Parallel Huffman Decoding: Presenting a Fast and
Scalable Algorithm for Increasingly Multicore
Devices

Beau Johnston and Eric C. McCreath
Research School of Computer Science,
The Australian National University,
Canberra, Australia
Email: beau.johnston@anu.edu.au, eric.mccreath@anu.edu.au

Abstract—Huffman encoding provides a simple approach for
lossless compression of sequential data. The length of encoded
symbols varies and these symbols are tightly packed in the
compressed data. Thus, Huffman decoding is not easily par-
allelisable. This is unfortunate since it is desirable to have a
parallel algorithm which scales with the increased core count
of modern systems. This paper presents a parallel approach for
decoding Huffman codes which work by decoding from every
location in the bit sequence then concurrently combining the
results into the uncompressed sequence. Although requiring more
operations than serial approaches the presented approach is able
to produce results marginally faster, on sufficiently large data
sets, then that of a simple serial implementation. This is achieved
by using the large number of threads available on modern GPUs.
A variety of implementations, primarily OpenCL, are presented
to demonstrate the scaling of this algorithm on CPU and GPU
hardware in response to cores available. As devices with more
cores become available, the importance of such an algorithm will
increase.

I. INTRODUCTION

Huffman encoding [1] was developed by David Huffman
and provides lossless compression on a sequence of symbols.
Frequent symbols are given short binary codes, whereas,
symbols that occur less frequently are given longer binary
codes. This reduces the length of message, compressing the
data. Figure 1 depicts a Huffman tree for encoding the string
“Hello World”. The encoded bit string is given in Table 1. To
decode such a bit string one simply steps through the bits of
the encoded string while following the path down the tree.
When a leaf node is hit the symbol at that leaf node is output
and the process continues from the root of the tree. This is
repeated until the entire sequence is decoded.

This algorithm is frequently used in many video, audio and
image formats such as MP3, JPEG [2] and is featured in other
common compression methods such as DEFLATE [3]. Given
the significance of Huffman encoding, considerable research
has been undertaken to explore approaches for improving
decoding performance.

Separately, the trend in general purpose compute hardware
is to have more cores. A brief survey of the history of core
counts in Intel CPUs show the first inexpensive desktop based
dual core processor to be the Prescott-256 Celeron D processor

in 2004, by 2007 the Kentsfield Core 2 Quad offered 4 cores
albeit in the form of 2 dual-core dies packaged in a multi-
chip module. In the Core i7 range Clarksfield offered 4 cores
in 2009, Gulftown with 6 cores in 2010, Haswell had 8 in 2015
and Broadwell had 10 by 2016. Meanwhile, in on the high-
end server systems, Xeon processors have offered dual and
quad variants of CPUs with core counts ranging from 6 with
Dunnington in 2008, 8 with Beckton in 2010, through to today
with core counts of 10, 12, 14, 15, 16, 18, 22, and 24 being
achievable. The Xeon Phi offers 57-core, 60-core and 61-core
processor variants and started shipping in 2013. This pattern of
adding more, and not necessarily faster, cores is true with all
other vendors and is increasingly so with GPU devices. Given
this trend, it is desirable to have a Huffman decoding algorithm
that is suitable for heterogeneous multicore processors.

Some research focusing on parallel Huffman decoding has
been done, most notably Wang et al. [4] focused on a hardware
implementation. In this approach parallelism on the bit-level
is performed by walking a Huffman tree and using a single
lookup table in order to achieve impressive results of a
constant rate of decoding, up to 1 code per cycle. However, the
research focus was to develop specialised single-core hardware
for efficient Huffman decoding, whereas the focus of this paper
proposes an algorithm that can perform on general purpose
hardware using concurrency.

Some approaches use constraints on the Huffman tree which
enables the tree to be more compactly represented and also
decoded using index look up approaches. This, for example,
is the case of Huffman encoding with JPEG in which codes of
the same bit length are given encodings which are sequentially
ordered, thus the encoding is not stored as a tree, rather just the
sequence of symbols and the number of symbols of different
bit lengths is stored [5].

Lin et al. [6] develop a time efficient approach which builds
tables. This enables the decoding to proceed multiple bits at a
time, with entries of these tables being able to decode multiple
symbols in one step. They found there was an optimal size for
these tables, since a small table would perform similar to the
simple tree traversing approach. As the tables became larger
performance would improve, however, there was a point at

which cache misses for the table lookup would be detrimental
to overall performance.

Lein and Iseman [7] propose a parallel approach for de-
coding Huffman and also evaluated how this approach can
be applied to decoding JPEG images. The idea behind the
approach is that if you start decoding on a bit that is not
aligned with a bit boundary you will output the wrong symbol,
however, after continuing to decode a number of symbols the
approach will “probably” align with the correct bit boundary
and from that point on the approach will output the correct
sequence of symbols. So their parallel approach divides the
input data up into n sections and each section is given
to a processor which concurrently decode its given section.
Once each processor has completed its section of data it will
continue into the next section’s data fixing any of the next
processors decoding errors, the processor may stop when it
sees that bit boundaries are aligned. In the worst case, the first
processor may need to decode the entire sequence, however,
generally this would not occur.

Edwards and Vishkin [8] propose work-optimal algorithms
for Burrows-Wheeler compression and decompression, in this
article they also present an algorithm for decoding Huffman
data in O(lgn) time. The approach they present partitions
the input bit sequence up into sections of length equal to
maximum encoded bit sequence, then pointers from each bit
in the partition to the starting bit in the adjacent partition are
calculated. Pointers are merged using a prefix sum approach
which also calculates the target location of decoded symbols,
finally the symbols are decoded. Noting our approach is
different in that it does not partition the bit sequence and also
we have implemented and evaluated the performance of our
algorithm.

