explicit formulas exist (omitted).
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Robust Stability

 The strict bounded real property of the closed 
loop system obtained above guarantees stability 
robustness against real parameter uncertainties.

We regard the true physical system as a 
perturbation of the nominal system used for 
design.



We suppose that the true closed loop quantum system is described by the equations

dη(t) = Āη(t)dt + G̃dṽ(t)

where Ā = Ã + B̃∆C̃ and ∆ is a constant matrix satisfying

∆T ∆ ≤ I.

This closed loop quantum system is said to be mean square stable if there exists a real

positive definite matrix X > 0 and a constant λ > 0 such that

〈η(t)T Xη(t)〉 +

∫ t

0

〈η(s)T η(s)〉ds ≤ 〈η(0)T Xη(0)〉 + λt ∀t > 0

for all Gaussian ρ.
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Lemma

The closed loop system is mean square stable if and only if the matrix Ā is

asymptotically stable.

Proof: Uses above dissipation results and standard Lyapunov results.

Theorem

If the nominal closed loop system is strictly bounded real then the true closed loop

system is mean square stable for all ∆ satisfying

∆T ∆ ≤ I.

Proof: Uses above lemma and standard small gain theorem.
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Examples from Quantum Optics

H-infinity: Quantum controller

H-infinity:  Classical controller

Robust stability: parameter uncertainty



Lemma

The closed loop system is mean square stable if and only if the matrix Ā is

asymptotically stable.

Proof: Uses above dissipation results and standard Lyapunov results.

Theorem

If the nominal closed loop system is strictly bounded real then the true closed loop

system is mean square stable for all ∆ satisfying

∆T ∆ ≤ I.

Proof: Uses above lemma and standard small gain theorem.
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da = −γ

2
adt−√κ dV −√κ dW −√κ dU

dZ =
√

κ adt + dU

dY =
√

κ adt + dW (quantum output)

dY =
√

κ (a + a∗)dt + dw̃1 (classical output)
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Closed loop with quantum controller
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Closed loop with quantum controller
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Closed loop with classical controller
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Closed loop with classical controller
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Plant with parameter uncertainty

da = −γ + δ

2
adt−√κ + δ dV −√κ dW −√κ dU

dZ =
√

κ adt + dU

dY =
√

κ adt + dW.

where δ is a constant but unknown uncertain parameter satisfying a known bound

|δ| ≤ µ

To apply the robust stability results, we write

A = −γ

2
I + B̃1∆C̃1 where B̃1 =

µ

2
, C̃1 = T−1

and T is any non-singular matrix.

Then

∆ =
δ

µ
I =⇒ ∆T ∆ ≤ I

and robust stability will follow.
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Conclusions

We have extended standard methods of H-infinity robust control 
to the domain of linear quantum systems

 The controllers may be quantum or classical

There are interesting new realization questions

The results provide the beginnings of useful robust control 
design methods for quantum technology


