
Decision-Focused Learning to Predict Action Costs for
Planning

Jayanta Mandi a,*, Marco Foschinia, Daniel Höllerb, Sylvie Thiébauxc,d, Jörg Hoffmannb,e and Tias Gunsa

aDepartment of Computer Science, KU Leuven, Belgium
bSaarland Informatics Campus, Saarland University, Germany

cLAAS-CNRS, Université de Toulouse, France
dAustralian National University, Australia

eGerman Research Center for Artificial Intelligence (DFKI)

Abstract. In many automated planning applications, action costs
can be hard to specify. An example is the time needed to travel
through a certain road segment, which depends on many factors, such
as the current weather conditions. A natural way to address this is-
sue is to learn to predict these parameters based on input features
(e.g., weather forecasts) and use the predicted action costs in au-
tomated planning afterward. Decision-Focused Learning (DFL) has
been successful in learning to predict the parameters of combina-
torial optimization problems in a way that optimizes solution qual-
ity rather than prediction quality. This approach yields better results
than treating prediction and optimization as separate tasks. In this
paper, we investigate for the first time the challenges of implement-
ing DFL for automated planning in order to learn to predict the ac-
tion costs. There are two main challenges to overcome: (1) planning
systems are called during gradient descent learning, to solve plan-
ning problems with negative action costs, which are not supported
in planning. We propose novel methods for gradient computation to
avoid this issue. (2) DFL requires repeated planner calls during train-
ing, which can limit the scalability of the method. We experiment
with different methods approximating the optimal plan as well as an
easy-to-implement caching mechanism to speed up the learning pro-
cess. As the first work that addresses DFL for automated planning,
we demonstrate that the proposed gradient computation consistently
yields significantly better plans than predictions aimed at minimiz-
ing prediction error; and that caching can temper the computation
requirements.

1 Introduction

Automated planning generates plans aimed at achieving specific
goals in a given environment. However, in real-world environments
some information is hard to access and to specify directly in a model,
e.g., in a transportation logistics planning domain [11], to find route-
cost optimal solution requires access to travel time between cities.
In today’s world, features that are correlated with these unknown
parameters are often available and must be leveraged for enhanced
planning. For instance, travel time depends on various environmental
and contextual factors like time-of-day, expected weather conditions
(e.g., temperature, precipitation). Machine learning (ML) can facili-

∗ Corresponding Author.

tate the prediction of these parameters from those correlated features,
which can then be used as parameters in a planning model.

These two steps, (1) predicting and (2) planning, can in princi-
ple be considered as two distinct tasks. For example, the approach
by Weiss and Kaminka [25] involves generating a planning solution
based on estimates provided by an external model, thus treating pre-
diction and planning as separate tasks. If the prediction in step (1)
is perfect, this would lead to optimal planning in step (2). However,
ML predictions are not always fully accurate, for various reasons
such as high uncertainty, limited features or ML model capacity, and
the presence of noisy data [14].

Recent works in decision-focused learning (DFL) [16] for combi-
natorial optimization problems has shown that training the ML model
to directly optimize the outcome of the downstream optimization
problem, rather than prediction quality, leads to higher quality solu-
tions. Training this way allows the ML model to focus on parts of the
prediction that have (higher) impact on the actual solutions. This has
been shown on various combinatorial optimization problems, e.g.,
shortest path [5], knapsack [15], TSP [21], portfolio optimization [6]
or energy-cost aware scheduling [15].

Our interest lies in exploring whether DFL techniques can also be
leveraged to produce plans of higher quality, when having to predict
action costs for automated planning. To the best of our knowledge,
this is the first paper on DFL for contextual action cost prediction.

Our starting point is the seminal ‘Smart Predict-then-Optimize’
(SPO) [5] work for predicting the coefficients of the linear objec-
tive function of a combinatorial optimization problem. We will show
how this framework is applicable to planning by considering total
plan cost as a weighted sum over the action counts of a plan. How-
ever, two more fundamental challenges present themselves and form
the core of this paper: First, when using a machine learning system
to predict action costs, one might get negative predictions, especially
during training. However, for highly non-linear prediction problems
this can even be the case when all of the training data has positive val-
ues. We hence propose and evaluate two ways of correcting negative
predictions. During training, we additionally propose and evaluate an
explicit penalty on negative values to guide the learning.

A second challenge is the computational cost of solving planning
problems. In DFL, we need to call the planner for every training in-
stance, so even with only 100 training instances you easily run into
thousand planner calls and more. We hence investigate techniques

Correlated Features
X

ML Model
Mω

Predicted Action Costs
Ĉ

Planning
System

Planning Solution
π⋆(Ĉ)

Figure 1: Predict-then-optimize problem formulation for planning problems.

from planning [13] to compute sub-optimal plans and relaxed plans.
We also experiment with a solution caching approach during learn-
ing [18], as proposed in DFL for optimization problems.

We will empirically demonstrate that the proposed approach gen-
erates superior planning solutions compared to predictions aimed
solely at minimizing the mean square error (MSE) of action costs.
We also observe that solution caching significantly reduces training
time compared to repeatedly solving the optimization problem.

2 Background

We use the STRIPS formalism [7] and define a planning problem as
a tuple (P,A, s0, g, c), where P is a set of propositions, A is a set of
actions, s0 ⊆ P is the initial state, g ⊆ P the goal definition, and
c : A → R0 is the cost function mapping each action to its (positive)
costs. We identify a state s ⊆ P with the set of propositions that
hold in it; propositions that are not included in s are assumed to be
false. A state s is a goal state if and only if s ⊆ g. The functions
prec, add , and del define the precondition, add-, and delete-effects
of actions. Formally, they map actions to subsets of propositions:
{prec, add , del} : A → 2P . An action a is applicable in a state
s if and only if prec(a) ⊆ s. When an applicable action a is ap-
plied to a state s, the resulting state s′ is defined as s′ = γ(a, s) =
(s \ del(a)) ∪ add(a).

