Automatic Induction of Rules for e-mail Classification

Elisabeth Crawford

Basser Department of Computer Science
The University of Sydney
NSW 2006 Australia

ecrawfor@cs.usyd. edu. au

Judy Kay

Basser Department of Computer Science
The University of Sydney
NSW 2006 Australia

judy@cs.usyd.edu. au

Eric McCreath

Department of Computer Science
The Australian National University
ACT 0200 Australia

ericm@cs.anu. edu. au

Abstract

Many users receive large amounts of email. Since
a substantial part of that mail is kept for future
reference, it is unsurprising that many mail tools
allow users to create filtering rules that automati-
cally do actions like saving mail in suitable folders.
Unfortunately, most users do not make much use
of this facility.

This paper describes the i-ems project which
explores approaches to building a system to assist
users in managing electronic mail. It does this
by learning rules for classifying email so that
it can assist the user in filing messages. This
classification is also a precondition to automated
action on behalf of the user and we are particularly
interested in using it as part of a smart personal
assistant.

We begin with o review of similar work and
identify the core issues for the i-ems project. We
relate the past work to classic information retrieval
work in text classification and discuss the major
new issues that we need to address. We present a
simple user interface which automatically learns
rules to improve the user’s overall interaction with
the email manager. We also present empirical
results which compare four different learning
approaches as email is progressively provided.

Keywords Machine Learning, User Modelling,
Text Classification, Inductive Logic Programming,
email.

1 Introduction

The number of people using email has grown dra-
matically over the last ten years and users receive

Proceedings of the Sixth Australasian Docu-
ment Computing Symposium, Coffs Harbour,
Australia, December 7, 2001.

increasing volumes of email. This is partly due
to the growth in email use as a means of internal
communication within organisations. It is also due
to the growth in spam or junk mail. There are
several problems associated with growing volumes
of email. Animportant one relates to the increasing
amounts of time that people need for reading and
processing email.

This paper is concerned with the problems as-
sociated with the management of email messages
that the user wants to keep and the filtering of junk
email. Many email messages are simply read, then
deleted. Many others are answered, then deleted.
This leaves many mail items which are kept. One
strategy for managing this email is to archive each
piece into an appropriate folder. Choice of folder
may depend on many factors including aspects such
as the sender and nature of the email. For example,
email from your manager may be filed into your
“manager” folder. This task is non-trivial. For
example, one study by Whittaker and Sidner [20]
of 20 workers found the average inbox had 2482
items. The average number of filed items was only
858. Within the study, some users left almost all
their email in the inbox.

The proliferation of junk email since the
mid-1990’s means it creates an annoying and time
wasting task for email users as they filter junk
email, commonly referred to as ”spam”. Cranor
and LaMacchia [7] report that the ’spam rate’
on most days in the Spring and early Summer of
1997 for the AOL system was 30%. Their own
study of a corporate network found that 10% of
incoming email was spam. Apart from the cost
in terms of time for the user to determine the
spam from the legitimate email, spam can also be
harmful and offensive. For example in an analysis
of 400 of the spam emails the corporate network
received, Cranor and LaMacchia found that 11%
were ’adult’ or sexually oriented.

Many email programs® support filtering rules
which can automate various mail management
tasks: automated filing, deletion, replies. These
rules can be expressed in terms of strings appearing
in different parts of an email message. To handle an
email item, the rules are evaluated in order and the
first rule that applied to the item triggers the email
client to move the message into the associated
folder. The difficulty with rules is that the process
of composing a rule is cognitively demanding and
there is a real, potentially unacceptable risk of
misfiling mail. Generally, users seem to avoid
customising software [11]. Email classifiers aim to
take the burden of classification, be it in the form
of manual filing or rule writing from the user.

The aim of i-ems (Intelligent Electronic Mail
Sorter) is to investigate the automatic induction
of email filtering rules. This might operate as an
advising agent which suggests likely folders for stor-
ing a message including a ”Junk” folder for spam.
Alternatively, it might handle mail automatically,
either at the stage of mail arriving or after the user
has displayed it. At the same time, we want to
provide an intuitive interface which enables users to
scrutinise both the rules constructed for them and
the reasoning underlining the system’s construction
of these rules.