Patel et. al. [9] explore how GPU’s can be used for
compression of lossless data. This does not have the same
challenge as decompression, however, it is still of interest as
serial implementations of compression approach are very fast
and as such it is still a challenge gain performance advantage
from GPU’s.

Simple changes to the storage format can greatly help the
implementation of parallel approaches. An example of this
is Cloud et. al. [10] which divides the encoded data into
independently compressible and decompressible blocks.

Less research has focused on parallel approaches that aim
to decode the entire sequence, in many respects this is not
unexpected as simple serial approaches for decoding Huffman
are very fast with the performance approaching limitations
based on memory transfer speeds. However, as we move
to hardware that has 1000s of cores and memory transfer
speeds increasing we may start to find such parallel approaches
will start to outperform the fast and commonly used serial
approaches.

The parallel prefix algorithm (or sometimes referred to as a
parallel scan algorithm) calculates the prefix sums on a list of
n numbers in O(lgn) time using n processors[11]. It works
by first calculating the total sum in an “up sweep” phase of
the algorithm then “fills in the gaps in the calculation” via

TABLE I: The encoded binary string for “Hello World”.

110 0000 01 01 001 100 0001 001 101 Ol 111
H e 1 1 0 \ o r 1 d

Fig. 1: Huffman tree for “Hello World”.

the “down sweep” phase. The parallel prefix algorithm may
be generalised to any associative operator with an identity
element. These algorithms have been efficiently implemented
on GPUs[12], [13]. The algorithm proposed in this paper is
similar in structure to a parallel prefix sum computations with
both “up sweep” and “down sweep” phases, however, the
operator used within our calculation is not associative.

In the following section, we describe our proposed par-
allel approach for decoding Huffman sequences and briefly
discusses its algorithmic complexity and theoretical speedup.
Section III describes the implementations developed to assess
the Parallel Huffman algorithm.

Next Section IV introduces the data set and hardware used
for benchmarking, additionally tuning parameters of Huffman
decoding is discussed for both CPU and GPU hardware. The
scaling of the algorithm on a range of CPU cores is also
discussed. The performance of the parallel Huffman decoder
on a range of decoding sizes is also mentioned.

Section V shows the experimental results of all imple-
mentations across the range of data sets, then an analysis
of the kernels is presented so to evaluate the performance
of each kernel. Next, the achieved performance is contrasted
to the theoretical peak performance, then profiling occurs to
determine if these theoretical deficiencies are actually shown
in the experimental results. Finally, the section concludes by
outlining the algorithmic and implementational deficiencies of
the versions discussed.

The paper is concluded in Section VI with a discussion and
some ideas for future directions this research could follow.

II. THE APPROACH

In this section the proposed parallel Huffman decoding
approach is presented. The bit string to decode is denoted
H with the ith bit being H; and |H| being the length of the
string. The result produced is a string of symbols with the
jth symbol in the output being D;. There are also a number
of intermediate values used in the calculation. The first is the

symbol when the bit sequence is decoded starting at bit 7, this
is denoted s;. s; nearing the end of the input string may not
have sufficient bits to enable decoding to a symbol, in which
case s; is just set to €. Noting a subsequence of s will be D.
To help calculate this subsequence we also use a 2D array
W where W; ; is the number of bits from bit ¢ of the input
which are used for encoding the next 27 symbols. We also use
an array P where P; gives the index of D in which symbol
s; 1s placed. If s; is not placed into the output, then P; is set
to —1. The minimum bit sequence length encoding is denoted
hmin and the maximum Ay,qq. Rmq, Will be the height of the
Huffman tree and h,,,;,, will be the minimum depth of the leaf
nodes of the Huffman tree.

Algorithm 1 describes the parallel approach. The approach
works by using 4 stages:

o Stage 1 initializes P, s, and W, . The elements of P
are all set to —1 except Py which is set to 0 as we know
that the symbol decoded from the first bit will be place in
the first element of the decoded string. s; is calculated by
application of Huffman decoding of one symbol using the
provided Huffman tree starting at location ¢, the number
of bits consumed in this decoding is stored in W; .
Noting there is no dependency between these operations
and hence they may be done in parallel.

o Stage 2 creates the IV table, each step uses the previous
step’s results to calculate the number of bits to move in
the input string to go over twice as many symbols. The
while loop in this stage will repeat O(lg(|H]|)) times.
There is no dependency within instructions in the dopar
loop as they use row j — 1 of W to determine row j of
w.

o Stage 3 uses the W table to determine which elements of
s form part of the final decoded result and where to place
them. The while loop in Stage 3 repeats the same number
of times as did the while loop in Stage 2, using the rows
of W in reverse order from which they were created.
The result of this stage is recorded in P. Basically, if the
symbol s; is to be placed at index P; within the output D
then the symbol s;w, ; will be located at index P; + 27
in the result. So initially, we know the location the first
symbol is placed in the result (this was initialized in Stage
1, with Py = 0). Now the first time around the loop we
can use W to find the location of the symbol to place
approximately % way along the result', this is recorded
in P. The next time around the location of the symbols
i and % way along the result would be found and also
recorded into P, after these locations at %, 2, 2, and £
are found, etc. At the end of this process, all the positions
are found, so P contains the indexes of where in the final
result to place the decoded symbols form Stage 1. Noting
if P, = —1 then s; does not form part of the result.

o Finally, Stage 4 forms the result into D. This is done
using P to position symbols from s into D.