A sequence (a0, a1, . . . , an) of actions is a solution (or plan) for
the problem if and only if each action ai is applicable in the state si,
with for i > 0, si = γ(ai−1 , si−1), and sn+1 ⊆ g. The cost of a
solution is defined as the sum of the costs of its actions. By abuse
of notation, we define the function c also on solutions. Formally, let
p = (a0, a1, . . . , an) be a solution, then c(p) =

∑
0≤i≤n c(ai). We

call a solution p⋆ optimal with respect to a planning problem when
there is no solution p with c(p⋆) < c(p). Note that there might be
multiple optimal solutions to a planning problem. In our experiments
we will assume that if there exist non-unique solutions, the planner
returns a single optimal solution by breaking ties in a consistent pre-
specified manner.

2.1 From Planning to Learning

Predict-then-Optimize problem. In domains like travelling or de-
livery services, the costs of actions are hard to specify at design time,
because they depend on the current situation, e.g., regarding weather
or traffic. However, one can estimate these costs using contextual
features that are correlated with the costs. In this case, predicting the
costs using ML methods is a natural choice. When the ground truth
action costs are unknown, we employ a trained ML model Mω to
predict the action costs from features X . The trainable parameters,
denoted as ω, are estimated using a set of past observations, used as
a training dataset for the ML model. To obtain a feasible plan in this
setting, the action costs are first predicted using ML, followed by the
generation of a plan optimized with respect to the predicted costs.
This pipeline is commonly referred to as the Predict-then-Optimize
problem formulation in the literature [5, 15]. We present a schematic
diagram illustrating Predict-then-Optimize in the context of planning
problems in Figure 1.

Vector representation. State-of-the-art ML architectures, includ-
ing neural networks, represent the data in matrix and vector form. As
we will be using neural networks as the predictive model, we will
introduce a vector based notation of the action costs and the solution.
Consider the left side of Figure 2. It shows the illustration of a simple
planning problem and an optimal solution as defined before.

We create a vector representation of a plan by storing the num-
ber of times each action occurs in this plan. Since this discards the
orderings of the actions in the plan, more than one plan might map
to the same vector. We refer to this as the action count vector by
π. More formally, let m = |A| be the number of possible actions
ai in the model, and A = (a0, a1, . . . , am−1) a sequence con-
taining the actions of A in an arbitrary but fixed ordering. Given
some plan p = (p0, . . . , pn), we define the action count vector
π = (o0, . . . , om−1) with oi =

∑n
j=0 1(ai = pj).

We need a similar vector representation for action costs, which we
denote by C. We define C = (c(a0), c(a1), . . . , c(am−1)), where
ai is the ith element of A. Hereafter, we will use π⋆(C) to denote
the action count vector of an optimal plan with respect to C. Observe
that both vectors C and π⋆(C) have the same length. An example of
C, π⋆(C) and A is given on the right of Figure 2. With this notation,
we can represent the training dataset as {(X κ,Cκ)}Nκ=1.

Regret. In the predict-then-optimize problem, we need to distin-
guish between the ground truth action costs that we want to learn and
the predicted action costs. We will denote them as C and Ĉ, respec-
tively. Let π⋆(C) and π⋆(Ĉ) be optimal action count vectors with
respect to C and Ĉ respectively. Using vector notation, the cost of
executing π⋆(C) can be expressed as C⊤π⋆(C). Importantly, when
a plan that was created using the predicted costs is actually executed
in practice, the actual costs, C, is revealed, and the efficacy of the
plan is evaluated with respect to C. Hence the real cost of executing
π⋆(Ĉ) is C⊤π⋆(Ĉ), e.g. the real cost times the action count vector.
The quality of a predicted cost in a predict-then-optimize problem is
evaluated based on regret. Regret measures the difference between
the realized cost of the solution, made using the predicted cost and
the true optimal cost, which is obviously not known a priori. It can
be expressed in the following form:

regret(Ĉ,C) = C⊤π⋆(Ĉ)−C⊤π⋆(C) (1)

2.2 Decision-Focused Learning

In a predict-then-optimize setup, the final goal of predicting the cost
is to make a planning solution with zero or low regret. The moti-
vation of DFL is to directly train an ML model to predict Ĉ in a
manner that minimizes regret. We are particularly interested in gra-
dient descent training, a widely utilized method for training neural
networks. In gradient descent training, the neural network is trained
by computing the gradient of the loss function. Modern neural net-
work frameworks like TensorFlow [1] and PyTorch [20] compute this
gradient automatically by representing the set of all neural network
layers as a computational graph [2]. However, in DFL, as the final
loss is the regret; this would require computing the derivative the
regret and hence of plan π⋆(Ĉ) with respect to Ĉ. Firstly, one can-
not rely on automatic differentiation to compute this derivative as
the planning problem is solved outside the neural network computa-
tional graph. Moreover, the planning process is not a differentiable

A B

C

 �

Q

3

2

6

p
∗ = (drive-A-B,

pickup-pack -B,
drive-B-A,
drive-A-C,
drop-pack -C,
pickup-letter -C,
drive-C-A,
drive-A-B,
drop-letter -B)

C π A
2 2 drive-A-B
3 1 drive-A-C
2 1 drive-B-A
6 0 drive-B-C
3 1 drive-C-A
6 0 drive-C-B
1 0 pickup-pack -A
1 1 pickup-pack -B
1 0 pickup-pack -C
1 0 pickup-letter -A
1 0 pickup-letter -B
1 1 pickup-letter -C
1 0 drop-pack -A
1 0 drop-pack -B
1 1 drop-pack -C
1 0 drop-letter -A
1 1 drop-letter -B
1 0 drop-letter -C

Figure 2: Top left: Illustration of a planning problem. The bike needs
to deliver the letter to position B and the package to C. It cannot
carry both at the same time. The road segments come with different
costs, pickup and drop actions cost 1. An optimal solution p⋆ is given
below. The right-hand side of the picture successively shows the ac-
tion costs (C), the action count vector (π⋆(C)), and A.

operation, since slight changes in action costs either do not affect the
solution or change the solution abruptly, just like in combinatorial
optimization [16]. So, the derivative of the planning solution is either
zero or undefined.

