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Abstract. The approach used to assess a learning algorithm should
reflect the type of environment we place the algorithm within. Often
learners are given examples that both contain noise and are governed by
a particular distribution. Hence, probabilistic identification in the limit
is an appropriate tool for assessing such learners. In this paper we intro-
duce an exact notion of probabilistic identification in the limit based on
Laird’s thesis. The strategy presented incorporates a variety of learning
situations including: noise free positive examples, noisy independently
generated examples, and noise free with both positive and negative ex-
amples. This yields a useful technique for assessing the effectiveness of
a learner when training data is governed by a distribution and is possi-
bly noisy. An attempt has been made to give a preliminary theoretical
evaluation of the @-heuristic. To this end, we have shown that a learner
using the @Q-heuristic stochastically learns in the limit any finite class of
concepts, even when noise is present in the training examples. This result
is encouraging, because with enough data, there is the expectation that
the learner will induce a correct hypothesis. The proof of this result is
extended to show that a restricted infinite class of concepts can also be
stochastically learnt in the limit. The restriction requires the hypothesis
space to be g-sparse.



1 Introduction

The type of training examples provided to a learner has a significant effect on
the class of concepts that may be learnt. For example, in the identification in
the limit framework, by restricting the training examples to positive only exam-
ples we severely restrict the class of concepts that may be identified. However,
by attaching a distribution to the instance space, providing the positive exam-
ples to the learner according to this distribution, the class of concepts that may
be learnt is extended [12]. Also, the environment in which we assess a learning
system should reflect the environment in which we expect the learner to op-
erate. We often expect learners to operate in domains that both contain noise
and training examples which are governed by some distribution. This provides
a strong motivation for probabilistic identification in the limit, introduced by
Laird [7,8], where training examples are possibly noisy. Laird’s approach, al-
though embracing noise in the training examples, assumes both positive and
negative examples are provided to the learner. Whereas, the approach taken in
this paper uses an oracle to determine if an example will be positive or negative.
This generalizes the type of training examples given to a learner, permitting
probabilistic identification results to encompass a larger variety of learning situ-
ations. The stochastic process used to generate example texts and the definition
of probabilistic identification is presented in section 2.

The @ heuristic was designed for an ILP system, LIME. This system learns
from possibly noisy data where the number of positive and negative training ex-
amples are fixed and independent from the concept provided[11,10]. The heuris-
tic simply uses Bayes rule! given the assumptions regarding the training exam-
ples. We show that a learner which employs the @) heuristic will stochastically
learn in the limit:

— any finite class of concepts, and
— a restricted infinite classes of concepts.

Of course, a finite class of concepts is trivially learnable from positive only data
in the identification in the limit setting [6]. Hence, it is also learnable in the
stochastic identification in the limit setting. What keeps our result from being
trivial is the presence of noise in the data. Having presented this result, we
explore conditions under which the result can be extended to an infinite class of
concepts. The proof techniques for the infinite case, which introduces the notion
of g-sparse hypothises spaces, builds on that of the finite case. These results are
presented in section 3.

Section 4 contains two example concepts classes which may be shown to be
g-sparse. We finally discuss possible future direction in section 5.

2 Probabilistic Identification in the Limit

Probabilistic identification in the limit extends identification in the limit by
replacing the teacher that presents all the examples to the learner with a teacher
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that uses a distribution to present examples to the learner. The criterion of
success is correspondingly altered requiring that with probability 1 the learner
induces a correct hypothesis all but finitely many times.

Let X be the instance space and Dx be a probability measure over X. Note,
Dx is a mapping from 2% to [0,1] and Dx({z}) is simply written Dx (z). We
also assume X to be a countable set. Recall that members of 2% are concepts.
Let C be a class of concepts. The probability cover of a concept ¢, defined 6(c),
is Dx(C) = ZCEEC Dx(.ZL‘)

The error or difference between two concepts ¢; and ¢y with respect to the
probability measure Dy is defined as error(c;, cz) = 8(c1 Acz). By using error to
evaluate a hypothesis the hypothesis only needs to be correct on instances which
have nonzero probability in the instance space distribution. This is reasonable
as the learner will never be presented with an instance with zero probability.