IThe position would sit in the second half of the output sequence depending
on the length of the output.

Table II show the values of s, W and P when “Hello World”
is decoded.

input : H - bit string to decode, T - the Huffman tree
output: D - decoded string of symbols
// Stage 1 - Initialization
for i =0 to |H| — 1 dopar
P+ (i==070:-1)
s; <— decode H starting a position ¢ using T’
Wi;,0 < bits consumed when H is decoded from ¢
odpar
// Stage 2 - Calculate W
7+0
while WO,j 75 —1 do
j—i+1
for i =0 to |H| — 1 dopar
if (Wi,jfl # _1) A (Wi+Wi,]‘71,j*1 # _1)/\
Wij1+Wizw, ;_, ;-1 < |H|) then
| Wij < Wijor+Wiew, ;151
else
‘ Wi’j +— -1
end
odpar

od
// Stage 3 - Calculate P
while ;7 > 0 do
for i =0 to |H| — 1 dopar
it (Wij—1#—1) A (P # 1A
(’i + Wi’j,1 < |H|) then
-Pi+Wi.j—1 — P+ 271
end '
odpar
JeJ—1

od
// Stage 4 - Set result
for i =0 to |H| — 1 dopar

if P, # —1 then

‘ D P, < S

end
odpar

Algorithm 1: Parallel Huffman Decoding

Using the Parallel Random Access Machine (PRAM) model
with an Concurrent Read Exclusive Write (CREW) strategy
for addressing read/write conflicts and assuming we have | H |
processors then the algorithm will execute in polylogarithmic
time as it will complete in O(lg|H]|) steps. This is because
both Stages 1 and 4 can complete in a constant number of
steps. Stage 2 will repeat the while loop at most lg(%)
times, and Stage 3 repeats its while loop the same number of
times.

The speedup of the parallel algorithm is %, and thus the
efficiency is ﬁ as we are assuming we have |H | processors.

Comparing the parallel to a simple serial approach one
very important difference is the amount of space used. So the
serial algorithm uses a constant amount of space whereas the

TABLE II: Values used when decoding “Hello World”.
i 0 1 23 456 7 8 9 10I111213141516 17 18 1920 21 22 23 24 25 26 27 28 29 30 31
H; 11000000101 00110000010011O01O01T1T1°1
S; H e e¢ceWol 'l o 1 H e e Wo Il ol Hr I r 1 dd e €
Wi.o 334444323233233444323323323233-1-1
Wi 7777765465665 7767765¢6¢65654¢65-1-1-1-1
Wio | 1113121313 12111013 121313121313 1213121210121110 -1 -1 -1 -1 -1 -1 -1 -1 -1
Wi | 2426252625242422242325-1
Wia | -1
P; o-1r-11-1-1-12-13-14-1-15-1-16-1-1-17=-1-18-1-19-110-1-1

parallel algorithm presented uses O(|H|lg|H]|). In terms of
the scaling of the algorithm, this quickly becomes a significant
consideration.

III. IMPLEMENTATIONS

A number of different implementations were developed
enabling us to analyse the parallel algorithm. The implementa-
tions were tested for correctness on all the data sets used, this
was done by comparing the produced result with the original
uncompressed data. This process was automated within our
evaluation framework and correctness tests were carried prior
to any performance timing evaluations.

A. Serial Approaches

Two serial decoding approaches were developed. A simple
decoder was implemented, known as Simple, which just reads
a single bit at a time and uses a table to represent the tree. This
approach has no constant set up time as the tree is stored and
provided to the different approaches in this very table form. As
such, for decoding short strings this simple decoding approach
will be fastest. Also, a more sophisticated serial decoding
approach, known as Bigtable, was implemented which creates
a large table with 2™ entries where m is the height of the
Huffman tree. So when decoding, the next m bits are used as
the index for the lookup table. The entries of this table contain
one or more symbols that are decoded with these bits of the
index. As the next m bits may only decode a partial number of
symbols entries, the table also contains the number of bits to
decode the symbols it outputs (which may be m or fewer bits).
So this table is looked up, then the symbol(s) are appended
to the end of the output and the bit position within the input
is moved on the required number of bits. Clearly, both these
approaches are O(n) where n is the number of bits in the
input. The table approach uses fewer instructions to process a
number of bits. Yet the downside of this large table approach
is it takes time to create this table and as the size of the table
increases it also no longer fits within the CPU cache which
adversely affects performance. The algorithm presented in [6]
sits between these two approaches balancing the size of the
tables created.

B. Parallel algorithm executed on a single thread

The parallel algorithm was also implemented using a single
thread. Basically, the “for dopar” loops in the algorithm was
implemented using ordinary “for” loops. This gives us an idea

of the speedup achieved by using the GPU, as we compare
this parallel algorithm executed on a single thread with that
of the same algorithm executed on the 1000s of threads
provided by modern GPU cards. This also gives us an idea
of how much extra, or wasted, computation we are doing as
we compare the simple Huffman implementation with that of
parallel implementation run on a single thread.