To obtain gradients useful for DFL for different classes of opti-
mization problems, numerous techniques have been proposed. For
an extensive analysis of existing DFL techniques, we refer readers to
the survey by Mandi et al. [16]. In this work, we focus on the sem-
inal and robust ‘Smart Predict then Optimize’ (SPO) technique [5],
which has demonstrated success in implementing DFL across various
applications, including e.g. power systems [4] or antenna design [3].

Smart Predict-then-Optimize (SPO). SPO is a DFL approach
which proposes a convex upper-bound of the regret. This upper-
bound can be expressed in the following form, as shown below:

SPO+ = ζ(C − 2Ĉ) + 2Ĉ⊤π⋆(C)−C⊤π⋆(C) (2)

where ζ(C)
.
= maxπ{C⊤π}. However, to minimize the SPO+

loss in gradient-based training, a difficulty arises because it does not
have a gradient. It is easy to verify that −π⋆(C) is a subgradient of
ζ(−C), allowing to write the following subgradient of SPO+ loss

∇SPO+ = 2(π⋆(C)− π⋆(2Ĉ −C)) (3)

This subgradient is used for gradient-based training in DFL.

3 DFL in the Context of Planning
A classical planning problem is essentially a compact definition of a
huge graph akin to a finite automaton. The objective is to find a path
in this graph from a given initial state to a goal state without explicitly
building the graph. In practice, we further want not only to generate
some plan, but one minimizing the costs of the contained actions. All
existing techniques in classical planning assume that actions costs are
non-negative (negative action costs constitute a very different form of
problem as, in that setting, an action sequence may become cheaper
when continued). This assumption presents a challenge for our DFL
setting, not only because the ML model may predict costs of some
actions to be negative; but also during training, there is the aspect of
having to solve the planning problem with negative action costs.

3.1 Regret Evaluation in the Presence of Negative
Action Costs

We highlight that while the ground truth action costs are positive, the
predicted cost, returned by the ML model, might turn negative. The
explanation for why this could occur is provided in Appendix A3 in
the full paper’s preprint version [17]. One could use a Relu activation
layer to enforce the predicted costs Ĉ to be non-negative. This can
be formulated by using an element-wise max operator.

relu(Ĉ) = max(Ĉ,0) (4)

We can naively use relu, by feeding the planning system with action
costs after setting the negative ones to zero. We refer to it as thresh-
olding. However, this approach may yield a subpar plan by turning
all negative predictions into zeros, losing the relative ordering of neg-
ative action costs.

Next, we propose an improved method for transforming all action
costs into positive values before feeding them to the planning system.
Our idea is to add a scalar value to each element of the cost vector,
if any element in it is negative. We implement this by adding the
absolute value of the smallest action cost to the cost vector. For a
given Ĉ, it can be computed as follows:

c =
∣∣∣min(0,min(Ĉ))

∣∣∣ (5)

where min(Ĉ) is the minimum value in the cost vector Ĉ. Eq. (5)
ensures that if all the elements in Ĉ are positive, the value of c is
0. The action count vector obtained after this transformation, can be
expressed in the following form:

π⋆
min+(Ĉ) = π⋆(Ĉ + c) (6)

where c is defined in Eq. (5). We refer to this approach as add-min.
We will evaluate which among these two approaches would be suit-
able for evaluating regret in the presence of negative action costs.

3.2 Training in the Presence of Negative Action Costs

The second challenge is associated with training an ML model in the
DFL paradigm. As mentioned before, DFL involves computing the
planning solution with the predicted action costs during the training
of the ML model. As the action costs might turn negative, it also
requires finding a planning solution over negative action costs. We
emphasise that while training with the SPO method, (2Ĉ −C) can
turn negative, even if we ensure that both Ĉ and C are positive.

During evaluation, as we mentioned earlier, our aim is to create a
planning solution with negative action costs. However, this objective
differs during training. In the DFL paradigm, the primary focus of
solving the planning problem during training is to produce a useful
gradient for training. This concept is reflected in Equation 3; where
the gradient does not include a planning solution for the predicted
action cost Ĉ; rather, it considers a solution for (2Ĉ − C), as it
yields a suitable gradient for training.

It is obvious that the thresholding or add-min approach introduced
for evaluation of regret can also be used while training. Computing
the SPO subgradient using thresholding would result in the follow-
ing:

∇relu
SPO+

= 2
(
π⋆(C)− π⋆

relu(2Ĉ −C)
)

(7)

On the other hand, computing the SPO subgradient through the add-
min approach would yield the following:

∇min+

SPO+
= 2

(
π⋆(C)− π⋆

min+(2Ĉ −C)
)

(8)

Note that we do not have to change π⋆(C) as it does not have any
negative element in it.

3.3 Explicit Training Penalty

We highlight that when training the ML model using Eq. (7) or
Eq. (8), the conversion of negative action costs to non-negative ones
occurs outside the gradient computational graph. Consequently, the
ML model does not receive feedback indicating the necessity of such
corrective measures before computing the regret. This limitation mo-
tivates us to explore alternative gradient computation techniques that
not only make the ML model aware of the need for such corrective
actions but also has no impact when there are no negative predictions.

We propose to add a penalty function in the loss function if any
element of the vector (2Ĉ −C) is negative.

