
Paging and List Update under Bijective Analysis

Spyros Angelopoulos and Pascal Schweitzer

Max-Planck-Institut für Informatik

Campus E1 4, 66123 Saarbrücken, Germany

July 3, 2008

Abstract

It has long been known that for the paging problem in its standard form, competitive analysis
cannot adequately distinguish algorithms based on their performance: there exists a vast class
of algorithms which achieve the same competitive ratio, ranging from extremely naive and
inefficient strategies (such as Flush-When-Full), to strategies of excellent performance in practice
(such as Least-Recently-Used and some of its variants). A similar situation arises in the list
update problem: in particular, under the cost formulation studied by Mart́ınez and Roura
[TCS 2000] and Munro [ESA 2000] every list update algorithm has, asymptotically, the same
competitive ratio. Several refinements of competitive analysis, as well as alternative performance
measures have been introduced in the literature, with varying degrees of success in narrowing
this disconnect between theoretical analysis and empirical evaluation.

In this paper we study these two fundamental online problems under the framework of
bijective analysis [Angelopoulos, Dorrigiv and López-Ortiz, SODA 2007 and LATIN 2008]. This
is an intuitive technique which is based on pairwise comparison of the costs incurred by two
algorithms on sets of request sequences of the same size. Coupled with a well-established model
of locality of reference due to Albers, Favrholdt and Giel [JCSS 2005], we show that Least-
Recently-Used and Move-to-Front are the unique optimal algorithms for paging and list update,
respectively. Prior to this work, only measures based on average-cost analysis have separated
LRU and MTF from all other algorithms. Given that bijective analysis is a fairly stringent
measure (and also subsumes average-cost analysis), we prove that in a strong sense LRU and
MTF stand out as the best algorithms.

1

1 Introduction

In their seminal work, Sleator and Tarjan [30] introduced competitive analysis as a framework for
analyzing the performance of online algorithms. Assuming a cost-minimization problem, an online
algorithm is said to be c-competitive if its cost on any request sequence never exceeds c times the
optimal offline cost for serving that sequence (up to an additive constant). The resulting measure
(termed competitive ratio in [21]) has led to the development of a mathematical theory of online
algorithms (see [7] and [17] for a comprehensive treatment of the area).

Notwithstanding its wide applicability, there exist online problems for which competitive anal-
ysis is not congruent with empirical evaluation. The most notable example is also one of the most
well-studied problems in online computation, namely the paging problem. Consider, for instance,
the paging strategies Flush-When-Full (FWF), First-In-First-Out (FIFO), and Least-Recently-Used
(LRU). As shown in [30] and [21], all these strategies yield the same competitive ratio equal to the
cache size (a result extended by [31] to the whole class of marking algorithms). However, in practice
LRU (and some of its variants) are the preferred strategies for paging [29]. More specifically, ex-
perimental results suggest that the “empirical competitive ratio” of LRU is a small constant which
does not depend on the cache size [32].

A similar situation arises in the context of another fundamental online problem, namely list
update. In one of their central results in [30], Sleator and Tarjan showed that the Move-To-Front
heuristic (MTF) is 2-competitive, and that this is the best competitive ratio that can be achieved
(up to low-order terms). It must be emphasized that optimality of MTF is shown to hold for the
particular definition of the cost incurred by a list-access algorithm as specified in [30] (to which we
refer as the standard cost model). Some other algorithms, such as the Timestamp algorithm [2] are
also 2-competitive in this model. In subsequent work, Mart́ınez and Roura [25] and Munro [26] in-
dependently argued that the standard-cost model penalizes reasonable algorithms which in practice
can be quite efficient. Instead, they proposed a different cost formulation (to which, following [4]
we refer as the modified-cost model) and showed that every online algorithm has asymptotically
the same, non-constant competitive ratio, namely Θ(l/log l), where l is the size of the list. In
other words, competitive analysis is met with the same, if not worse, inadequacy in evaluating the
performance of algorithms. Mart́ınez and Roura observed this by noting: “an important question
is whether there exist alternative ways to define competitiveness such that MTF and other good
online algorithms for the list update problem would be competitive even for the modified cost
model”.

Bijective Analysis. In this paper we study the performance of algorithms for paging and list
update problems using Bijective Analysis, a technique introduced by Angelopoulos, Dorrigiv and
López-Ortiz [3] for comparing the performance of online algorithms. Let In denote the set of all
request sequences of size n, and for algorithm A and request sequence σ ∈ In, let A(σ) denote the
cost of A on input σ. For concreteness, consider cost-minimization problems.

Definition 1 ([3]). The online algorithm A is no worse than the online algorithm B on inputs
of size n according to bijective analysis, if there exists a bijection π : In → In satisfying A(σ) ≤
B(π(σ)) for each σ ∈ In. We denote this by A ¹b,n B. We say that A is no worse than B if for
every n ≥ n0 (with n0 a constant) we have A ¹b,n B; we denote this by A ¹b B. A and B are
equivalent according to bijective analysis (denoted by A ≡b B) if A ¹b B and B ¹b A. Last, A is
strictly better than B according to bijective analysis if A ¹b B and B 6¹b A.

We adopt bijective analysis as our measure of choice since it has several advantages over the
competitive ratio. More specifically, bijective analysis:

2

• Is a simple and intuitive, yet powerful measure. Showing that A ¹b B guarantees that every
“bad” request sequence for algorithm A corresponds to some request sequence which is at least
as bad for algorithm B, if not worse. Thus the measure does not evaluate the performance of
an algorithm on a single “worst-case” sequence, but instead takes into consideration the overall
performance of the algorithm over all request sequences.

• Allows direct comparison of two algorithms, hence there is neither the need to appeal to an offline
algorithm, nor to analyze the offline optimum.

• Is consistent with some natural, “to-be-expected” properties of efficient online algorithms which
competitive analysis fails to yield. For instance [3] shows that LRU with lookahead is strictly better
(according to bijective analysis) than LRU without lookahead. In contrast, as argued in [6], rather
counterintuitively, no finite lookahead can improve the competitive ratio of any paging algorithm,.

• Can carry over results to different cost formulations. For instance, if A ¹b B for two paging
algorithms A and B under the standard cost definition (number of faults), then the same relation
trivially carries over to the fault rate (number of faults over the sequence length), which is the
measure favored by practitioners (see [1]).

• Can incorporate assumptions concerning the space of request sequences. Suppose that we restrict
the set of sequences to those exhibiting certain natural or established properties (e.g., locality of
reference). Applying bijective analysis over the restricted input set could lead to a better under-
standing of the performance of algorithms1. For instance, since the statement of LRU is tailored so
that the algorithm exploits locality of reference to its benefit, one would aim to show that LRU is
better than many an online algorithm, assuming an appropriate formal definition of what it means
for a sequence to exhibit high locality.

Clearly, bijective analysis may be difficult or even not applicable to specific problems, since
by definition it establishes a very strong relation among the compared algorithms (which may not
exist). A substantially weaker measure (and thus easier to analyze) termed Average Analysis in [3]
compares the average cost of two algorithms over requests of the same length. We say that A is
no worse than B on inputs of size n according to average analysis, if

∑
σ∈In

A(σ) ≤
∑

σ∈In
B(σ);

we denote this by A ¹a,n B. Further, A ¹a B, A ≡a B and A ≺a B are defined along the lines of
Definition 1.

As shown in [3], all lazy paging algorithms are equivalent according to bijective analysis (a lazy
algorithm is an algorithm which evicts a page from the cache only when a fault occurs). This
equivalence shows that, for any two algorithms, the multisets of the cost-values incurred on all
request sequences of the same length are the same. This implies that only performance measures
which declare some sequences as “more important” can distinguish between paging algorithms.
Indeed, [3] shows that LRU is shown to be strictly better than any online algorithm, according
to average analysis on sequences which exhibit some locality of reference. Similarly, [4] shows
that all list update algorithms are equivalent according to bijective analysis, in the modified-cost
model, however, if the requests exhibit locality of reference, MTF is strictly better than any other
algorithm under average analysis.

The question whether the same conclusions can be drawn under the substantially more stringent
measure of bijective analysis was left open in [3] and [4]. In this paper we answer the question in
the affirmative (c.f. Theorem 1 and Theorem 2). Given the strong relation that bijective analysis
establishes between the compared algorithms, our results provide strong theoretical evidence to the
superiority of the above strategies.

1This is not to be interpreted as in not allowing sequences outside the restricted set. Instead, it points out that
the more refined our knowledge about the request sequences is, the more accurate analysis we should expect.

3

2 Preliminaries and related work

Problem definitions and cost models. We consider the paging problem in its standard version:
Let P = {p1, . . . pN} denote the space of available pages. A paging algorithm mediates between a
slow memory and a fast memory (cache) and must serve a sequence of requests to pages in P : if
the current request can be found in the cache, a hit is incurred, and the algorithm pays no cost.
Otherwise the request incurs a fault, and the paging algorithm must determine which page in the
cache must be replaced by the requested page, at unit cost.

In the list access problem, given an unordered list of l items, an online algorithm A must serve
a sequence of n requests to items in the list. In the standard-cost model [30], upon a request to an
element x in the list, A performs first a linear search for item x: if x is the i-th element in the list,
then A incurs a cost of i for accessing x. A can also move x closer to the front of the list at no
additional cost (a “free” exchange), or can exchange any two consecutive items in the list at a unit
cost (a “paid” exchange). In the more general list update problem, a request may refer to either the
insertion of an element or its deletion from the list, however the important operation is the access
operation, hence we only focus on request sequences that consist exclusively of access operations.

Mart́ınez and Roura [25] and Munro [26] observed that in a realistic setting, rearranging the
first i items of the list according to a permutation of {1, . . . , i} should require time proportional
to i, in practice, whereas in the standard-cost model it requires time Ω(i2). This motivated the
modified-cost model, in which the cost of accessing the i-th element in the list, plus the cost of
reorganizing the first i elements in any possible way (permutation) is linear in i. For definitiveness,
in this model, we require that accessing the i-th item in the list costs i, and rearranging the first i
items can be done at zero cost (i.e., by means of free exchanges).

In this work we address the performance of list-update algorithms under both models.

Alternatives to competitive ratio and locality of reference. The discrepancy between
theoretical analysis and empirical performance was observed as early as in [30] and spawned an
extensive line of research on refined definitions of the competitive ratio as well as on alternative
measures for the analysis of online algorithms in general, and for the paging problem in particular.
Among the known approaches are: the Max-Max ratio of Ben-David and Borodin [6]; the diffuse
adversary model of Koutsoupias and Papadimitriou [24] and Young [33] [34]; loose competitiveness
of Young [32] [35]; the random order ratio of Kenyon [23]; the relative worst-order ratio of Boyar,
Favrholdt and Larsen [10] and Boyar, Ehmsen and Larsen [9]; and the accommodation function
model of Boyar, Larsen and Nielsen [12].

Temporal locality of reference permeates memory access in computer systems, and is a well-
established property of a typical request sequence in paging. Several models and techniques have
been proposed that capture (and exploit) locality of reference, such as the access graph model
due to Borodin, Irani, Raghavan and Schieber [8] (also in work by Chrobak and Noga [14]) and
its generalization known as the Markov paging model due to Karlin, Phillips and Raghavan [22];
the full access cost model due to Torng [31]; the random order ratio of Kenyon [23]; the adequate
performance analysis of Panagiotou and Souza [27] and; probabilistic analysis by Becchetti [5].

Due to space limitations, we refer the reader to the survey of Dorrigiv and López-Ortiz [16]
for a detailed exposition. (See also Table 1 in the Appendix). Although previous work has shown
separation results for certain specific algorithms, so far only average analysis has separated LRU
and MTF from every other algorithm.

In our work we adopt an intuitive and well-established model of locality of reference due to
Albers, Favrholdt and Giel [1], which in turn is based on Denning’s concept of the working set [15].
Let f denote a function that represents the maximum (or average) number of distinct pages in a
window of size w in the request sequence (i.e., a consecutive subsequence of length w). As shown

4

by extensive experiments over real data, f is typically approximated by an increasing concave2

function. There are two possible ways to capture locality in this model: In the Max-model, we say
that a request sequence is consistent with f if the number of distinct pages in any window of size w
is always at most f(w), whereas in the Average-model we say that a request sequence is consistent
with f if the average number of distinct pages over all windows of size w is always at most f(w).

Let If
n denote the set of request sequences of size n. which are consistent with a given concave

function f . As argued in the Introduction, we can still apply bijective and average analysis in
comparing the performance of two algorithms over request sequences drawn from If

n . We use
upper-script f to denote the corresponding relations (e.g., A ¹f

a B, A ¹f
b B, etc.).

In list update, the notion of locality of reference is less self-evident than in paging. While
not a de facto property of a typical request sequence, we know that in practice, applications of
list-update algorithms encounter sequences with high locality [18] [28], and list update algorithms
try to take advantage of this property. For instance, list update algorithms can be used in a very
direct way for file compression: a standard practice then is to preprocess the input by means of
the Burrows-Wheeler transform, which transforms a string to one of its permutations that has
increased locality of reference, hence can be compressed more efficiently [13] [20]. Experiments over
the Calgary Compression Corpus [19] which is a standard benchmark for file compression, show [4]
that the maximum number of distinct characters in a window of size w can be approximated by a
function concave in w: in other words, the model of Albers et al. can faithfully represent locality
of reference in list accessing, at least in applications which arise from file compression.