C. OpenCL

An OpenCL implementation was developed to examine the
scaling of the parallel algorithm on differing core counts of
CPU and it was also used for the GPU hardware. It was
useful to perform a direct comparison of the Parallel algorithm
executed on a single thread from Section III-B to multiple
CPU cores, this experiment is presented in Section IV-D,
and the evaluation to the theoretical scaling of the algorithm
against experimental performance is presented in the analysis
of Section V-B. Later the same implementation is run on the
GPU to see if good scaling of performance is achieved as a
response to having more compute hardware.

This OpenCL implementation first copies the bit string to
decode over to the device and allocates the required memory
on the device side for W, s, and D. The implementation
then invokes approximately 2+ 2[lg(|H|)] kernels. With each
kernel corresponding to a “for dopar” loop in the algorithm.
So the invocation of the kernel via the host provides all the
required synchronisation. The work was divided up into a
number of workgroups, within each workgroup there was a
number of threads, and each thread was assigned a number
of bits for which it was responsible. The selection of opti-
mal workgroup size is discussed in Section IV-C. Once the
calculation is completed, the result is copied back to the host
memory. Once the OpenCL implementation is evaluated on the
GPU each of these memory transfers is increasingly taxing,
this is discussed in Section V-B.

D. CUDA

A CUDA GPU implementation was developed, offering a
comparison between OpenCL. This implementation mirrors
that of the OpenCL version. Notationally, OpenCL workgroups
are replaced with blocks, again the selection of the optimal
block size was done experimentally and is discussed in Sec-
tion IV-C. The timing results in the next section include the
memory transfer time.

IV. EXPERIMENTAL EVALUATION

The experimental evaluation was carried out on a high-
end desktop computer with an Intel Skylake i7 6700K run-
ning at 4GHz with 4 physical cores (8 hyper-threaded) and
16GB of RAM with a memory bandwidth of 34.1GB/s. This
desktop has an Nvidia Pascal GTX 1080 GPU with 2560
cores @1.6 GHz (~9 TFLOPS) along with 8GB RAM with
a maximum theoretical bandwidth between this memory and
the GPU of 320GB/s. All code was compiled with GCC
version 5.4.0 and the host machine used a Linux Ubuntu
16.04.2 LTS Distribution with a kernel image version 4.4.0-
81-generic. The CUDA implementation used CUDA version
8.0 and the OpenCL implementation was version 1.2. An
OpenCL runtime on the NVIDIA GPU was provided by
the CUDA 8 distribution and used the driver version pro-
vided in the package NVIDIA-Linux-x86_64-375.66.
The Intel Skylake i7 CPU supports an OpenCL ver-
sion 1.2 with the runtime version provided in the Intel
intel-opencl-cpu-r4.0-59481.x86_64 tarball.

Timing measurements presented are the minimum
execution time of 25 collected runs, this is for each
experimental setup. All timing measurements were
collected using the clock_gettime function in the
CLOCK_MONOTONIC_RAW setting and were provided by the
Linux system library time.h.

The data sets used to evaluate the parallel Huffman algo-
rithm are paperl, news, book2, and kjv, from [14] along
with the simple “Hello World”. These were compressed using
the Huffman encoding and the encoded data along with the
Huffman tree was stored. Table IV includes a summary of
the size of these data sets. A test framework was developed
which enabled different approaches to be applied to different
data sets.

A. Algorithmic Scaling

A direct comparison around the overhead of the algorithm
was made, this occurred by examining performance of the
fastest serial implementation serial — bigtable, against the
PES — parallel approach on one core. The analysis was
performed on the largest dataset, k jv, and was the minimum
time of 25 runs. For this comparison, the execution time
was measured along with the number of instructions executed
and total count of cycles taken to perform the computation.
These hardware measurements required the use of PAPI, in
particular the PAPTI_TOT_INS and PAPI_TOT_CYC events.
Additionally, the OpenCL version was used to examine the
scaling of the algorithm in response to increasing the number
of CPU cores, as is the case for all results presented on 2 or
more cores.

When comparing the serial to the PES implementation of
the algorithm, as shown in Table III, we see that the proposed
algorithm requires 82x more instructions and 27x longer to
complete. HT is an abbreviation for Hyper Threaded cores.

The number of instructions required seem to decrease when
increasing the available cores. However, these PAPI measure-
ments only present results solely on the initially instrumented

TABLE III: Table: Scaling time, and hardware counters

HT cores Time (ms) Instructions (109) Cycles (10%)
1 (serial) 53.312 0.269 0.228
1 (PES) 1435.316 21.375 5.688
2 1020.105 9.362 3.994
3 799.918 6.260 3.039
4 717.811 4.925 2.689
5 733.624 4.450 2.709
6 746.861 4.012 2.724
7 759.641 3.629 2.767
8 774.195 2.689 2.763

core, thus the instructions required should be multiplied by the
number of HT cores used. From this analysis we see that the
algorithm regardless of the number of cores used consistently
increases the amount of required computation by 72 — 82x
on the kjv dataset. Yet, when we examine the decrease in
execution time and the scaling of the algorithm in response
to core count, it generates interest around whether improved
scaling exists on a greater number of cores — as on a GPU.

B. Enter GPUs

In order to achieve good performance on GPU architectures,
we must partition the domain suitably. Selection of the opti-
mal workgroup/block size was performed with experimental
validation from considering known hardware characteristics.
For instance, the GTX 1080 has 2560 CUDA cores but
from the OpenCL perspective 20 OpenCL compute units are
available. These correspond to the number of SMs (Stream-
ing Multiprocessors) since each SM executes 128 threads
in a block/workgroup in parallel and since 20 SMs execute
concurrently (on the GTX 1080), 2560 threads/work items
are being processed concurrently. Thus, we must have the
minimum block size/workgroup size to be at least 128. We
also, therefore, conclude that we must have at least enough
work to provision 20 blocks/workgroups at any one time,
or 2560 global threads active to fully utilise this hardware.
Additionally, both the CUDA and OpenCL implementations
support a secondary setting where each thread operates on
multiple bits to decode. This was added to mitigate the
overhead of thread generation, allowing a thread to perform
decoding on more than one bit, this is known as the work per
thread variable.