SPO+P = SPO+ + λ 1⊤relu(C − 2Ĉ) (9)

where, λ signifies the weight assigned to the penalty function,
1 denotes a vector of ones with the same dimension as C. So,
1⊤relu(C − 2Ĉ) is the sum of all non-zero elements in C − 2Ĉ.
In this formulation, 1⊤relu(C − 2Ĉ) will be zero only if 2ĉ(ai) <
c(ai) for all actions ai. In Eq. (9), the second term can be viewed as
a regularizer that penalizes predicting 2Ĉ < C, as for such predic-
tions we have to make the transformation of the cost vector before
feeding it to the planning system. To train with the SPO+P loss, we
can use the subgradient ∇relu

SPO+
(7) or ∇min+

SPO+
(8) for the SPO+

part; we will denote the respective loss functions as SPO+
relu
P and

SPO+
min+

P .

3.4 From Loss to Gradient Computation

The subgradient of SPO+P in Eq. (9) can be expressed in the fol-
lowing form:

∇SPO+P = ∇SPO+ − 2 λ I<0(2Ĉ −C) (10)

We use an indicator function I<0, which outputs a vector with ele-
ments equal to 1 for actions ai if 2ĉ(ai) < c(ai). For instance, if we
use ∇min+

SPO+
as the SPO+ subgradient, ∇min+

SPO+P
takes the following

form:

∇min+

SPO+P
= 2

(
π⋆(C)− π⋆

min+(2Ĉ −C)
)
− 2 λ I<0(2Ĉ −C)

= 2

(
π⋆(C)−

(
π⋆

min+(2Ĉ −C) + λ I<0(2Ĉ −C)
))

= 2

(
π⋆(C)− π̌⋆(2Ĉ −C)

)
(11)

where π̌⋆(2Ĉ −C) is defined as follows:

π̌⋆(2Ĉ −C) = π⋆
min+(2Ĉ −C) + λ I<0(2Ĉ −C) (12)

Using the SPO methodology, we can use Eq. (11) as a subgradient to
minimize SPO+

min+

P .
The vector π̌⋆(2Ĉ − C) increments the count of any action ai

where 2ĉ(ai) < c(ai) by 1 after obtaining a solution with add-min.
In other words, these actions are executed once more. In this way it
penalizes for the need to correct the predicted cost by selecting any
action ai for which 2ĉ(ai) < c(ai). We highlight that there might
be no solution to the original planning problem corresponding to the
vector representation π̌⋆(Ĉ). Since we added actions apart from the
solution returned by the planning system, there might not even be an
executable permutation of the actions represented in the vector.

Intuitive interpretation of the subgradient. The motivation be-
hind introducing the subgradient formulation (11) is that we can as-
sociate an intuitive interpretation to it. The intuition behind the sub-
gradient (11) is that the action count vector π̌⋆(2Ĉ − C) increases
the count of action ai if 2ĉ(ai) < c(ai); which makes the corre-
sponding elements in the subgradient vector 2(π⋆(C) − π̌⋆(2Ĉ −
C)) negative. As the ML model is updated using the opposite of the
subgradient, the corresponding action costs are increased in the next
iteration. So, in this way we incentivize the model to avoid predicting
2ĉ(ai) < c(ai).

4 Scaling up DFL for Planning Problems
As reported by Mandi et al. [16], DFL comes with substantial com-
putational costs. This is due to the fact that DFL requires solving the
planning problem with the predicted (action) costs while training the
underlying ML model. This means that we need to solve a planning
problem repeatedly, which is computationally expensive. This com-
putational burden poses a significant challenge in applying DFL to
real-world planning problems, often resulting in long training times.
In this section, we present some strategies to tackle this crucial issue.

4.1 Use of Planning Techniques to Expedite Training

As DFL involves repeatedly solving the planning problem dur-
ing training, one strategy to expedite training is to use planning
techniques without optimality guarantees or even solutions to re-
laxed planning problems (as usually done when computing planning
heuristics). The advantage of this is that it is easier and faster to
solve. Although such solutions may not be identical to the optimal
ones, they can still provide a useful gradient (11). Note that the gra-
dient computation in DFL is computed across a batch of training in-
stances. In such cases, the exact optimal solution with the predicted
action costs might not be necessary to determine the direction of the
gradient update. A non-optimal solution, reasonably close to the true
solution, often provides a good gradient direction and suffices for
gradient computation.

For integer linear problems (ILPs), Mandi et al. [15] observed that
solving their linear relaxation is sufficient for obtaining informative
DFL gradients. In planning, we have several options towards approx-
imating the optimal solution: we can either use planning algorithms
that are bounded optimal, those without optimally guarantee, or even
use solutions to relaxed planning problems. This leads us to the fol-
lowing settings, where both plan quality and computational effort
decrease:

• opt – Use an optimal planning system to get an optimal solution.
• boundn – Use an algorithm that guarantees a solution not worse

than n times the optimal plan.
• no-bound – Use a planning system without optimality guarantees.
• h – Return a solution to a relaxation of the planning problem as

usually done to compute heuristics in planning.

In our experiments, we use an A∗ search and the admissible LM-
Cut heuristic [12] for optimal planning (opt). For bounded opti-
mal planning (boundn), we combined LM-Cut with a weighted A∗

search. In the latter setting, the heuristic value is multiplied with a
factor, which practically leads to finding solutions more quickly, but
comes at the cost of losing the guarantee of finding an optimal solu-
tion. However, solutions are guaranteed to be bounded optimal.

For planning without optimality guarantees (no-bound), using a
non-admissible heuristic is usually the better option to find plans

more quickly. In our experiments, we combine a Greedy Best First
Search (GBFS) with the hFF heuristic [13]. hFF internally finds a so-
lution to the so-called delete-relaxed (DR) planning problem, which
ignores the delete effects in the original planning problem. This sim-
plifies the problem and makes it possible to find a solution in poly-
nomial time (while finding the optimal solution is still NP-hard). The
heuristic estimate is then the costs of the solution to the DR problem.