We let E = X x {Pos, Neg} be the set of all labelled instances of the instance
space X. We usually refer to labelled instances as examples. An example text
FE € E® is an infinite sequence of examples. The learner conjectures a hypothesis
from an initial finite sequence of E. This initial finite sequence of E of length
m is denoted E[m]. We let SEQ denote the set of all initial finite sequences,
{E[m]|E € E® Am € N}.

Let h be a hypothesis. In the present work, h is a computer program. The
extension of a hypothesis h, denoted ext(h), is the concept which h represents. A
hypothesis space is a sequence (usually infinite) of hypothesis. We assume that
the hypothesis space H under consideration is enumerable. Let hg, h1,... be an
enumeration of H. We further assume that H is uniformly decidable, i.e., there
exists a computable function f: N x X — {0,1} defined below:

fliz) = {1 if z € ext(h;),

0 otherwise.

We say that a hypothesis space H is complete with respect to a concept class
C if for each ¢ € C, there is a hypothesis h in the space H such that ¢ = ext(h).

We define a learner M to be a computable machine that implements a map-
ping from SEQ into H.

We also assume the learner is able to compute 8(ext(h)) for any h in the
hypothesis space H. Note that such a capability is unlikely to be available to
any computable learner, however, 6(ext(h)) may always be estimated and its
exact value is not critical to induce the hypothesis with the largest Q-value?.

Definition 1 (Convergence). Learner M converges to hypothesis h on E just
in case for all but finitely many m € N, M(E[m]) = h. This is denoted M (E) |
= h.

A stochastic process GEN is used to generate these example texts. This
process may be formulated in a variety of ways depending on the kind of tests
against which the learner is to be benchmarked. The example texts generated

% Note that, the Q-value is the value use to compare competing hypotheses.



will reflect the target concept, although it may not be an exact or complete
representation of the target concept. As the text may contain examples which
have opposite labelling to that which would reflect the concept. Also, there is
no explicit requirement that the text contain a complete set of instances.

We now introduce a general stochastic process for generating example texts,
this process is denoted GEN&;’, fin)* The parameters (i, ttr,) governs the amount
of noise in the texts generated. p, gives the level of noise in the positive exam-
ples and correspondingly p, for the negative examples. In most cases pp = pn,
however, it is useful to allow these parameters to be different in some cases. By
setting pu, = pn = 0 the process will generate noise free example texts. The
parameter O € {Pos, Neg}* is an oracle which determines which elements will

be positive and negative in the sequence generated by GEN&F ) prior to any

instance being selected. The n’th element in the oracle O is denoted O(n). By
using an oracle we may model a variety of situations. For example, the oracle
may determine all examples in the example text to be negative, hence we will
model learning from only negative examples. We show the stochastic convergence
results for any oracle, thus proving the result for a variety of situations. We may
also place a probability measure over {Pos, Neg}> and assume O is stochasti-
cally generated by such a measure. As the stochastic learning result is shown for
any O € {Pos, Neg}* the result will be also true for an oracle generated by any
stochastic process.

The algorithm for GENng, H")(C,X ,Dx) works as follows. In each cycle of

the main loop the next example in the example text is generated. The oracle O
is used to determine if the next example will be positive or negative. If the oracle
decides that the next example will be positive, the following process is used: a
biased coin is flipped where the probability of the coin coming up “Heads” is p,
and “Tails” is 1— pup; if the coin comes up “Heads” then any instance is randomly
selected from X using Dx and output as a positive example, if the coin is “Tails”
then any instance is randomly selected from ¢ using the distribution J§ where:

I (z) = {Dx(m)/f)(c) if z €,

0 otherwise.

A similar process is used if the oracle decides that the next example will be
negative. This algorithm generates a text which reflects the concept ¢, where the
sign of each example in the text matches the sign of the corresponding element
in O and the parameters (up, u,) determine the levels of noise introduced into
the example text.

We now calculate the probability measure over E for each example generated

by GEN&p fn ) There are two possible probability measures an example may

have, either Gt or G~. The n’th element of the example text will have probability
measure G if O(n) = Pos, otherwise it will have probability measure G~ when
O(n) = Neg.



So when the oracle O determines the n’th example to be labelled “Pos”, that
is O(n) = Pos, example (z, s) is governed by:

Gt ((z,s)) = {upr(a:) + (1= 1p)(J5(a) if s = Pos,
0 if s = Neg.