C. Tuning

Selecting the correct workgroup size significantly influences
the computation times required to perform Huffman decoding,
this results in teams of threads sharing memory thus choosing
the best size improves cache usage. This parameter changes
between each device and is sensitive to microarchitectural
characteristics such as cache size and available registers.

To determine the optimal block size an experiment was
conducted wherein the dataset was fixed to the kjv test, the
work per thread variable was fixed to an arbitrary value (in this
instance 64) and a trial-and-error evaluation of all block sizes
were tested from 1 to 4096. However due to the limitations in
CUDA on the GTX 1080 only values from 8 to 1024 executed

250

200~

Time (ms)

150 -

100-

8 16 32 64 128 256 512 1024
Block size
Fig. 2: Performance of the kjv dataset as the block size
increases on the GTX 1080

correctly. Any block size smaller than 8 would fail as there
are more than 2'¢ blocks in one dimension, this restriction
is imposed by the CUDA 2 compute capability. This is less
important since the largest block size seems to yield the best
performance.

Selection of the optimal workgroup/block size was per-
formed with experimental validation from considering known
hardware characteristics. For instance, the GTX 1080 has 2560
CUDA cores but from the OpenCL perspective 20 OpenCL
compute units are available. These correspond to the number
of SMs (Streaming Multiprocessors) since each SM executes
128 threads in a block/workgroup in parallel and since 20 SMs
execute concurrently (on the GTX 1080), 2560 threads/work
items are being processed concurrently. Thus, we must have
the minimum block size/workgroup size to be at least 128. We
also, therefore, conclude that we must have at least enough
work to provision 20 blocks/workgroups at any one time,
or 2560 global threads active to fully utilise this hardware.
Additionally, both the CUDA and OpenCL implementations
support a secondary setting where each thread operates on
multiple bits to decode. This was added to mitigate the
overhead of thread generation, allowing a thread to perform
decoding on more than one bit, this is known as the work per
thread variable. Both tuning parameters are discussed in the
next section.

Figure 2 shows increasing larger block sizes for the CUDA
implementation of the parallel Huffman algorithm running on
the Kkjv test set. A major finding is that the larger the block
size the shorter the execution time and better the performance.
The GTX 1080 has a maximum block size of 1024 threads and

85~

80~

75~

Time (ms)

70-

65-

60~
i é :l é 1'5 3'2 5'4 1%8 ZéG 5i2
work per thread size
Fig. 3: Performance of the kjv dataset as the work per thread
size increases on the GTX 1080

as such, this is the optimal block size. Each SM performs
the same instruction on a subset of this block size of 32
threads, known on Nvidia cards as a warp. The belief is that
given the memory bound nature of the algorithm and relatively
low amounts of computation, each warp performs the same
instruction in the block, thus having a larger block size allows
an SM to request a load or store from memory (which must
miss in the cache and stall through to GPU RAM) instead of
blocking and waiting for this memory access, another warp
which has already loaded its values from RAM is ready to
proceed. Thus, a larger blocksize allows more warps to hide
memory access latency. In the OpenCL setting the optimal
workgroup size is also 1024, this is not surprising as the
implementation to CUDA is similar and both run on the same
GPU hardware the GTX 1080.

Tuning also occurs in selecting the work per thread variable,
this was initially introduced in the algorithm to mitigate the
cost of creating threads which only perform work to decode
one item. Setting the work per thread variable to be greater
than 1 allows each thread to stride through multiple work items
decoding several bits from the encoded bitstream. Following
a similar experiment, the block/workgroup size was fixed to
1024, the kjv data set was used and a run for each work per
thread was tested from the range of 1 to 4096.

From Figure 3 we can see that when the optimal block size
of 1024 threads are used there is no benefit from having any
work per thread. Thus, the final evaluated runtimes on all data
sets are a block/workgroup size of 1024 and the work per
thread being set to 1.

1000~

Dataset
paperL
hello

—— news

— kv

Execution Time (ms)

bookz

500 -

2 4 6 8
Number of Cores
Fig. 4: Execution Times of Intel Skylake i7 6700K Cores
across all Datasets, the Performance in Response to the
Number of Cores

D. Performance Scaling of Parallel Huffman in Response to
Cores

An experiment was devised to show the scaling of the algo-
rithm, in particular, the OpenCL implementation in response
to the number of CPU cores available. Tuning parameters for
the CPU version were similar to the GPU version with the
work per thread variable found to be optimal at 1 and the
best workgroup/block size was found to be 128. Cores were
physically disabled using the cpuset Linux tool, this allows
processes to be bound to specific processors and memory
node subsets. The identical OpenCL implementation was run
on each configuration, from 1 to 8 cores. These findings are
presented in Figure 4.

