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Motivation

Linear quantum systems; e.g quantum optics



Quantum systems, like all real world systems, are subject to 
noise and uncertainty

This can lead to performance degradation, and even instability



 Feedback Stability
Even when individual components are stable, feedback interconnections need not be.
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The small gain theorem asserts stability of the feedback loop if the loop gain is less

than one:

gAgB < 1

Classical: Zames, Sandberg, 1960’s

Quantum: D’Helon-James, 2006
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Stability is quantified in a mean-square sense as follows.

! !
u y

Σq

dU(t) = βu(t)dt + dBu(t)

dY (t) = βy(t)dt + dBy(t)

‖ βy ‖2
t≤ µ + λt + g2 ‖ βu ‖2

t
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We seek system theoretic ways of characterizing dissipativity for 
quantum feedback networks

This will provide a foundation for quantum robust stability 
analysis and design

We focus (initially) on linear quantum systems, such as quantum 
optical systems



Problem Statement

Linear/Gaussian Quantum Model:

We consider systems described by noncommutative stochastic models of the form

dx(t) = Ax(t)dt + Bdw(t) + Gdv(t) x(0) = x,

dz(t) = Cx(t)dt + Ddw(t)

where

x(t) =


x1(t)

...

xn(t)


is a vector of possibly noncommutative plant variables.
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The “disturbance” input

w(t) =


w1(t)

...

wnw(t)


is assumed to admit the decomposition

dw(t) = βw(t)dt + dw̃(t)

where w̃(t) is the noise part of w(t) and βw(t) is the finite variation part of w(t).

Similarly, the “error” ouput

z(t) =


z1(t)

...

znz(t)


is assumed to admit the decomposition

dz(t) = βz(t)dt + dz̃(t)

and hence βz(t) = Cx(t) + Dβw(t).
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The noise vectors

v(t) =


v1(t)

...

vnv(t)

 ; w̃(t) =


w̃1(t)

...

w̃nw(t)

 ;

are vectors of noncommutative Wiener processes, with Ito table

dv(t)dvT (t) = Fvdt, dw̃(t)dw̃T (t) = Fw̃dt,

where Fv and Fw̃ are non-negative Hermitian matrices;

This model is defined in a quantum probability space (A , P), where A is a von

Neumann algebra and P is a state on this algebra.

E.g. (A , P) = (B ⊗W , ρ⊗ φ), where B = B(h) is the algebra of system operators

with state ρ, and W = B(F) is the algebra of operators on Fock space with vacuum

state φ.

In the above, x(0) ∈ B, and the noises belong to W .
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E.g. single degree of freedom quantum particle, where

x =

 q

p

 ,

with non-commuting position q and momentum p operators:

[q, p] = qp− pq = !i
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E.g. disturbance w represents a coherent optical field (a laser model):

dw(t) = βw(t)dt + dw̃(t)

Here, βw(t) is a complex valued function of time (modulation of the field), and

w̃(t) =

 Q(t)

P (t)


is a standard quantum Wiener process (representing quantum noise), with Ito table:

dw̃(t)dw̃T (t) =

 1 i

−i 1

 dt
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Given an operator valued quadratic form

r(x, βw) = [xT βT
w ]R

 x

βw


where R is a given real symmetric matrix, we say the system (1) is dissipative with

supply rate r(x, βw) if there exists a positive operator valued quadratic form

V (x) = xT Xx (where X is a real positive definite symmetric matrix) and a constant

λ > 0 such that

〈V (x(t))〉+

∫ t

0

〈r(x(s), βw(s))〉ds

≤ 〈V (x(0))〉+ λt ∀t > 0,

for all Gaussian ρ. Here we use the shorthand notation

〈·〉 ≡ P(·)
for expectation.

We say that the system (1) is strictly dissipative if there exists a constant ε > 0 such

that the above inequality holds with the matrix R replaced by the matrix R + εI.
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Main Results

Theorem
Given a quadratic form r(x, βw) defined as above, then the quantum stochastic system

is dissipative with supply rate r(x, βw) if and only if there exists a real positive definite

symmetric matrix X such that the following matrix inequality is satisfied: AT X + XA + R11 R12 + XB

BT X + RT
12 R22

 ≤ 0.

Furtheremore, the system is strictly dissipative if and only if there exists a real positive

definite symmetric matrix X such that the following matrix inequality is satisfied: AT X + XA + R11 R12 + XB

BT X + RT
12 R22

 < 0

is satisfied.
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Moreover, if either of the matrix inequalities holds then the required constant λ ≥ 0

can be chosen as

λ = tr

 BT

GT

X
[

B G
]
F


where the matrix F is defined by the following Ito table

Fdt =

 dw̃T

dvT

[
dw̃ dv

]
.
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The proof depends on the following identity

〈V (x(t)〉 = 〈ρ, E0[V (x(t))]〉,
where E0 denotes expectation with respect to φ, and on the following

Lemma

Consider a real symmetric matrix X and corresponding operator valued quadratic form

ηT Xη for the system. Then the following statements are equivalent:

1. There exists a constant λ ≥ 0 such that

〈ρ, ηT Xη〉 ≤ λ

for all Gaussian states ρ on B(h).

2. The matrix X is negative semidefinite.

11



 Corollaries

Bounded Real Lemma

Positive Real 

Strict versions of BRL, PRL

The following results follow from the above with 
suitable choices of supply rates:



Applications

The H-Infinity Robust Control Problem:
Given a system (plant), find another system (controller) so that the gain from w to z is

small. This is one way of reducing the effect of uncertainty or environmental influences.
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Classical: Zames, late 1970’s

Quantum: D’Helon-James, 2005; James-Petersen, 2006

14

Given a system (plant), find another system (controller) so that the gain from w to z is

small. This is one way of reducing the effect of uncertainty or environmental influences.

/environment
!

!

"

"
" "

!!

plant

w z

y

v

vK

u

controller

uncertainty

Classical: Zames, late 1970’s

Quantum: D’Helon-James, 2005; James-Petersen, 2006

14

Given a system (plant), find another system (controller) so that the gain from w to z is

small. This is one way of reducing the effect of uncertainty or environmental influences.

/environment
!

!

"

"
" "

!!

plant

w z

y

v

vK

u

controller

uncertainty

Classical: Zames, late 1970’s

Quantum: D’Helon-James, 2005; James-Nurdin-Petersen, 2006

14



Example with Quantum Controller:

vK2

!
!

!
!

"
"

"
""#$

$
$

$$%

!

&

'
'( $

$$%

)

"
"

"! !
!

!
!

"
"

"
""#$

$
$

$$%

!

'
'( $

$$%

)

v

w

a

y

uz

aK

vK1

plant

controller

"
"

"

18



Example with Classical Controller:
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We have provided an algebraic characterization of dissipativity 
applicable to linear quantum stochastic systems

Generalizations of the Bounded Real Lemma and Positive Real 
Lemma follow

This work provides a foundation for quantum robust stability 
analysis and design

Conclusions