Correspondingly, for the examples where O(n) = Neg:

D 1- JS if s = Neg,
(e, ) = { DX (@) + (1= ) 5 (@) if s = Neg
0 if s = Pos.
As Dx, J%, and J§ are probability measures on X it is straightforward to
show that GT and G~ are probability measures on E.
Note G*(E) = 1 and G~ (E) = 1. These measures are used to define the

probability measure ProbGEN? ,(e,X,Dx) O the o-field F C 2(E”) where

F is the o-field generated from the prefix sets of 2(F). Note that for every
prefix set B, = {E € E®|oc = El[|o|]} where 0 = (eg,e1,...,e,) we have

PrObGEN&pM)(c,X,DX)(Ba) = Hn<\g\ f(en,O0(n)), where

+ o

(e, ),0) = {g““” o ="Tos

({(z,s)) if o =Neg.

We refer the reader to Measure Theory and Probability by Adam and Guillemin
[1] or Probability and Measure by Billingsley [3] for further information on mea-
sure theory.

Using GEN&”M) provides a flexible way of modelling different forms of
training data. We now provide a list of common models for training data and
show how these are specializations of GEN&,,M")'

Noise free, positive examples: If we set pu, = p,, = 0 and set O = (Pos, Pos, Pos, ... )
the training data will be noise free and positive. The distribution of this train-
ing data will reflect a normalized version of the instance space distribution,
where elements outside the target concept have probability zero of appearing
in a text. This is identical to the assumption about the training data used
by Montagna and Simi [12] who showed that whatever may be learnt in the
limit from both positive and negative data may also be stochastically learnt
in the limit from only positive data. This result assumes Dx is approxi-
mately computable. This is also similar to the model used by Angluin [2]
when she considered TXTEX-identification. Angluin allows a null or empty
element, denoted *, to be part of the text, to facilitate modelling a text for
the empty language.

Noisy, independently generated examples: Laird’s 7, 8] classification noise process
assumes that instances are chosen according to some distribution and then
correctly labelled according to the target concept. After this a demon with
probability £ flips the class label from positive to negative or from negative to



positive, thereby creating noise in the training data®. This process generates
an example text where each example is independent and has the following
distribution:

(1-¢Dx(z) ifs=PosAzec,

(Dx (x) if s=PosAzx ¢&ec,

¢Dx (x) if s=NegAzx €c,
(1-¢Dx(z) if s=NegAz &ec.

Praira({z,8)) =

Now let us see how this distribution can be modelled in our framework. We
now place a probability measure over {Pos, Neg}* such that each element
is the sequence is independent and is “Pos” with probability w and “Neg”
with probability 1 —w. We denote an oracle produced by such a distribution
Oy.
Now, each element in the example text produced by GEN?» will be

(ppin)
independent and have the following distribution:

w(pp + (1 = pp) /6(c)) Dx (2) if s=PosAz €c,
P({(z,s)) = wppDx (2) if s=PosAz &c,
) = w)pnDx (z) if s=NegAz€c,

(1= w)(pn + (1 = pn)/(1 = 0(c)))Dx () if s =NegAz &c.

Now, let w = 6(c) + £ —20(c)&, pp = m, and p, = ng.
Then the distribution for each example in the example text generated by
GEN?NMP i) will be identical to Ppairq- It follows, their probability measures
over E* will also be identical. Hence, by showing a result for stochastic
learning with GEN&F’M) we correspondingly show the result for Laird’s
model of training data.

Noise free, with both positive and negative examples: Learning with both positive
and negative examples is the same as EX-identification where the functions
in question have range restricted to either “Pos” or “Neg”. Angluin [2] when
considering EX-identification in a probabilistic setting assumes that each
example is independent in the text and the probability of an example ap-
pearing is based on a distribution from the range of the function. This gives
us the following distribution over the examples:

Dx(z) ifs=PosAz€c,
0 if s=PosAz ¢c,
0 if s=NegAzx €c,
Dx(z) ifs=NegAzx¢c.

P((z,s)) =

If the oracle Oy, as defined in the previous model, where w = 6(c¢) and
tp = pp = 0, then GEN&: ) gives the same distribution over each of the
generated examples in the text.

3 Laird [7] uses p for the noise parameter, however, as it different to the noise param-
eter used here, we use £ to refer to Laird’s noise parameter.



By showing a learner to stochastically identify a class of concepts C' when
examples are provided by GEN?NP, ) W€ also show that the learner will stochas-
tically identify C' when examples are provided by distributions used in the other
models.

Definition 2, of probabilistic identification in the limit, is based on the defi-

nition given in Laird’s thesis [7, 8].

Definition 2 (Probabilistic identification in the limit). Given an instance
space X and a probability measure Dx over X. A learner M is said to identify
the class of concepts C stochastically in the limit, with respect to a hypothesis
space H, if and only if

(a) ezamples are provided by GEN, and
(b) (VC € C) PTObG’EN(c,X,DX){E € E> ‘M(E),L =hA CT‘TOT‘(BZt(h),C) = 0} =1.

This setting has the expected property that any subset of a class that is
stochastically learnable in the limit is also stochastically learnable in the limit
with respect to the same hypothesis space.

Laird [7] shows that any class of concepts that has a recursively enumerable
set of hypotheses may be stochastically identified in the limit.* This assumes
both positive and negative examples are presented to the learner according to the
distribution. This result is then extended by Laird to include noise in the training
examples. Both the Borel-Cantelli® and Hoeffding’s probability inequality [5],
used in the proofs by Laird, are also central to the results given in this paper.

3 Probabilistic Identification with the Q-heuristic

Let m be the total number of examples presented to the learner, so m = n + p,
where p is the number of positive examples and n is the number of negative
examples. Let GEN&W 4. enerate the example text E. The learner M, given
initial sequence E[m] induces the hypothesis M (E[m]).

The order of presentation of examples, the sign of examples, and the propor-
tion of positive and negative examples is dependent on the choice of oracle O.
Since these aspects of the example presentation are not crucial for the learning
algorithm, we assume that the learner is provided with a multiset of positive
examples (of cardinality p) a multiset of negative examples (of cardinality n).

The algorithm simply works by choosing the hypothesis with the maximum
Q value 7 given the current examples. In general there may be a set of hypothe-
ses with equal @ values. To stop the algorithm alternating between them, the

6

4 Note that, if hypotheses are total Turing programs then a recursively enumerable
set of hypotheses is the same as a uniform recursive set of hypotheses.

% The reader is directed to an introductory text on measure theory such as, Measure
Theory and Probability [1] for more information.

® The notation argmax, . ;Q(h) denotes the set {h € H | (Vh' € H) Q(h) > Q(h'))}.

" Qa(h) = 1g (P(R)+TP, |1g (sckitiyy + ) +TNo | 1g (r=gtzsgmy + ) +IFPN.|1g()
where TP,, TN, and FPN,, are respectively the true positive, true negatives, and



hypothesis with the minimum index® is chosen. If this minimum index selection
is removed then the algorithm will still learn stochastically in the limit, although
only in the behaviourally correct sense. Note that the algorithm is computable
as it only must consider a finite initial portion of the possibly infinite hypothesis
space [9, proposition 4.3.2].

Input :
An indexed hypothesis space H.
A prior probability distribution over H.
A function 6 for evaluating the theta value of a hypothesis.
A sequence o = E[m] of m examples from the example text E.
The noise parameter € € [0,1) such that p, < € and p, <e.
Output :
A hypothesis h.
h := minindex(argmax, ¢ z Qo (h))
output h

Algorithm 1: Stochastic Identification using the @ heuristic

3.1 A finite concept class

Theorem 1. Let C be any finite concept class and let H be any hypothesis space
which is complete for C. Then for any noise parameter €, there exists a learning
algorithm that stochastically identifies C' in the limit with respect to H when
examples are provided by GEN&MM) for any oracle O and any p, < € and
pn S €.

Proof. Due to space limitations we only briefly outline the proof here, a full
version may be obtained in the authors thesis [9]. The proof compares hy, a
hypothesis that correctly classifies the target concept, with hs, a hypothesis
that is in error. The value of Q(h:) — Q(hs) is partitioned into three parts:
a fixed constant, a sum of a list of random variables each corresponding to a
positive example, and a sum of a list of random variables each corresponding to
a negative example. The expected value for each of these random variables is
shown to be positive. Assuming that the sum of these random variable is at least
half the expected sum, we will have Q(h;) > Q(hs) at some point, even when the
fixed constant is negative. Applying Hoeffding’s inequality, we compute a bound
on the failure of this assumption. This bound is then used in conjunction with
the Borel-Cantelli lemma to show that the class of concepts can be stochastically
identified in the limit. O

false negatives or positives where the initial sequence is evaluated using hypothesis
h.

8 The notation minindex(S) denotes the hypothesis A € S such that (V&' € S —
{h}) h < I, where < is a total ordering on H.




3.2 A restricted infinite concept class

The problem with extending the above result to an infinite concept class is when
the hypotheses, with respect to their priors, converge on the target concept too
quickly. When this occurs over an infinite set of concepts the bound on inducing
an incorrect hypothesis is not finite. To address this problem a restriction is
placed on the rate any hypothesis may be converged on.

Definition 3 (g-sparse with respect to a concept). Let g : N » R. Let ¢
be a concept. A hypothesis space, H = {h;|i € N}, is said to be g-sparse with
respect to concept c if there exists m. € N and w. € R such that for all j > m,,
we have:

error(c, ext(h;)) # 0 = error(c, ext(h;)) > weg(j).

Definition 4 (g-sparse). A hypothesis space H is said to be g-sparse if H is
g-sparse with respect to concepts (), the instance space X, and ext(h;) for all
h; € H.

Theorem 2. Let C be any concept class and H be any hypothesis space which
is complete for C. Let € € [0,1) be the noise parameter. Assuming H is g-sparse
where g(i) = Z% for a < 1, there exists an algorithm that stochastically identifies
C' in the limit with respect to H when examples are provided by GENgj,p, 1) for
any oracle O and any pp < € and py, < e.

Proof. Similarly we only briefly outline the proof here, see [9] for the full version.
This proof extends the previous proof. The learner once again uses Algorithm 1.

Given the g-spares constraint we may apply Hoeffdings inequality to find
a bound on the probability of inducing an incorrect hypothesis. This bound is
then used in conjunction with the Borel-Cantelli lemma to show that the class
of concepts can be stochastically identified in the limit. O

4 Example Concept Classes

The learnability results presented in the previous two sections are interesting
because our model incorporates noise in the data and a stochastic criterion of
success. We feel that our approach is more realistic because although the classes
discussed previously are learnable in the limit (in the traditional Gold [4] sense),
they are not learnable in the Gold setting if noise is present. We next consider a
class that is not learnable in the limit from positive only data in Gold’s setting,
but is learnable in our stochastic setting from only positive data even in the
presence of noise.

The proofs of Propositions 1 and 2 work by showing that the hypothesis
spaces in question are g-sparse with respect to a instance space distribution and
then applying Theorem 2. The reader is directed to [9] for these proofs.



Proposition 1. Let H = {h1,ha, hs,...} = {N,0, {1}, {2}, {1,2},{3},{1,3},...}.

The concept class consisting of all the finite subsets of N together with N is
stochastically learnable in the limit with respect to H.°

The g-sparse constraint is not a strong restriction as most enumerations of a
hypotheses would generally not “target” a particular hypothesis “quickly”.

We now consider the classes of concepts that consists of the empty set, the set
of naturals and sets of the form {1,2,...,k}, this class is a subset of the class
shown to be stochastically learnable in the limit in the previous proposition,
hence, the class will also be stochastically learnable in the limit.'® However, we
include this result as it may be proved using a restricted hypothesis space and a
different instance space distribution which forms a tighter bound on the g-sparse
restriction, and hence a more difficult concept to learn.

Proposition 2. Let the instance space X be N. Let the instance space distribu-
tion Dx (z) = 3}z where s1 is the normalizing constant. Let H = {hi1, ha, hs, ... }
{N,0,{1},{1,2},{1,2,3},{1,2,3,4},...}. The concept class consisting of N and
0 together with {{1,2,... k}|k € N} is stochastically learnable in the limit with
respect to H .

5 Discussion

The results of stochastic identification in the limit in this paper are preliminary.
An open question is whether these results could be extended to take into ac-
count complexity issues. This would give some idea of the the expected number
of training examples provided to the learner, before the correct hypothesis is
induced. In this case both the distribution of concepts presented to the learner
and the prior probability used become critical. Another open question is what
are the characteristics of g-sparse hypothesis spaces.
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