The x-axis tick that corresponds to 1 CPU core were
generated using the parallel algorithm on a single thread
implementation, this is why execution times for the smaller
data sets appear lower than all other core counts, which were
generated using the OpenCL implementation. The reason for
this was a segmentation fault when querying the OpenCL
platforms (during the clGetPlatformIDs function call)
the reason for this is unknown. If it were possible to use
the OpenCL implementation on one core the overhead of
setting up OpenCL would be included in the computation
times resulting in a more reasonable (roughly plus 100ms
to Execution Time) on all one core results. Additionally,
notice that execution time drops sharply for each additional
CPU core used up to the fourth core. The Intel Skylake i7
6700K has 4 physical cores but 8 hyperthreaded ones, once
we use more than the 4 physical cores we see a degradation in

performance with execution times slightly increasing this is as
there is enough work to fully utilise all the logical resources
of the physical core, two hyperthreaded cores share the same
compute resources of one physical core. Thus, we conclude
that there is enough computationally intensive work to fully
utilise all physical cores and we see no benefit of using the
hyperthreaded cores, indeed we are only imposing more work
in scheduling between cores.

E. Performance over Decoding Size

Table IV shows the decoding time for the 5 different
approaches applied to the 5 different test sets. Noting the
GPU approaches are comparable and in most cases better
to the “Simple” approach on the larger data sets of news,
book2 and kjv. Although the “bigtable” approach performs
better than either of these approaches. Notice that the CUDA
implementation is on average 1.8ms faster than the OpenCL
implementation, this is due to a larger overhead per kernel
invocations from the host side (roughly 1xs in CUDA to 55us
in OpenCL).

Figure 5 explores the performance of the 5 approaches
on the kjv test set as the amount to decode is increased.
The leftmost graphic (a) shows absolute decompression times
whereas the right plot (b) focuses on decompression times
less than 100ms showing more detail on the GPU and serial
decoder results. From this graph you can clearly see that the
constant set up time for the “bigtable” approach is consider-
able, however, its linear constant factor is better than either of
the other approaches. So for decoding large enough sequences
this approach eventually does better than either the simple or
parallel approaches. We also see that the Parallel Approach on
a Single CPU core has linear scaling as work increases.

Since we see good scaling between available CPU cores
as shown in Section IV-D and that good performance can be
achieved using the Parallel Huffman algorithm given a suitable
decoding size.

V. RESULTS
A. Computation Characteristics

The right-most 5 columns presented in Table V show the
percentage of instrumented operations for the most frequently
occurring instructions. They were generated using the instruc-
tion count feature of the oclgrind simulator by Price et al.
[15], wherein instrumentation occurs on the Standard Portable
Intermediate Representation (SPIR) of each kernel. Focus of
this analysis is to see comparatively the computational struc-
ture of each kernel, from which we can infer the performance
of the GPU architecture. Instrumentation is not perfect as
instrumentation is on the LLVM Intermediate Representation
(IR) rather than the final device specific binary, but most of the
compiler optimisations have already taken place, so the same
fundamental nature of computation is the same regardless of
final device binary.

Across all 4 kernels we see that most of the instructions
performed are computational or logical. Memory operations
are in the minority, ranging from 8 - 5%. The br Branch

KJV

1600 T T T T
Cuda ——
1400 | OpenCL —<— |
Parallel Approach on a Single CPU
& Simple Serial Decoder
g 1200 | Bigtable Serial Decoder 1
(9]
£ 1000 1
s
® 800 r B
[%]
o
o - 4
g 600
]
8 400 1
200 r b
0 BEEm s sl s AR AR " SEnn
0 5000 10000 15000 20000 25000
Compressed Size (1000s bits)
(@)

KJV
100 T T T T
Cuda ——
OpenCL —<—
Parallel Approach on a Single CPU
- 80r Simple Serial Decoder E
£ Bigtable Serial Decoder
(0]
£ N
= 60 [A
c O o
S N
2 e
S 4l e |
£ o
Q s
2 5 ;5/”/
e 20 ¢ x X:i’iﬁy)
o ﬁiy .
0 il 1 1 1 1
0 5000 10000 15000 20000
Compressed Size (1000s bits)
(b)

Fig. 5: Comparison of performance on the kjv test set as the decoding size increases

TABLE IV: Comparison of Performance

hello paperl news book2 kjv
Nodes 15 189 195 191 167
Compressed Size (bits) 32 266692 | 1971146 | 2946397 | 24585561
Uncompressed Size (bytes) 11 53161 377109 610856 5504597
Simple Decoder (ms) 0.0001 0.9202 7.2227 10.3469 78.8131
Bigtable Decoder (ms) 0.0003 0.7994 4.9678 7.1988 57.1711
Parallel approach on 1 core (ms) 0.0007 10.7710 | 101.9346 | 155.2715 | 1431.9591
OpenCL CPU Decoder on 4 cores (ms) | 99.6895 | 103.7878 | 146.4306 | 170.8609 718.5004
OpenCL GPU Decoder (ms) 1.0115 2.4130 7.2368 9.1879 65.0892
CUDA GPU Decoder (ms) 0.4168 1.4128 5.7337 7.5538 60.5044

instruction makes up 17% of Stage 1 ranging up to 29% of the
Stage 4 kernel, this simply means this branch instruction was
hit and doesn’t directly imply the penalty of thread divergence
on GPU hardware or branch misprediction on the CPU, instead
the overhead is expected to be very low as all kernels contain
the same striding logic around the outer body determining
the work per thread and workgroup size. mov instructions are
quite common in all kernels 15% in Stage 1, 9% in Stage 2,
12% in stage 3 and 15% in Stage 4. Indeed, computationally
intensive instructions are common across all kernels, with
the add addition and mul multiplication operations typically
taking 10% - 15% and 5% respectively, this is ideal, since
this type of workload is typically well suited to the GPU
architecture. Signed and Zero extension occurs roughly 7% of
the time in Stage 1 and 2 and 3 and 4 respectively, again these
instructions are essential and well-suited to the GPU. Finally,
comparison instructions use up the remaining majority of all
instructions with icmp integer comparison using 10-20% on
all kernels. From examining the source code thread divergence
when operating on a GPU should have negligible impact on
performance.