For the last option (h), we need to choose a heuristic that computes
not only a heuristic value, but also a relaxed plan, because we need
one to compute the gradient as discussed above. Since hFF internally
computes a DR solution, it is well suited for our setting and we can
use the DR solution as well as the heuristic estimate computed by the
hFF heuristic for our learning process.

4.2 Use of Solution Caching to Expedite Training

As shown by Mulamba et al. [18], an alternative approach to tackle
the scalability of DFL is to replace solving an optimization problem
with a cache lookup strategy, where the cache is a set of feasible
solutions and acts as an inner approximation of the convex-hull of
feasible solutions. How this cache is formed is crucial to the success
of this approach.

Mulamba et al. [18] propose to keep all the solutions in the train-
ing data in the cache. Moreover, as the predicted action costs may
deviate significantly from true action costs, particularly in early train-
ing stages, their solutions may be different from the solutions in the
training instances. To address this, they solve the problem for a per-
centage, p%, of predicted action costs and include the correspond-
ing solutions in the cache as well. Hence, this approach reduces the
computational burden by a margin of p%. They report that keeping
p as low as 5% is often sufficient for DFL training. We will imple-
ment implement this approach by caching action count vectors and
investigate whether such a solution caching approach would speed
up training without compromising the quality of decisions.

5 Experimental Evaluation
In this section, we first describe our benchmark set and the system
setup. We come to the results afterwards. The code and data have
been made publicly available 1.

5.1 Experimental Setup

5.1.1 Benchmark Set

For our experiments we need domains with meaningful action costs
that have impact on solution quality (otherwise we will not be able to
measure the impact of our methods). Further, to have a wide range of
solving techniques available we want to stay in the standard classical
planning (i.e., non-temporal) setting. We use a problem generator to
generate problems of different sizes. In the Rovers domain, meeting
these requirements required some adjustments. Next, we detail the
domains, their source, and (if necessary) modifications we made.

Shortest path. This domain models a n × n grid environment an
agent needs to navigate through. Each node is connected to its top
and right nodes. The objective is to find a path starting from the bot-
tom left cell to the top right cell with minimal costs. This domain
is particularly interesting for our experiments, because it is a widely
used benchmark in DFL [5, 16, 24]. In these works, the problem is

1 https://github.com/ML-KULeuven/DFLPredict-Action-Costs-for-Planning

solved using an LP solver. We include this to have a direct compari-
son to existing DFL methods.

Transport. In this domain we use the standard domain and gen-
erator [23] from the generator repository2. Each transport problem
instance revolves around the task of delivering p number of packages
using t number of trucks. We consider a n× n grid for the transport
problem, within which both pickup and delivery operations occur.
We denote each transport problem instance as n-p-t, signifying that
the grid is of n × n dimension, with p representing the number of
packages and t indicating the available truck count.

Rovers. This domain describes the task of a fleet of Mars rovers,
each equipped with a (probably different) set of sensors. They need
to navigate and gather data (e.g. rock samples or pictures). The data
then needs to be send to the lander. Our domain is based on the
one from the 2006 International Planning Competition. However,
the domains from the different competition tracks did not directly
fit our needs: MetricTime contains durative actions, Propositional
and QualitativePreferences do not include action costs. We created
a model based on the MetricSimplePreferences track and made the
preferences normal goals. To get integer costs, we multiplied the in-
cluded action costs by 10 and rounded them afterwards to integers.

For our domains, we generated two groups of problem instances:
small-sized instances that can be solved within 0.25 seconds, and
large-sized instances that take 0.5–1 seconds to solve. For more de-
tails, please refer to the Appendix section in the full paper’s preprint
version [17].

5.1.2 Generation of Training Data

While we adopt the planning problems from planning benchmark
domains, we synthetically generate the action costs. Such synthetic
data generation processes are common in DFL literature. We follow
the synthetic data generation process exactly as done by Elmachtoub
and Grigas [5]. We generate a set of pairs of features and action costs
{(X κ,Cκ)}Nκ=1 for training and evaluation. The dimension of Cκ is
equal to the number of actions, |A|, which is specific to the planning
problem. The dimension of X κ is 5. and each X κ is sampled from a
multivariate Gaussian distribution with zero mean and unit variance,
i.e., X κ ∼ N(0, I5) (I5 is a 5 × 5 identity matrix). To set up a
mapping from X κ to Cκ, first, a matrix B ∈ R|A|×5 is constructed,
and then Cκ is generated according to the following formula:

cκ(ai) =

[(
1
√
p

(
BX κ

)
+ 3

)Deg

+ 1

]
ξiκ (13)

where cκ(ai) is the the cost of action i in instance κ, the parameter
Deg parameter signifies the extent of model misspecification, and ξiκ
is a multiplicative noise term sampled randomly from the uniform
distribution. Note that the action costs generated in this manner are
always positive if Deg is a even number. Furthermore, since the ac-
tion costs are random numbers sampled from a continuous distribu-
tion, it is highly improbable that two feasible plans will have exactly
identical execution costs. Therefore, in this scenario, we do not en-
counter the phenomenon of multiple non-unique solutions.