2 Previous Work

A variety of approaches have been taken to ad-
dress the problem of automating email classifica-
tion. Most of these approaches address, either the
general classification of email or the specific filter-
ing of junk email. Although this can be viewed as
a special case of text categorisation, this section
reviews only work in management of email. As we
will discuss in the next section, this domain has
special characteristics that distinguish it from the
classic work in text categorisation, even the seem-
ingly similar work on the Reuters-21578 dataset.

2.1 General classification

A number of systems have examined different ways
of classifying email using Machine Learning and IR
approaches. Some of these systems are described
below in approximate chronological order.

e Learning Rules that Classify E-Mail, by
Cohen [6]. Cohen uses the RIPPER learning
algorithm that induces rules that spot key-
words for classifying email. The paper com-
pares this “keyword spotting” approach with
an IR method, based on TF-IDF weighting.
Both approaches show similar accuracy, RIP-
PER 87%- 94% and TF-IDF 85%-94%. How-
ever, Cohen argues that keyword spotting is

ncluding the widely used programs Netscape and Mi-
crosoft Explorer.

more useful as it induces an understandable
description of the email filter.

MailCat, by Segal and Kephart [19]. This
system uses a TF-IDF approach which com-
putes weighted vectors for each folder based on
word frequencies, then a distance measure is
used to estimate the similarity a new message
has with each folder. When new messages were
directly filtered into the most similar folder an
error of 20% to 40% resulted. A later version
took a slightly different approach: MailCat
would give the user an option of the three most
likely folders. This significantly improved per-
formance. The user could then archive the
email with a single mouse click on one of the
three folder buttons.

iFile, by Rennie [17]. Rennie uses a naive
Bayes approach for text classification. The
iFile works as a filter for the EXMH mail
client. The system applies stemming and
makes use of a stop-list. A number of iFile
users were provided a program that performs
a series of experiments on their own email
folders; this helped address privacy issues
relating to email. However, it also limits
the ability of other researchers to perform a
comparison with other approaches. On these
folders Rennie achieved 89% accuracy using a
naive Bayes classifier.

SVM, by Brutlag and Meek [4]. Brutlag
and Meek compare the performance of Linear
Support Vector Machines (SVM), TF-IDF
and a Unigram Language Model for email
classification. They preprocessed the data
using a Zipf filter which removes very rare
words as well as very common words. They
found that classification accuracy varied more
between mail stores than between classifiers
and that no one classifier was consistently
superior. Brutlag and Meek also looked at
the effect of folder size on accuracy, finding
that TF-IDF offered the best performance for
sparse folders while SVM was very accurate
on dense folders. They reported that the
accuracy of Linear SVM ranged between
70% and 90%; the Unigram Language Model
between 65% and 90% and the TF-IDF
approached between 67% and 95%, depending
on the store of email used.

Magi by Payne and Edwards [13]. Payne
and Edwards have implemented Magi (Mail
Agent Interface) on top of a Unix mail System.
Using Magi they have examined two different
techniques for sorting email, CN2 a rule
induction algorithm and IBPL1 a modified
version of the K-nearest Neighbour algorithm

which uses Memory Based Reasoning. These
approaches are used to predict actions e.g
forward, delete and file in folder X. Depending
on the confidence Magi has in its prediction it
will either carry the action out automatically,
suggest the action to the user and see if they
agree, or make no suggestion at all. Payne
and Edwards found that 26% of the time
when using CN2 no suggestion was made and
22% of the time when using IBPL1. When
it did make suggestions, for CN2 65% were
correct and for IBPL1 57%.

e Re:Agent, by Boone [3]. Unlike other
approaches Re:Agent is divided into two
distinct stages. In the first stage, features
are either learnt from collections of email
messages® using a TF-IDF approach or they
are constructed by users providing keywords.
This permits the user to guide the agent
without explicitly formulating rules. The
second stage uses the features, constructed by
the first stage, for learning actions. Boone
investigates both neural networks and nearest
neighbour approaches for this learning. Both
these learning approaches are aided by the
significant reduction in the dimensionality
gained by first constructing the features.
However unlike other approaches described
Re:Agent only classifies email into two
categories, 'work’ and ’other’, so its results
cannot easily be compared with the work of
other authors. However Boone found that
using features achieved 98% accuracy, while
the standard IR approach had 91% accuracy.

2.2 Junk Mail

There have been attempts in a number of different
areas to reduce the problem of spam. These
range from suggestions of legal and regulatory
measures[7], to content based filtering and multiple
email addresses or alias’ schemes [8, 10].

There has been some good progress in the use
of Machine Learning and Information Retrieval ap-
proaches in detecting spam email, based on the
content of the email header and body. Some of
these approaches are described below.

e SpamCop, by Pantel, and Lin [12]. The
objective of SpamCop is filtering junk email,
hence its name. The system implements a
Naive Bayes approach making use of both
stemming and a stop-list. The stop-list is
dynamically created by words that either
occur less than 4 times in all the messages or
by words that occur a similar proportion of

2These collections are either based on the action that
is performed on a message (task based features) or they are
based on some previous partitioning (source based features).

time in both junk and legitimate messages.
Note that this is different from classical
Information retrieval stop lists which contain
very common words. Pantel and Lin compared
their system with Cohen’s keyword-spotting
approach Ripper. They found that Naive
Bayes out performed RIPPER with an an
accuracy level of 94% compared to 86%.

Bayesian Approach, by Sahami,
Dumais, Heckerman, and Horvitz [18].
This system learns to filter junk email using
a Bayesian Approach. As it is less desirable
that legitimate messages are labelled as junk,
than junk email is labelled as legitimate,
a 99.9% threshold is used for classifying a
message as junk. The investigation found
that the incorporation of both phrases
and domain specific features enhanced the
system’s performance. These phrases and
domain specific features were constructed by
hand. Without the handcrafted features their
Bayesian approach achieves recall of 94.3%
on junk and 93.4% on legitimate mail and
precision of 97.1% on junk and 87.7% on
legitmate mail.

Genetic Approach, by Katirai [9]. Kati-
rai compares a Genetic Programming classifier
with Naive Bayes classifier for filtering junk
email. Katirai found that the Genetic Pro-
gramming classifier was comparable with the
Naive Bayes classifier in terms of Precision but
was slightly out performed in terms of Recall.
On its best run overall the Genetic Program-
ming classifier achieved a precision of 95% and
a recall of 70%, while the Bayes classifier had
precision 96% and recall 77%. Katirai also dis-
cusses how email signatures can be harvested
for useful features.

Keyword wverse naive Bayes by An-
droutsopoulos et al [1]. Androutsopoulos
et al compare Naive Bayes for anti spam
filtering with a keyword approach. The
keyword approach uses the keyword patterns
in the anti-spam filter of Microsoft Outlook
2000 (which Androutsopoulos et al believe
to be hand constructed). There are 58
patterns that look for particular keywords
in both the header and body of the email.
Androutsopoulos et al found that the
Naive Bayes approach out-performed the
keyword approach, but the Keyword approach
nonetheless had very good performance in
terms of its precision which was 95%. The
Naive Bayes approach had a precision of 98%,
and its recall at 78% greatly outperforms the
recall of the keyword approach 53%. In an
earlier paper[2] Androutsopoulos was involved

with a memory based learning approach
IiMBL (a simple variation of the K-Nearest
Neighbour approach) was also evaluated for
spam filtering on a different test corpus.
The memory based approach was found to
have similar performance to a Naive Bayes
classifier.

e Naive Bayes by Provost [15]. Provost
compares the naive Bayes (with bag valued
features) and RIPPER techniques for general
email classification and spam filtering. He
found naive Bayes significantly outperformed
RIPPER in both cases. On the general
classification problem the naive Bayes
approach had 87% accuracy and RIPPER
had 78%. For spam filtering naive Bayes had
95% accuracy after only learning on 50 emails
while RIPPER, didn’t reach 90% accuracy till
after learning on 400 emails.

2.3 Other

o Profile Usability, by Pazzani [14].
Pazzani reported on a usability study where
users were asked to assess their preferences
for different approaches for representing email
filtering rules. The representations compared
are: key-word spotting, perceptrons, and
prototypes®. A set of messages are labelled
as either “discard” or “forward”. Then
the subjects learnt how to classify these
messages. This was achieved by providing
unlabelled examples to the subject which
they attempt to “guess”. Feedback was
provided and the subject’s performance
improved. The subjects were then asked to
rate different representations of email filtering
rules. This was in terms of their willingness
to use these rules for performing the same
decision they had just learnt. The results
showed that subjects preferred the prototype
representation. Also the study found that
word pairs, as opposed to individual words,
were preferred by the subjects. This is a
significant study as it considers the user’s
preferences in representing mail filtering rules.