The greatest performance bottleneck or overhead presented
from this instruction analysis is the memory access operations
initially discussed at 8% of Stage 2, this performance should

incur greater penalties on the GPU due to slower memory
access speeds for values located on GPU device memory
(RAM) and is discussed in the next section.

B. Comparing Peak Theoretical and Experimental Perfor-
mance

The instrumentation techniques used to acquire the results
of Table V provide more than the computational composition
of each of the 4 kernel stages, namely they offer exact counts
of each type of instruction required to perform the decoding
on the kvj dataset. From these instrumentation counts, we can
determine the theoretical peak performance of the GTX 1080
GPU on this given workload. Whilst the oclgrind instruction
counts were generated from the OpenCL version of the de-
coder, it is assumed that the count is similar to the CUDA
implementation as these kernels are identical.

The results of Table V were generated using the optimal
parameters for the GTX 1080, namely a block size of 1024
and work per thread of 1. Its assumed these numbers are still
accurate when running on other devices, such as the 1080
GPU, since the fundamental nature of the task is the same and
provided that the top-level IR instructions have many compiler
optimisations stopping just short of mapping directly to the
device specific binary instructions.

25000

Stage 1’s kernel was called twice, Stage 2’s kernel was
called 24 times, the kernel for Stage 3 was also called
24 times, Stage 4’s kernel was called once. Thus, to get
an approximation of the theoretical number of instructions
required to perform Huffman decoding of the kjv data set,
the following formula is applied:

Instructions Required = Z(Stage 1) x2
+ Z(Stage 2) x 24

+ Z(Stage 3) x 24+ Z(Stage 4)
=1.2 x 10"

where) is the total sum of instructions from all operations.

The theoretical instructions per second of the GTX 1080 @
1.607 GHz with 128 threads being processed on each of 20
Streaming Multiprocessors would be:

Instructions Per Second = 1.607 x 10% x 128 x 20
=4.1le+ 12

In the more accessible metric as the Millions of Instructions
Per Second (MIPS) this result is 4,113,920.
Therefore, the peak theoretical time to completion of the
result on the GTX 1080 is determined as:
Instructions Required) « 10°
Instructions Per Second
= 29.6ms

Theoretical Time = (

Comparing this to the achieved performance of the CUDA
code which on the kvj dataset took 60.5 ms: % x 100 = 45%
peak efficiency compared to the OpenCL result took 65.0 ms:
% x 100 = 46% peak efficiency.

Table V shows the percent of compute time taken by each
of the different stages of the algorithm. These experimental
results were generated from profiling, using the Nvidia Visual
profiler on the CUDA version of the decoder. It provides a
closer investigation of the percentage of compute time spent in
each kernel. Stage 1’s two kernel call utilised 30% of the total
GPU compute time, Stage 2’s 24 kernel calls however used
49% of the total compute time, Stage 3’s 24 invocations used
20% of all GPU compute time and Stage 4’s one call utilised
the GPU for 1% of all compute time. The entire computation
took 65.8 ms.

Noting most of the computation time is spent in Stages 2
and 3, which involves reading and writing to the large W table.
The efficiency of these memory transfers can be gauged again
using the same profiling tool, with the larger writes of W
(from host to device) taking 320 us to write 3 MB resulting
in a throughput of 9.6 GB/s. Many small writes from device to
host are needed for each invocation in these stages, however,
they have negligible effect on performance.

The final results we can take away from the profile investi-
gation and the low ratio of achieved performance compared to
the theoretical peak is that compute utilisation of the algorithm
is quite low. The profile indicates as low as 25%, having such
computation utilisation indicates that the multiprocessors are

mostly idle given the current workload. We also see that there
is low memory copy throughput, for this profile, it was at
approximately 4% of the peak bandwidth of the GPU’s RAM
to internal memory.

C. Deficiencies

From the evaluation of performance shown in Section V-B
there are some shortcomings of the parallel implementation of
the algorithm when targeting the GPU architecture. Notably,
the parallel method lacks overlapping memory copies which
could be used to hide memory access latency. This overlapping
could increase kernel concurrency and also computation which
would result in a higher compute utilisation, which is greatly
needed as the GTX 1080’s multiprocessors were only active
for 25% of the time.

VI. CONCLUSIONS

One contribution of this paper is the parallel algorithm,
which at least in theory, is able to greatly improve the perfor-
mance over that of serial approaches. Experimentally we have
shown our approach to provide performance improvements,
at least over a simple serial implementation. However, as the
serial implementations are very fast there is only a small mar-
gin for improvement. This is expected to scale further in the
future with the increasing core count. We show that OpenCL
is a suitable implementation to demonstrate the scaling on
heterogeneous devices of the parallel Huffman algorithm. The
CUDA implementation is shown to be marginally faster, but
this is mostly contributed to the overhead in host side API calls
and there are many of these in the form of synchronisation
points of the algorithm during decoding from the host.