Elmachtoub and Grigas [5] use a linear model to predict the cost
vector from features. The higher the value of Deg, the more the true
relation between the features and action costs deviates from the linear
model and the larger the errors of the linear predictive model. Such
model misspecification is a common phenomenon in ML, because

2 https://github.com/AI-Planning/pddl-generators

Table 1: Evaluation of learning based on optimal plans (opt) for small-size problem instances. We report percentage regret.
Shortest Path Transport Rovers

SP-5 SP-10 5-1-1 (a) 5-1-1 (b) 5-2-1 (a) 5-2-1 (b) Rovers1 Rovers2 Rovers3

MSE 9.37± 0.17 12.55± 0.11 9.38± 0.08 7.43± 0.18 7.74± 0.07 8.59± 0.04 4.18± 0.01 4.68± 0.01 1.45± 0.01
SPO+

relu 27.82± 5.21 39.76± 2.29 16.27± 0.98 10.49± 1.81 10.99± 0.84 14.15± 2.34 7.16± 0.92 12.1± 0.57 2.21± 0.23

SPO+
min+

8.13± 0.16 9.63± 0.09 8.9± 0.2 7.67± 0.42 7.72± 0.44 9.19± 0.36 5.35± 0.32 4.95± 0.24 1.2± 0.03
SPO+

relu
P 8.07± 0.09 9.16± 0.03 8.0± 0.11 6.03± 0.18 5.33± 0.15 6.75± 0.13 3.94± 0.12 4.18± 0.1 1.22± 0.01

SPO+
min+

P 8.12± 0.14 9.41± 0.17 7.93± 0.06 5.97± 0.15 5.07± 0.07 6.86± 0.05 4.02± 0.1 4.13± 0.09 1.21± 0.04

the in practise the data generation process is not observable. In our
experiments, we will report result with Deg being 4.

5.1.3 Planning and Learning Setup

Similarly to Elmachtoub and Grigas [5], we will also use a linear
model to predict the action costs from features. We use PyTorch [20]
to implement the linear predictive model and train it by minibatch
stochastic gradient descent [8, 22]. The gradient is backpropagated
for training the model using PyTorch’s automatic differentiation.
As a planning tool, we use the Fast Downward (FD) planning sys-
tem [10] and run the algorithms described in Section 4.1. For small-
size planning problems, we generated 400, 100 and 400 training, val-
idation and test instances. For large-size planning problems, these
values are 200, 25 and 25 respectively.

5.2 Results

In this section, we will present key insights from our empirical eval-
uation. After training the ML model, we report percentage regret on
the test data, which is computed as follows:

1

Ntest

Ntest∑
κ=1

C⊤
κ π⋆(Ĉκ)−C⊤

κ π⋆(Cκ)

C⊤
κ π⋆(Cκ)

. (14)

For each set of experiments, we run 5 experiments each time with
different seeds and report average and standard deviation of percent-
age regret in the tables. We confirmed that all the models converge
within 20 epochs. We report results after the 20th epoch.
Table 2: Evaluation on Shortest path problem instances trained using
LP solver with and without relu. We report percentage regret.

Without Relu With Relu

SP-5

MSE 9.37± 0.17 13.8± 0.61
SPO+ 8.26± 0.15 10.89± 0.42

SP-10

MSE 12.55± 0.11 15.79± 0.17
SPO+ 9.44± 0.13 12.89± 0.57

Table 3: Comparison between add-min and thresholding regret of
models trained using LP solver for the shortest path solver. We report
their deviations from the regret evaluated using an LP solver.

Thresholding
Difference

Add-min
Difference

SP-5

MSE 0.38± 0.32 0.0± 0.01
SPO+ 10.55± 1.18 0.0± 0.01

SP-10

MSE −0.74± 0.17 0.02± 0.04
SPO+ 14.68± 1.65 0.01± 0.02

5.2.1 Evaluating Regret for Planning Problems

RQ1: Does training with a relu activation layer impact regret?
One can enforce the predictions to be non-negative by adding relu as
a final activation layer. However, when the predictive model does not
fully represent the data generation process, imposing non-negativity
constraint using relu may distort the predictions resulting in higher
prediction as well as decision errors. To investigate whether using
relu affects the regret, we consider the Shortest path problem, which
is a widely used benchmark in DFL.

As this is a shortest path problem over a directed acyclic graph,
negative action costs cannot lead to loops and degenerate behaviour.
Hence, we can obtain the true optimal solution even in the presence
of negative action costs using an LP solver. In this experiment, for
both training and evaluation, we use Gurobi LP solver [9]. We ob-
serve in Table 2 that for both MSE and SPO+, the regret increases
as we use relu activation layer. From this we conclude, we are better-
off without the relu activation layer.

RQ2: How to evaluate regret given that planning system does not
allow negative costs? As we will not be using relu activation layer
in the final layer, the predictions generated by the ML model can
turn negative, even though the groundtruth action costs are positive.
As action costs with negative values, are not supported by a planner;
we will be using thresholding (4) or add-min (6) to solve the plan-
ning problem with negative predicted action costs. We again consider
the shortest path problem. This time we again use the LP solver for
training. However, during evaluation, we compute regret using both
the LP solver and a planner, allowing to compare the true regret with
the regret obtained by a planner. We want to find out which method,
thresholding or add-min, gives a regret measure closest to the LP
regret. We see in Table 3 that add-min regret demonstrates greater
fidelity to true LP regret. Note that thresholding regret shows sig-
nificant deviations, particularly evident SPO+ . Hence in our latter
experiments, we will use add-min regret to evaluate the regret of
predicted action costs. With the evaluation protocol set, we now fo-
cus on DFL learning methods.

5.2.2 Training With and Without Explicit Penalty

RQ3: How do the proposed SPO subgradients perform? After
comparing with related work on the Shortest path domain, we evalu-
ate our methods on the Transport and Rovers domain known from the
planning literature. So, in this case, we use the FD planner for DFL
training as well as evaluation. We seek to answer whether adding
the explicit training penalty results in lower regret. As DFL train-
ing requires repeatedly solving a planning problem for every train-
ing instance, we restrict ourselves to planning problems that are fast
to solve. We consider small-size planning problems, which can be
solved quite fast (within 0.25 seconds). In an earlier stage, we exper-
imented with different integer λ values and found that λ = 1 resulted
in the lowest regret. A higher λ increases the influence of the penalty
in the final loss (9), reducing the impact of SPO+ loss.