2.4 Summary

Analytically comparing the approaches taken by
different authors is very difficult, particularly since
most tests are done on a very small number of email

3The prototype represents email filtering rules by using
two lists of words, say l1 and lz. The classification of
a new message m is determined by which of the lists I1
and I contains more common words with the message m.
Word pairs are also permitted within these word lists. A
simple example is the follow rule for filtering junk email: If
there is more of “money”, “save”, “free” than “meeting”,
“deadline”, “job done” then the message is junk otherwise
it is okay.

stores (often only one). Naive Bayes however looks
like a good option for spam filtering with all authors
reporting a precision of around 95%.

Although these quite high performance levels
were achieved for two-category spam filtering,
the more general categorisation task achieves far
poorer results. This is unsurprising: useful email
classification involves a user defining the class or
classes within which they want to store a piece
of email and this is a far less well defined task
than distinguishing spam. When users make these
classifications, there are many complex issues
which define the process. For example, some users
classify mail on the basis of the time by which they
need to act upon it. Some classify mail according
to the broad subject area as it relates to their
work. We return to these issues in the next two
sections.

3 Outstanding Problems

Some important aspects of the email classification
domain are strikingly different from classical text
categorisation and information retrieval. The most
important differences are due to our goal of sup-
porting individual users by predicting the classifi-
cations that they would make for their email.

It follows that learning needs to operate quickly,
giving useful results on small amounts of data. It
may also need to deal with concept drift, where the
user’s classifications change over time with their
changing environment. There will also be consid-
erable differences between users so that one user’s
classification of an email item will be different from
another user’s classification of the same mail item.
Some of these may be inherently much harder to
learn than others. Moreover, it is unclear how
to judge success: what precision is needed for a
classifier to be useful?

Another important aspect of the email domain
relates to the user’s needs in terms of control and
understanding of their mail management. The
classification processes should be scrutable: the
user should be able to determine how it works
and should be able to control each element of the
processes which manage the classification.

4 i-ems approach to learning mail
classes

A direct application of a classifier would be to au-
tomatically sort messages into their archive folders
according the learnt classification. This is problem-
atic for two main reason. First, users often wish
to see all the incoming messages and if messages
are automatically placed in folders then important
message may be lost. Second, work is created for
the user when the classifier incorrectly archives a
message.

Segal and Kephart [19] explored one solution
to these problems in MailCat. They provided the
user with 3 buttons labelled with best mail folders
to archive a messaged within. Hence a user simply
clicked on the appropriate button, out of the three
given, to archive the message. This increased the
probability that the correct folder would be sug-
gested. Also, the cost of an incorrect classification
was minimal.

The approach we have take to address these
problems also does not to automatically archive
messages. Rather we sort each message within the
inbox according to its predicted classification. Fig-
ure 1 shows an example of a i-ems screen. The
long left panel lists the user’s folders, which define
the classification categories. To the right of this,
there are two parts to the screen. The upper part
shows the messages in the folder that is currently
selected. In the figure, this is the inbox. This shows
each message under its predicted folder category.
For example, the top two mail messages have been
predicted to belong in the Friends folder. Each
appears as a single line with the sender and the
subject. The user has currently selected the inbox
single mail item classified under research. This is
displayed in the lower right-hand window.

Once a user has read a message, there are two
possible courses of action. If they are happy with
the classification, they can simply click on Archive
button. This is at the top left of the screen. This
moves the message into that folder. In the case of
the current message shown in Figure 1, the Archive
button would move it to the research folder.

The other possible case is that the user is not
happy with the classification. In that case, the user
simply selects the MoveTo button followed by the
name of the folder in the left panel. This moves
the message to the correct folder. This is much the
same amount of effort required for a user to archive
messages in a standard email manager.

This interface should reduce the cognitive
drudgery and the time taken to archive each
mail message. If the system makes the correct
classification, the user simply accepts that with a
single click. If the system is wrong, the user does
the sort of classification task they would have had
to do anyway. This should significantly reduce the
cost of incorrect classification while improving the
overall interaction with the email manager.

The user may also scrutinise why a message is
classified in a particular way by having the clas-
sification rules displayed. The form of this infor-
mation is dependent on the type of learner used.
For example the “dtree” learner displays a decision
tree, whereas, the “keyword” learner displays a set
of clauses. An example of the output for the “key-
word” learner is shown in Figure 2. For example,
the first of these means that a mail item is classified

as belonging to the folder Anna if its sender is
anna. The current form of these is arguably less
obvious than the pseudo-English format that we
could easily generate to appear like the text in the
last sentence.

File Edit Learn Help

& @ § &y @ B ?

Archive MoveTo Next New Reply Forward Delete Learn
Folders InBox
InBox Friends =]
EL:Z;\;ESWTEECM”E john@freemail.com forget one thing... i
Anna kelly@xtm. com party
Junk research

Research

Fiyan @an . edu A
anna

flaes DT i T sites

Papen

Text
Date : Mon Apr 23 12:54:44 GMT+10:00 2001
Sender | ryan@uni.edu.au
Subject : paper
Checkout these papers:
Approaches to Information Retreival
Methods for Matural Language processing

It would be great if we could meet to discuss these this afterncon.

Figure 1: A screen shot of the i-ems interface.

FiTter(M,Anna) <= contains(M,sender,annay.
filter(M,Research) <= contains(M,sender,Ryan),contains(M,subject,Confereance).
Filter(M,Research) <= contains(M,sender,Ryan),contains(M,subject,paper).
filter{M,Research) <= contains(M,sender,jane).

Filter(M,Research) <= contains(M,subject,code).

Filter(M,Junk) <= contains(M,body,free).

Filter(M,Junk) <= contains(M,body,today).

filter(M,FirstrearTeaching) == contains(M,body,am).

Filter(M,FirstrearTeaching) == contains(M,body,Thanks),contains{M,sender, tammy) .
filter(M,FirstrearTeaching) <= containstM,sender,that).
Filter(M,FirstyearTeaching) <= contains(M,sender,sam).

Filter(M,Friends).

Figure 2: An example set of rules generated by i-
ems using the keyword learning approach.

5 Empirical Results

We now describe our experiments which compare
the effectiveness of different learning approaches.
We describe these briefly, then the way that we
have tested them and the results achieved. Since
our goal is to explore how well different approaches
perform at the same time as their potential for
scrutability, we then discuss these issues.

5.1 Learners Considered

The i-ems system uses an abstract class that per-
mits a variety of learning approaches to be consid-
ered. Currently we have implemented four different
approaches:

e Sender : This learns a set of rules that de-
termine which folder to place a new message
in based solely on the sender. For each sender
a rule is created that filters new messages into
the folder that the sender most commonly goes
into. At the outset, we realised that this ap-
proach is limited in a variety of ways. For
example a user may place messages originating
from a single sender into different folders de-
pending on the nature of their message. Also,
a sender may have not sent a message to the
user before, in which case the messages loca-
tion is simply “unknown”. In spite of these
limitations, we explored the approach to see

how well it would perform compared with more
complex ones. This is especially important in
light of our goal of scrutability.

e Keyword The keyword approach induces a
set of clauses in a similar way to Quinlan and
Cameron-Jones’ FOIL [5]. The literals consid-
ered are whether a particular word is contained
in one of the : sender, subject, or body fields.
In a similar way to Cohen’s Ripper [6] this
learner starts to induce rules for the smallest
folder and then progresses to larger ones.

e TF-IDF This approaches is an incremental
learner maintaining a table of word frequencies
as messages arrive. For details the reader is
directed to Segal and Kephart’s paper [19].

e DTree This is a simple decision tree learner.
The d-tree constructed uses the information
gain metric of ID3 [16]. This is done using
60% of the training data and the remaining
40% of the training data is used for pruning
the tree.

5.2 Testing

We have implemented a ’Sliding Window’ tester to
evaluate the learning algorithms described. Given a
list of emails which are chronologically ordered, the
user both sets the number of messages in the test
window and the number of messages the window
is shifted along by in each iteration. The tester
learns from the initial emails, and then tests on
the following window of messages. This process
is repeated as the training set is increased and the
test window is shifted. This testing approach is ad-
vantageous as it reflects the way in which a learner
that is integrated into a mail client would most
likely operate. Also this approach gives a clear
indication of how classification accuracy changes as
the number of emails in the training set increases.
Note that cross validation is inappropriate given
the temporal nature of email.

We have conducted a preliminary evaluation of
the four learning approaches using the above tester
on a corpus of classified email belonging to one of
the authors. The corpus contains 525 mail items in
total and is classified into 6 different folders. The
testing window contains 40 messages and is moved
in steps of 10 messages. The accuracy is calculated
as the percentage of the messages within the testing
window that are correctly classified. These graphs
are shown in Figures 3 to 6. *

The current implementations of “TF-IDF”,
“DTree”, and “Keyword” learners always classify
a new message into one of the existing folders.
Hence, when reporting on the performance over all
the folders it is pointless distinguishing between

4The error bars indicate 90% confidence intervals.

TF-IDF Accuracy ———

Accuracy

O L L L L L L L L L
50 100 150 200 250 300 350 400 450

Number of training examples

Figure 3: Graph of Accuracy when the TF-IDF
approach is used.

DTree Accuracy ———

0.8

0.6

Accuracy

0.4 ¢

0.2]

50 100 150 200 250 300 350 400 450
Number of training examples

Figure 4: Graph of Accuracy when the DTree
approach is used.

Sender Precision
Sender Accuracy

T

Precision and Accuracy

50 100 150 200 250 300 350 400 450
Number of training examples

o .

Figure 5: Graph of Precision and Recall when the
Sender approach is used.

precision and recall as no messages are classified
‘unknown’. Whereas, in the case of the “Sender”
learning approach, a message from any previously
unseen sender will be classified *unknown’. Hence
for this graph we have also graphed the precision,
where precision is defined as the percentage of
classified messages that are classified correctly.
Figure 3 shows that the TF-IDF approach
although having quite good accuracy on a small

Keyword Accuracy ———
1 N T P T

Accuracy

O L L L L L L L L L
50 100 150 200 250 300 350 400 450

Number of training examples

Figure 6: Graph of Accuracy when the Keyword
approach is used.

number of emails, never achieves precision or recall
much over 80%.

The DTree approach has a peak performance
of around 90% which is better than the TF-IDF
approach. However, as can be seen by comparing
Figure 4 with Figure 3 its performance when the
training set is small has some troughs at 20% and,
importantly, it does worse for training sets below
75 examples.

The Sender approach, as shown in Figure 5, has
excellent precision, but lower overall accuracy in
comparison to the other approaches. For this do-
main, where precision will generally be more impor-
tant than recall, this very simple method appears
to perform quite well.

Overall the Keyword approach exhibited the
best performance. This approach is also much
more scrutable than either the DTree or TF-IDF.
It seems to have similar performance to that of
TF-IDF and DTree on small training sets but then
is able to improve with larger training sets.

A summary of the average accuracy results is
given in Table 1. As we have noted, the Sender ap-
proach appears to compare poorly due to its poorer
recall. We also emphasise that these averages take
account of results over the full range of training set
size.

Learner | Accuracy
TF-IDF | 68%
DTree 63%
Sender 45%
Keyword | 72%

Table 1: The average accuracy of the different
learning approaches.

6 Discussion and Conclusions

We have described the i-ems project and a range
of related work in automated support for users in
classifying their email. From the past work, we see

that there has been considerable success in the clas-
sification of junk email. There has been rather less
success on general classification. We believe that
the middle ground needs to be explored. It seems
likely that there are some mail classifications which
are relatively easy for an automated tool to learn,
with high precision. We also believe that there are
categories which can be learnt with high precision
and using very simple strategies. We expect that
hybrid machine learning approaches will give useful
results.

This paper has described our work to explore
these issues. We have, indeed, found that the very
simple Sender approach achieved high precision.

The results we have reported involve training
set sizes with up to 500 examples. In this domain,
it seems desirable that a learner should be able to
give useful results with relatively smaller sets of
training examples. It seems likely that most users
will have relatively small numbers of mail items in
each folder. So the results for small training sets
are of considerable interest. Our results give accu-
racies around 50% for TF-IDF, DTree and Keyword
approaches.

At the same time as we note the importance of
assessing the learning algorithms on small training
sets, it should be noted that the user has most to
gain by automation in the handling of mail cate-
gories where they gets the largest numbers of mail
items. Large numbers of training examples may be
available for some folders for some users. So the
results for larger training sets are still of interest.

We have already mentioned that one of the
weaknesses of work in this area relates to the
need for testing over many users. This paper
reports experiments involving just one user. We
are currently collecting data to enable us to repeat
the experiments with larger numbers of users.

Another shortcoming in work in this area relates
to the lack of standard test sets. Existing data
sets like the Reuters collection may not be relevant
to the way that individual users each manage the
mail that they receive from a range of sources. We
would like to develop a realistic data set that can be
made widely available. Unfortunately, it is difficult
to construct this. We cannot use authentic mail:
even if the recipient user agreed to make their mail
available, it is impractical to gain approval from all
the senders of that mail. We are currently exploring
ways to achieve the difficult task of anonymising
authentic mail stores so that neither the sender nor
the receiver can be identified.

We have also presented the i-ems interface
which we are using to explore how to integrate
automatic classification into a useful and usable
interface. This is designed to take account of the
limitations of automatic classification.

The i-ems domain is email classification and fil-
tering. This domain has many of the elements that
are common to emerging areas for personalisation.
It should improve our understanding of the poten-
tial for a range of approaches to building individu-
alised and automated text classification that users
can readily understand and control.

References

[1] I. Androutsopoulos, J. Koutsias, K. Chandri-
nos and C. Spyropoulos. An experimental
comparison of naive bayesian and keyword-
based anit-spam filtering with personal e-
mail messages. In Proceedings of the 23rd
annual international ACM SIGIR conference
on Research and development in information
retrieval, pages 160-167, 2000.

[2] I. Androutsopoulos, G. Paliouras, V. Karkalet-
sis, G. Sakkis, C. Spyropoulos and P. Stam-
atopoulos. Learning to filter spam e-mail:
A comparison of a naive bayesian and a
memory-based approach. In Proceedings of the
Machine Learning and Textual Information
Access Workshop of the Jth European Confer-
ence on Principles and Practice of Knowledge
Discovery in Databases PKDD, 2000.

[3] G.Boone. Concept features in re:agent, an in-
telligent email agent. In Second International
Conference on Autonomous Agents, may 1998.

[4] C. Brutlag, J. Meek. Challenges of the email
domain for text classification. In Seventeenth
International Conference on Machine Learn-
ing, July 2000.

[5] R.M. Cameron-Jones and J.R. Quinlan. Ef-
ficient top-down induction of logic programs.
SIGART Bulletin, Volume 5, Number 1, pages
33-42, 1994.

[6] W. Cohen. Learning rules that classify e-mail.
In Papers from the AAAI Spring Symposium
on Machine Learning in Information Access,
pages 18-25, 1996.

[7] Lorrie Faith Cranor and Brian A. LaMacchia.
Spam! Communications of the ACM, Vol-
ume 41, Number 9, pages 74-83, 1998.

[8] Eran Gabber, Markus Jakobsson, Yossi Ma-
tias and Alain J. Mayer. Curbing junk e-
mail via secure classification. In Financial
Cryptography, pages 198-213, 1998.

[9] H. Katirai. Filtering junk e-mail: A perfor-
mance comparison between genetic program-
ming & naive bayes, 1999.

[10] D. Kristol, E. Gabber, P. Gibbons, Y. Matias
and A. Mayer. Design and implementation of
the lucent personalized web assistant, 1998.

[11] W.E. Mackay. Triggers and barriers to cus-
tomizing software. In CHI’91 Conference on

Human Factors in Computing Systems, pages
153-160, New Orleans, Louisiana, 1991.

[12] P. Pantel and D. Lin. Spamcop: A spam
classification & organization program. In Pro-
ceedings of AAAI-98 Workshop on Learning
for Text Categorization, pages 95-98, 1998.

[13] T Payne and P. Edwards. Interface agents
that learn: An investigation of learning issu
es in a mail agent interface. Applied Artificial
Intelligence, Volume 11, pages 1-32, 1997.

[14] M. Pazzani. Representation of electronic mail
filtering profiles: A user study. In Proc. ACM
Conf. Intelligent User Interfaces. ACM Press,
2000.

[15] J Provost. Naive-bayes vs. rule-learning in
classification of email, 1999.

[16] J.R. Quinlan. Induction of decision trees.
Machine Learning, Volume 1, Number 1, pages
81-106, 1986.

[17] J. Rennie. ifile: An application of machine
learning to e-mail filtering. In KDD-2000 Text
Mining Workshop, Boston, 2000.

[18] M. Sahami, S. Dumais, D. Heckerman and
E. Horvitz. A bayesian approach to filtering
junk e-mail. In AAAI-98 Workshop on Learn-
ing for Text Categorization, 1998.

[19] R. Segal and M. Kephart. Mailcat: An
intelligent assistant for organizing e-mail. In
Proceedings of the Third International Confer-
ence on Autonomou s Agents, pages 276—282,
Seattle, WA, 1999.

[20] Steve Whittaker and Candace L. Sidner.
Email overload: Exploring personal informa-
tion management of email. In CHI, pages 276—
283, 1996.