The GPU implementation presented in the experimental
section uses the parallel approach on the entire Huffman
sequence to decoding. This limits the size of the sequences
that may be decoded as the data, including the W table, must
fix within the GPU’s memory. The sequence to be decoded
could be partitioned and the decoding could be streamed using
a number of channels to overlap transfers and computation.
Such a streaming approach would have the advantage that
much larger sequences could be decoded. Also, the partition
size could be increased to just saturate the GPU’s parallel
compute capabilities, this would minimise the depth of W
table and overall reduce total memory transfers to and from
the GPU’s global memory.

As the computation of the algorithm is dominated by the
creation and use of the W table, it is limited by memory
transfer bandwidth. Looking at the W table produced for
decoding “Hello World”, as shown in Table II, many of the
entries in this table are -1. This would generally be the case,
so a simple way of improving performance would be to not
store or load entries of the W table when they are known to
be -1.

Another possible direction for improvement would be to
attempt to compress the size of the W table reducing the
memory bandwidth associated with Stages 2 and 3. This would
be possible because the range of values for row j will be in

TABLE V: Profile of kernels over the Kjv test set.

Kernel total time br add mov icmp other

Stage 1 - Initialization 30% | 17.7% 6.5% | 145% | 133% | 47.8%

Stage 2 - Calculate W 49% | 23.7% | 23.2% 8.8% | 183% | 25.7%

Stage 3 - Calculate P 20% | 22.4% | 163% | 122% | 203% | 28.5%

Stage 4 - Set result 1% | 29.0% | 154% | 15.4% | 20.5% | 19.5%
[Mmin * 27, hmae * 27], so one could store values offset from [13] S. Sengupta, M. Harris, and M. Garland, “Efficient Parallel Scan
Romin, * 27 using a reduced number of bits. Algorithms for GPUs,” NVIDIA Corporation, Tech. Rep. NVR-2008-

. . . 003, Dec 2008.

A modification to the algorithm could be made such that an 147 T Bell, M. Powell, I. Horlor, and R. Armold, The

associative operator for combining partial results is used. This
would enable a direct implementation of the parallel prefix
sum algorithm. This has the advantage of a smaller memory
overhead which could improve performance. The approach
also uses global memory for the tables and kernel launches
for synchronisation. It would be interesting to explore how
shared memory and inter-block synchronisation could be used
to improved performance.

Finally, it will be interesting to see how the algorithm
performs over embedded SoC devices or on a processor with
an integrated GPU, such as those provided by AMD and Intel.
It is expected that these devices will have better scaling since
the shared memory is faster than communication over PCI-E.

In the interests of reproducibility, all code used in the
generations of these findings can be found at the associated
GitHub repository [16].

VII. ACKNOWLEDGEMENTS

We thank the reviewers for their valuable recommendations
for improving this document.

REFERENCES

D. Huffman, “A method for the construction of minimum-redundancy
codes,” Proceedings of the IRE, vol. 40, no. 9, pp. 1098-1101, 1952.
G. K. Wallace, “The JPEG still picture compression standard,” [EEE
transactions on consumer electronics, vol. 38, no. 1, pp. Xviii—xxxiv,
1992.

L. P. Deutsch, “DEFLATE compressed data format specification version
1.3,” 1996.

G. Wang, H. Zhang, and M. Lu, “Transformed hct for parallel huffman
decoding,” International Journal of Circuit Theory and Applications,
vol. 43, pp. 1759—1774, 2015.

G. K. Wallace, “The jpeg still picture compression standard,” Commun.
ACM, vol. 34, no. 4, pp. 30-44, Apr. 1991. [Online]. Available:
http://doi.acm.org/10.1145/103085.103089

Y.-K. Lin, S.-C. Huang, and C.-H. Yang, “A fast algorithm for huffman
decoding based on a recursion huffman tree,” Journal of Systems and
Software, vol. 85, no. 4, pp. 974-980, Apr. 2012. [Online]. Available:
http://dx.doi.org/10.1016/j.jss.2011.11.1019

S. T. Klein and Y. Wiseman, “Parallel huffman decoding with applica-
tions to jpeg files,” The Computer Journal, vol. 46, no. 5, pp. 487—497,
2003.

J. A. Edwards and U. Vishkin, “Parallel algorithms for Burrows—Wheeler
compression and decompression,” Theoretical Computer Science, vol.
525, pp. 10-22, 2014.

R. A. Patel, Y. Zhang, J. Mak, A. Davidson, and J. D. Owens, Parallel
lossless data compression on the GPU. IEEE, 2012.

R. L. Cloud, M. L. Curry, H. L. Ward, A. Skjellum, and P. Bangalore,
“Accelerating lossless data compression with GPUs,” arXiv preprint
arXiv:1107.1525, 2011.

G. E. Blelloch, “Prefix sums and their applications,” 1990.

M. Harris, “Parallel prefix sum (scan) with cuda,” 2007.

[1]
[2]

[3

=

[4

=

[5]

[6]

[7]

[8]

[10]

(11]
[12]

[15]

[16]

Canterbury Corpus, 2000 (accessed 22/8/2016). [Online]. Available:
http://corpus.canterbury.ac.nz/index.html

J. Price and S. McIntosh-Smith, “Oclgrind: An extensible opencl de-
vice simulator,” in Proceedings of the 3rd International Workshop on
OpenCL. ACM, 2015, p. 12.

ProBeauNo, “BeauJoh/HuffmanDecoderOnGPUs:
coderOnGPUs V1.0,” Oct. 2017. [Online].
https://doi.org/10.5281/zenodo.1004749

HuffmanDe-
Available:

