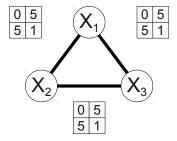
AlphabetSOUP: A Framework for Approximate Energy Minimization Errata

Stephen Gould stephen.gould@anu.edu.au

July 11, 2012

The paper Gould et al. [1] contains an error in Theorem 3.2 as demonstrated by the following counterexample over three binary variables:



Clearly $\mathbf{x}^{\star} = (0, 0, 0)$ and $E(\mathbf{x}^{\star}) = 0$. Now consider the sequence of γ -expansion moves:

$$A^{\gamma} \in \left\{\{0\} \times \{0\} \times \emptyset, \{0\} \times \emptyset \times \{0\}, \emptyset \times \{0\} \times \{0\} \times \{1\} \times \{1\} \times \{1\}\right\}\right\}$$

This set of moves is covering and satisfies the assumptions of [1, Theorem 3.2]. Moreover, $\boldsymbol{x}^{\dagger} = (1, 1, 1)$ is a local minimum with respect to these moves. However, $\frac{E(\boldsymbol{x}^{\dagger})}{E(\boldsymbol{x}^{\star})} = \frac{3}{0} = \infty$.

The theorem is correct for the case of disjoint γ -expansion moves and for the case of $\theta_c(\boldsymbol{x}_c) > 0$ for all c and \boldsymbol{x}_c . For the case of non-disjoint A_i^k and $\theta_c(\boldsymbol{x}_c) = 0$ for some c and \boldsymbol{x}_c we need the following to hold: There must exist some disjoint \tilde{A}_i^k such that:

- $A_i^k = \tilde{A}_i^k \bigcup_{k'} \tilde{A}_i^{k'}$ is the union of \tilde{A}_i^k with some of the remaining $\tilde{A}_i^{k'}$, i.e., $\tilde{A}_i^k \subseteq A_i^k$ and for all $k' \neq k$, $\tilde{A}_i^{k'} \subseteq A_i^k$ or $\tilde{A}_i^{k'} \cap A_i^k = \emptyset$; and
- for all \boldsymbol{x}_c such that $\theta_c(\boldsymbol{x}_c) = 0$ there exists a move k with $\boldsymbol{x}_c \in \tilde{A}^k$.

This essentially requires the moves to be constructed from a set of disjoint moves satisfying \boldsymbol{x}_c being considered in a move whenever $\theta_c(\boldsymbol{x}_c) = 0$. In particular for any c and c' such that there exist an \boldsymbol{x}_c and $\boldsymbol{x}_{c'}$ with $\theta_c(\boldsymbol{x}_c) = 0$ and $\theta_c(\boldsymbol{x}_{c'}) = 0$ we must have that either \boldsymbol{x}_c and $\boldsymbol{x}_{c'}$ are disjoint (i.e., do not share values) or are considered in the same move. This is a much stronger condition than originally stated in [1, Theorem 3.2].

Acknowledgements. Thanks for Jonathan Warrell and M. Pawan Kumar for discovering this error.

References

[1] Stephen Gould, Fernando Amat, and Daphne Koller. Alphabet SOUP: A framework for approximate energy minimization. In *CVPR*, 2009.