We report the result in Table 1. SPO+
relu loss performs very

poorly, as its regret is much higher than MSE. This is due to the

Table 4: Evaluation of models trained with different planning techniques without optimality guarantees with SPO+
min+

P for large-size problem
instances. We report percentage regret and training time of 20 epochs in seconds. We highlight those which have lower regret than MSE.

opt boundn no-bound h
Problem MSE A∗ with LM-Cut WA∗(2) with LM-Cut GBFS with hFF hFF del. relaxed plan

Transport Problem

5-3-1 Regret 5.84± 0.26 4.19± 0.4 6.06± 0.8 9.2± 0.9 8.06± 0.41
Training Time 350 4800 1700 700 250

5-2-2 Regret 14.15± 0.0 11.4± 0.89 12.43± 0.73 13.12± 1.23 13.1± 1.01
Training Time 350 9050 5050 800 200

10-1-1 Regret 12.99± 0.17 12.16± 0.8 12.55± 1.34 16.86± 1.39 15.65± 0.89
Training Time 100 3650 3550 700 100

Rovers Problem

Rovers4 Regret 2.69± 0.05 2.3± 0.15 2.78± 0.15 3.66± 0.49 4.97± 0.27
Training Time 250 9300 1550 700 200

Rovers5 Regret 2.92± 0.09 2.91± 0.25 3.8± 0.73 5.36± 0.44 5.76± 0.21
Training Time 300 10300 850 700 200

Table 5: Evaluation of SPO+
min+

P trained with optimal plans (opt) and caching p = 10% and 20% for large-size problem instances. We report
percentage regret and training time of 20 epochs in seconds. We highlight those which have lower regret than MSE.

MSE opt Caching(p = 10%) Caching(p = 20%)

Problem Regret Time Regret Time Regret Training Time Regret Time

Transport Problem
5-3-1 5.84± 0.26 350 4.19± 0.4 4800 5.85± 0.75 800 4.7± 0.52 1050
5-2-2 14.15± 0.0 350 11.4± 0.89 9050 11.03± 1.57 900 11.07± 1.31 1550

10-1-1 12.99± 0.17 100 12.16± 0.8 3650 14.5± 1.28 450 12.07± 1.1 800

Rovers Problem
Rovers4 2.69± 0.05 250 2.3± 0.15 9300 2.72± 0.34 1050 2.29± 0.22 2000
Rovers5 2.95± 0.0 300 2.81± 0.05 10300 3.55± 0.18 1250 2.92± 0.38 2300

fact that turning negative costs to zero without considering their val-
ues causes loss of information. SPO+

min+

performs much better.
However, even in some cases its regret is higher than MSE. On the
other hand, SPO+

relu
P and SPO+

min+

P , which add explicit train-
ing penalty if 2ĉ(ai) < c(ai) for a action ai, are able to improve
SPO+

relu and SPO+
min+

. It is interesting to note that the dif-
ference between relu and min+ is insignificant after adding ex-
plicit training penalty. This experiment suggests both SPO+

relu and
SPO+

min+

are effective DFL approaches for predicting action costs
in planning problems.

5.2.3 Optimal Planning Versus Non-Optimal Planning

RQ4: Can we use non-optimal planning for DFL training? As
DFL requires solving the planning problem repeatedly while train-
ing, which creates a considerable computational burden when chal-
lenging planning problems are considered. Hence we seek to answer
whether we can utilize non-optimal planning algorithms in DFL.

To investigate this, we consider larger problem instances (solving
such instance requires between 0.5 and 1.5 seconds). We train each
time with SPO+

min+

P loss; but non-optimal planning and plans for
DR planning problems. In Table 4, we observe that DFL training with
no-bound and h results in considerably higher regret. The regret of
boundn is higher than opt , but mostly lower than no-bound and h .
However, in most cases its regret is higher than MSE regret, which is
not desirable.

5.2.4 Optimal Planning versus Solution Caching

RQ5: Can we use solution caching to speed up training? Next
we investigate whether solution caching, as implemented by Mu-
lamba et al. [18] in the context of DFL for optimization, is effective

for planning problems too. We initialize the cache with all the so-
lutions present in the training data. We experiment with p = 10%
and 20%. We can see in Table 5, the training time of caching faster
compared to opt due to they solve the planning is solved for only p%
of instances using the predicted action costs. While p = 10% does
not consistently outperform MSE regret, p = 20% produces regret
lower than MSE for all instances. This indicates for large planning
instances, use of solution caching with p = 20% could prove to be a
useful approach.

6 Conclusion
In this work, we investigated for the first time how we can use tech-
niques from DFL in the planning domain. More specifically for the
case of predicting action costs from correlated features and historic
data, we showed how the SPO technique, which places no assump-
tions on the solver used, can also be used for planning problems.
Other DFL techniques which work with a black-box solver [21, 19]
are now equally applicable.

We proposed an implementation of DFL which accounts for the
fact that planners do not support negative action costs. Our find-
ings suggest that imposing non-negativity through relu leads to an
increase in regret, both for model trained with MSE and DFL loss.
Moreover, training with an explicit penalty for correcting negative
action costs before solving the planning problem yields significant
improvements. Indeed, our DFL approach always leads to lower re-
gret than when training to minimize MSE of predicted action costs.
While using sub-optimal plans did not consistently lead to lower-
than-MSE regret, a moderate amount of caching was able to reduce
computation cost significantly.

Future work includes reducing computational costs further, as well
as DFL for state-dependent action cost prediction or other action
components; for which SPO and related techniques is insufficient.

