ELECTROMAGNETISM SUMMARY

- Magnetostatics
- Ampere's law and Faraday's law
- ► Maxwell's equations
- ► Waves

Magnetostatics: The static magnetic field

```
Solution Gauss's law for the magnetic field:

\oint_{A} \mathbf{B}.\mathbf{dA} = 0
```

► There is no static sink or source of the magnetic field. Also generally true.

However current is the source of a static magnetic field,

$$\oint_{\gamma} \mathbf{B}.\mathbf{dl} = \mu_0 I$$

The line integral of ${\bf B}$ around a closed circuit γ bounding a surface ${\bf A}$ is

equal to the current flowing across A. Ampere's law

Important Correction to Ampere's Law

A time varying Electric field is also a source of the time varying magnetic field,

Why this Correction to Ampere's Law?

4

Ampere's law without E contradicts charge conservation

$$\oint_{\gamma} \mathbf{B}.\mathbf{dl} = \int_{A} \mu_0 \left(\mathbf{j} + \epsilon_0 \frac{\partial \mathbf{E}}{\partial t} \right) .\mathbf{dA}$$

> Consider the new Ampere's law on a **close surface area**, **A**.

Why this Correction to Ampere's Law?

> If we shrink the closed contour γ on the left hand side to zero then we obtain

$$0 = \oint_{A} \mu_0 \left(\mathbf{j} + \epsilon_0 \frac{\partial \mathbf{E}}{\partial t} \right) . \mathbf{dA}$$

However the two terms on the right hand side are

$$\oint_{A} \mathbf{E}.\mathbf{dA} = \frac{q}{\epsilon_0}$$
 and

$$\oint_{A} \mathbf{j}.\mathbf{dA} = -\frac{\partial q}{\partial t}$$

Faraday's Law

> The law of electromagnetic induction or Lenz's law

> A time varying magnetic field is also the source of the electric field,

Maxwell's Equations: Integral Form

Gauss's law for the electric field. Charge is the source of electric field:

$$\oint_{A} \mathbf{E}.\mathbf{dA} = \frac{q}{\epsilon_0}$$

Faraday's law. A changing magnetic flux causes an electromotive force:

$$\oint_{\gamma} \mathbf{E}.\mathbf{d}\mathbf{l} = -\int_{A} \frac{\partial \mathbf{B}}{\partial t}.\mathbf{d}\mathbf{A}$$

Gauss's law for the magnetic field. Magnetic fields are source free:

$$\oint_{A} \mathbf{B}.\mathbf{dA} = \mathbf{0}$$

> Ampere's law:

$$\oint \mathbf{B}.\mathbf{dl} = \int \mu_0 \left(\mathbf{j} + \epsilon_0 \frac{\partial \mathbf{E}}{\partial t} \right) .\mathbf{dA}$$

Maxwell's Equations: Differential Form

Gauss's law for the electric field. $\nabla \mathbf{E} = -\frac{\rho}{\rho}$ -€0 ► Faraday's law. $\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$ Gauss's law for the magnetic field. $\nabla \mathbf{B} = 0$ > Ampere's law: $\nabla \times \mathbf{B} = \mu_0 \left(\mathbf{j} + \epsilon_0 \frac{\partial \mathbf{E}}{\partial t} \right)$

EM Waves

Start with Faraday's law and Ampere's law in VACUO.

$$\oint_{\gamma} \mathbf{E}.\mathbf{dl} = -\int_{A} \frac{\partial \mathbf{B}}{\partial t}.\mathbf{dA}$$

$$\oint_{\gamma} \mathbf{B}.\mathbf{dl} = \int_{A} \mu_0 \epsilon_0 \frac{\partial \mathbf{E}}{\partial t}.\mathbf{dA}$$

 \blacktriangleright Recall that the line integral along γ is on the perimeter of the surface ${\bf A}$

- ► Thus a one dimensional **E** and **B** must have **E.B** = 0.
- > Moreover $\mathbf{E} \times \mathbf{B}$ points in the direction of propagation.

> Apply F and A to the diagrams below and note that **A** points in the direction of the right hand screw rule with respect to the direction of γ

> Integrating **E** around γ in the left figure...

$$[E(z+dz) - E(z)]L = -\frac{\partial B}{\partial t}L\Delta z$$

$$\frac{\partial E}{\partial z}L\Delta z = -\frac{\partial B}{\partial t}L\Delta z$$

> Integrating **B** around γ in the right figure...

$$[B(z+dz) - B(z)]L = -\epsilon_0 \mu_0 \frac{\partial E}{\partial t} L\Delta z$$

$$\frac{\partial B}{\partial z}L\Delta z = -\epsilon_0\mu_0\frac{\partial E}{\partial t}L\Delta z$$

Two equations for **E** and **B** $\frac{\partial E}{\partial z} = -\frac{\partial B}{\partial t}$ $\frac{\partial B}{\partial z} = -\epsilon_0 \mu_0 \frac{\partial E}{\partial t}$

> Simultaneous solution gives the wave equation for each field:

$$\frac{\partial^2 E}{\partial z^2} = \epsilon_0 \mu_0 \frac{\partial^2 E}{\partial t^2}$$
$$\frac{\partial^2 B}{\partial z^2} = \epsilon_0 \mu_0 \frac{\partial^2 B}{\partial t^2}$$

Solution of the Wave Equation 1

► Two equations for **E** and **B**

$$E = E(X); \quad B = B(X)$$

where $X = z \pm v.t$

$$\frac{\partial^2 E}{\partial z^2} = \frac{1}{v^2} \frac{\partial^2 E}{\partial t^2}$$

$$\frac{\partial^2 B}{\partial z^2} = \frac{1}{v^2} \frac{\partial^2 B}{\partial t^2}$$

> The solution of the wave equation is an arbitrary function of the displacement argument $X = z \pm v.t$

Solution of the Wave Equation 1

 \sim **T**

 \sim

$$\frac{\partial E}{\partial z} = -\frac{\partial B}{\partial t} \Longrightarrow E'(X) = \mp v B'(X)$$
$$\frac{\partial B}{\partial z} = -\epsilon_0 \mu_0 \frac{\partial E}{\partial t} \Longrightarrow B'(X) = \mp v \epsilon_0 \mu_0 E'(X)$$

> Thus
$$E(X) = cB(X)$$
 and $v = c = \sqrt{\frac{1}{\epsilon_0 \mu_0}}$.

> The solution of the wave equation is an arbitrary function of the displacement argument $X = z \pm c.t$

Solution of the Wave Equation 2

Solution as a function of z for four different times...