Acknowledgements
This research received funding from the European Union’s Horizon
2020 research and innovation programme under grant agreement No
101070149, project Tuples. Jayanta Mandi is supported by the Re-
search Foundation Flanders (FWO) project G0G3220N.

References
[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,

S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga,
S. Moore, D. G. Murray, B. Steiner, P. A. Tucker, V. Vasudevan, P. War-
den, M. Wicke, Y. Yu, and X. Zheng. Tensorflow: A system for large-
scale machine learning. In Proceedings of the 12th USENIX Symposium
on Operating Systems Design and Implementation (OSDI), pages 265–
283. USENIX Association, 2016.

[2] A. G. Baydin, B. A. Pearlmutter, A. A. Radul, and J. M. Siskind. Auto-
matic differentiation in machine learning: a survey. Journal of Machine
Learning Research, 18(153):1–43, 2018.

[3] Z. Chai, K.-K. Wong, K.-F. Tong, Y. Chen, and Y. Zhang. Port selection
for fluid antenna systems. IEEE Communications Letters, 26(5):1180–
1184, 2022.

[4] X. Chen, Y. Yang, Y. Liu, and L. Wu. Feature-driven economic improve-
ment for network-constrained unit commitment: A closed-loop predict-
and-optimize framework. IEEE Transactions on Power Systems, 37(4):
3104–3118, 2021.

[5] A. N. Elmachtoub and P. Grigas. Smart “predict, then optimize”. Man-
agement Science, 68(1):9–26, 2022.

[6] A. M. Ferber, B. Wilder, B. Dilkina, and M. Tambe. MIPaaL: Mixed
Integer Program as a layer. In Proceedings of the 34th AAAI Conference
on Artificial Intelligence (AAAI), pages 1504–1511. AAAI Press, 2020.

[7] R. Fikes and N. J. Nilsson. STRIPS: A new approach to the application
of theorem proving to problem solving. Artificial Intelligence, 2(3/4):
189–208, 1971.

[8] P. Goyal, P. Dollár, R. Girshick, P. Noordhuis, L. Wesolowski, A. Ky-
rola, A. Tulloch, Y. Jia, and K. He. Accurate, large minibatch SGD:
Training ImageNet in 1 hour. arXiv preprint arXiv:1706.02677, 2017.

[9] Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2023.
URL https://www.gurobi.com.

[10] M. Helmert. The Fast Downward planning system. Journal of Artificial
Intelligence Research (JAIR), 26:191–246, 2006.

[11] M. Helmert. On the complexity of planning in transportation domains.
In Proceedings of the 6th European Conference on Planning (ECP),
pages 120–126. AAAI, 2014.

[12] M. Helmert and C. Domshlak. Landmarks, critical paths and abstrac-
tions: What’s the difference anyway? In Proceedings of the 19th Inter-
national Conference on Automated Planning and Scheduling (ICAPS).
AAAI press, 2009.

[13] J. Hoffmann and B. Nebel. The FF planning system: Fast plan genera-
tion through heuristic search. Journal of Artificial Intelligence Research
(JAIR), 14:253–302, 2001.

[14] E. Hüllermeier and W. Waegeman. Aleatoric and epistemic uncertainty
in machine learning: An introduction to concepts and methods. Machine
Learning, 110:457–506, 2021.

[15] J. Mandi, E. Demirovic, P. J. Stuckey, and T. Guns. Smart predict-and-
optimize for hard combinatorial optimization problems. In Proceedings
of the 34th AAAI Conference on Artificial Intelligence (AAAI), pages
1603–1610. AAAI Press, 2020.

[16] J. Mandi, J. Kotary, S. Berden, M. Mulamba, V. Bucarey, T. Guns, and
F. Fioretto. Decision-focused learning: Foundations, state of the art,
benchmark and future opportunities, 2023.

[17] J. Mandi, M. Foschini, D. Holler, S. Thiebaux, J. Hoffmann, and
T. Guns. Decision-focused learning to predict action costs for planning,
2024. URL https://arxiv.org/abs/2408.06876.

[18] M. Mulamba, J. Mandi, M. Diligenti, M. Lombardi, V. Bucarey, and
T. Guns. Contrastive losses and solution caching for predict-and-
optimize. In Proceedings of the 30th International Joint Conference on
Artificial Intelligence (IJCAI), pages 2833–2840. IJCAI organization,
2021.

[19] M. Niepert, P. Minervini, and L. Franceschi. Implicit mle: Backpropa-
gating through discrete exponential family distributions. In M. Ranzato,
A. Beygelzimer, Y. Dauphin, P. Liang, and J. W. Vaughan, editors, Ad-
vances in Neural Information Processing Systems, volume 34, pages
14567–14579. Curran Associates, Inc., 2021.

[20] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,

A. Desmaison, L. Antiga, and A. Lerer. Automatic differentiation in
pytorch. 2017.

[21] M. V. Pogancic, A. Paulus, V. Musil, G. Martius, and M. Rolínek.
Differentiation of blackbox combinatorial solvers. In Proceedings of
the 8th International Conference on Learning Representations (ICLR).
OpenReview, 2020.

[22] H. Robbins and S. Monro. A stochastic approximation method. The
annals of mathematical statistics, pages 400–407, 1951.

[23] J. Seipp, Á. Torralba, and J. Hoffmann. PDDL generators. https://doi.
org/10.5281/zenodo.6382173, 2022.

[24] B. Tang and E. B. Khalil. PyEPO: A PyTorch-based end-to-end
predict-then-optimize library for linear and integer programming. arXiv
preprint arXiv:2206.14234, 2022.

[25] E. Weiss and G. A. Kaminka. Planning with multiple action-cost esti-
mates. In Proceedings of the 33rd International Conference on Auto-
mated Planning and Scheduling (ICAPS), pages 427–437. AAAI Press,
2023.