In terms of the above notation, [3] and [4] show that LRU ¹f
a A and MTF ¹f

a B, where A
and B are any online paging and list access algorithm, respectively. In addition, they show that
for every online algorithm A which is oblivious of f , in the sense that f is not provided as part
of the input, there exists a concave function f such that LRU ≺f

a A and MTF ≺f
a A. In words,

this means that LRU and MTF are unique optimal algorithms according to average analysis. In
the remainder of this paper we show that the same conclusions apply for bijective analysis over
If . Note that it suffices to prove that LRU ¹f

b A and MTF ¹f
b B, since uniqueness is implied by

average analysis. In the discussion of Section 3 and Section 4 we assume the Max-model for f . In
Section 5 we argue that the optimality of LRU and MTF can also be derived in the Average-model,
as well as in even broader and more permissive (but still natural) definitions of what constitutes
locality of reference.

3 Bijective analysis for paging

We denote by σ = σ1σ2 . . . σn a sequence of n requests, with each σi an element of P . We use the
notation σ[i, j] to denote the (contiguous) subsequence σi . . . σj .

Definition 2. Let pi, pk denote two distinct pages in P . Let σj denote the j-th request in some
request sequence σ. We define the complement of σj with respect to i and k, denoted by σj

(i,k) as
the function that replaces pi with pk, and vice versa. Formally, σj

(i,k) = pi, if σj = pk; σj
(i,k) = pk,

if σj = pi; and σj
(i,k) = σj, otherwise.

For convenience, we will use σj when i, k are implied from context. For any sequence σ =
σ1σ2 . . . σn we also define σ as the sequence σ1 . . . σn.

The following lemma describes a property of sequences consistent with f . In very informal
terms, it suggests that if the sequence . . . pk . . . pi . . . pk . . . pi . . . exhibits locality of reference, then
so does the sequence . . . pk . . . pi . . . pi . . . pk

2Albers et al. consider a slightly more restrictive class of functions called concave* functions.

5

Lemma 1. Let σ = σ1 . . . σn be a sequence of n requests that is consistent with f . Let t ≤ n be an
integer such that σ[1, t] contains a request to pi, and in addition, pk does not appear in σ[1, t] after
the last request to pi in σ[1, t].

Let σ′ denote the sequence σ[1, t] ·σ[t+1, n], and suppose that σ′ is not consistent with f . Then
σ[t + 1, n] contains a request to pi; furthermore, no request to pk in σ[t + 1, n] occurs earlier than
the first request to pi in σ[t + 1, n].

Proof. Since σ′ is not consistent with f , there must exist j1 < j2 ≤ n such that σ′[j1, j2] contains
more than f(j2 − j1 + 1) distinct pages. Note that for any subsequence ω of σ[t + 1, n], ω has the
same number of distinct pages as ω. This implies that j1 and j2 must be such that j1 ≤ t < j2.

Suffices then to argue that σ[t + 1, j2] contains a request to pi but no request to pk. It is easy
to see that σ[j1, t] cannot contain requests to both pi and pk, neither can it contain requests to
none of these pages: if either of these cases occurred, then σ[j1, j2] and σ[j1, t]σ[t + 1, j2] would
contain the same number of distinct pages, which would contradict that σ is consistent with f .
From assumption, we further deduce that σ[j1, t] contains a request to pi but no request to pk.

Now σ[j1, t]σ[t + 1, j2] must contain a request that does not appear in σ[j1, j2], and pk is the
only such candidate. We conclude that σ[t + 1, j2] contains pi but does not contain pk.

Definition 3. Let σ be a sequence of n requests. We say that an algorithm A is LRU-like on
σ[1, i − 1] · σi (or simply LRU-like on σi when σ is clear from context) if after serving σ[1, i − 1],
it serves request σi as LRU would: namely if σi incurs a fault, given A’s cache, A evicts the page
requested the least recently in σ[1, i] (or does nothing if σi incurs a hit).

We aim to show that for every online algorithm A, we have LRU ¹f
b,n A. The straightforward

approach would be to explicitly define an appropriate bijection, however this appears to be very
complicated. Instead, we will show that starting with A, we can define a series of appropriate
algorithms B1, B2, . . . Bl such that A ≡ B1 º

f
b,n . . . ºf

b,n Bi º
f
b,n . . . ºf

b,n Bl ≡ LRU . The result

then follows from transitivity of the “¹f
b,n” relation. We define each algorithm in the series in such

a way that it comes “closer and closer” to the statement of the LRU algorithm itself (see Lemma 2).

Lemma 2. Consider the set If
n of all request sequences of size n consistent with f , and a fixed

integer j ≤ n. Suppose that A is an online algorithm with the property that for every request
sequence σ = σ1 . . . σn ∈ I

f
n , A is LRU-like on σ[1, k] · σk+1, for all k ≥ j + 1. Then there exists an

online algorithm B with the following properties:

1. For every input σ ∈ If
n , B makes the same decisions as A on the first j requests of σ (i.e., A

and B make the same eviction decisions for each fault due to requests in σ[1, j]).

2. For every input σ ∈ If
n , B is LRU-like on σ[1, j] · σj+1.

3. B ¹f
b,n A.

Informally, Lemma 2 states that for any algorithm A which may make a non-LRU-like decision
when considering the (j + 1)-th request of some sequence in If

n (but will always make LRU-like
decisions throughout the remaining n − j − 1 requests) one can define a new algorithm B which

behaves as A up to the first j requests of any sequence in If
n , and will always make an LRU-like

decision on the (j +1)-th request; furthermore B is not worse than A in terms of bijective analysis.

Proof. We first describe the decisions of B on a request sequence σ = σ1 . . . σn ∈ I
f
n . For simplicity

of notation, define σ′ = σ[1, j], p = σj+1 and σ′′ = σ[j+2, n] (σ′ or σ′′ may be the empty sequence).
We introduce the concept of a tag-based algorithm to give a concise statement of B. Suppose that

6

after serving σ′p, B assigns a set T of tags to each page in its cache (a tag is an integer). In
particular, for every page p′ in its cache, let tagB[p′, σ′p] denote the tag assigned to p′, right after
B has served σ′p. We say that B is tag-based wrt T on σ′′ if it processes each request σl (with
l ≥ j + 2) in σ′′ according to the following rule: on the event of a fault, it will first evict from its
cache the page of smallest tag; then it will update the tag of page σl to the index of its current
request (namely l). Otherwise (on the event of a hit), B only updates the tag of σl to l.

We now define the actions of B. First, we require that B makes the same decisions as A on
all requests in σ′. Next, if A makes an LRU-like decision on σ′ · p, then B makes the same LRU-
like decision as A, as well as the same decisions on any request in σ′′ as A. If this is not the case,
however, then there must exist a pair of pages pi, pk ∈ P with pi 6= pk such that when p is requested,
A evicts pi from its cache, whereas pk is the least recently requested page in σ′. We describe the
subsequent actions of B by requiring first that B evicts pk, then assigns tags to pages in its cache
according to the following rules:

tagB[pi, σ
′p]← last[pk, σ

′] and tagB[p′, σ′p]← last[p′, σ′],

for all pages p′ 6= pi in the cache of B after the request for p has been served. Here, we use the
notation last[pk, σ

′] to denote the index of the last access of page pk in σ′. From that point onwards,
we require that B is tag-based on σ′′ for tags as defined above. It is worth pointing out that B is
truly an online algorithm, since it does not use know the future when serving its requests.

Here is the intuition behind the statement of B. Since A is LRU-like on all σk, with k ≥ j + 2,
it is also tag-based on σ′′, for the set of tags tagA[p′, σ′p] = last[p′, σp] (so the tag is the timestamp
of the last request of the page). In view of this, B evicts pk instead of pi (thus making an LRU-like
decision) and effectively demotes the timestamp of pi so as to make pi appear as if it was the
least-recently used page at the time p is requested.

By construction, B satisfies properties (1) and (2) of the statement of the lemma. It remains
then to show property (3). For this define the mapping π as follows:

π(σ) =

{
σ′pσ′′ if σ′pσ′′ is consistent with f and A does not make an LRU-like decision on σ′p,

σ otherwise.

Here, σ′′ denotes the complement of σ′′ with respect to i and k (note that i and k depend on σ′p).
Observe that the composition π ◦ π is the identity map so π is a bijection (see Appendix B).

We need to show that for every σ ∈ If
n , A(σ) ≥ B(π(σ)). Suffices to consider only the case

that A does not make an LRU-like decision on σ′p. Proposition 1 and Proposition 2 address the
two possibilities (depending on whether or not π(σ) = σ). Since the proofs proceed by induction,
we first require some formal definitions concerning the cache contents of A and B, as they serve σ
and π(σ), respectively.

We define by C[A, σ′p] the contents of the cache configuration of algorithm A after it has
served the sequence σ′p: this configuration consists of the set P [A, σ′p] of pages in said cache,
as well as assigned tags tagA[p′, σ′p] equal to last[p′, σ′p] for all p′ ∈ P [A, σ′p]. In line with an
earlier observation, we choose these tags so as to make A behave as both an LRU-like algorithm
and tag-based algorithm for all requests in σ′′ (thus making it easy to compare A to B). This is
because A updates the tags of pages in σ′′ as a tag-based algorithm would do for pages in σ′′. More
generally, denote by C[A, σ[1, t]] with t ≥ j+1 the configuration which consists of pages P [A, σ[1, t]]
in A’s cache, together with the corresponding tags, after A has served the sequence σ[1, t]. The
complement of C[A, σ[1, t]] with respect to i and k, denoted by C[A, σ[1, t]] is then defined as the
cache configuration in which: i) the set of pages in the cache is the set P [A, σ[1, t]]; and ii) tags are
as in C[A, σ[1, t]], with the exception that if pi ∈ P [A, σ[1, t]] (resp. if pk ∈ P [A, σ[1, t]]) then its
tag in C[A, σ[1, t]] is the tag of pk in C[A, σ[1, t]] (resp. the tag of pi in C[A, σ[1, t]]).

7

Proposition 1. If σ′pσ′′ is consistent with f then B(π(σ)) = A(σ).

Proof sketch. We need to show that for all j + 1 ≤ l ≤ n, algorithm B satisfies the following
properties: i) C[A, σ[1, l]] = C[B, π(σ)[1, l]], and ii) A incurs a fault on request σl if and only if B
incurs a fault on request π(σ)l. The proof proceeds by induction on l (see Appendix B). ¤

Proposition 2. If σ′pσ′′ is not consistent with f , then B(π(σ)) ≤ A(σ).

Proof. From the construction of B, it is clear that B(π(σ)[1, j+1]) = A(σ[1, j+1]). Moreover, from
the initial choice of tags, C[A, σ[1, j + 1]] = C[B, π(σ)[1, j + 1]]. More precisely, C[A, σ[1, j + 1]]
and C[B, π(σ)[1, j + 1]] have identical page sets, with the only difference that the former contains
pk whereas the latter contains pi. Since σ′pσ′′ is not consistent with f , Lemma 1 dictates that pi

must appear in σ[j +2, n], and if σt = pi for some t ≥ j +2 is the earliest request of pi in σ[j +2, n],
pk is not requested in σ[j + 2, t]. Suffices then to consider the following two cases:

• Case 1: A incurs no fault in σ[j + 2, t− 1]. In this case it follows that B will likewise incur no
fault in π(σ)[j + 2, t− 1]. Upon request σt = pi, A incurs a fault and makes an LRU-like eviction,
namely it evicts page pk, replaces it with page pi and sets tag[pi] = t. On the other hand, B incurs
a hit and also sets the tag of pi to t. At that point, the cache configurations of the two algorithms
are identical (including the page tags), or more formally C[A, σ[1, t]] = C[B, π(σ)[1, t]]. In addition,
A is tag-based on each request in σ[t, n], and B is tag-based on each request in π(σ)[t, n] = σ[t, n].
We conclude that the actions of A on σ[t + 1, n] are identical to the actions of B on π(σ)[t + 1, n],
request-by-request, and thus B(π(σ)) < A(σ).

• Case 2: A incurs a fault in σ[j + 2, t− 1]. This case is similar to Case 1 (see Appendix B).

Proposition 1 and Proposition 2 conclude the proof of the Lemma.

For any given algorithm A, we will now repeatedly use Lemma 2 in order to construct a new
algorithm, which makes LRU-like decisions on suffixes of any request sequence, and is no worse
than A. Denote by Bi the class of algorithms that make LRU-like decisions on the last i requests
of every request sequence σ ∈ If

n .

Lemma 3. For every algorithm A there exists an algorithm Bi ∈ Bi such that Bi ¹
f
b,n A, and for

every request sequence σ ∈ If
n , Bi makes the same decisions as A in the first n− i requests in σ.

Proof. By induction on i. The lemma is vacuously true for i = 0. Let Bi ∈ Bi be such that
Bi ¹

f
b,n A, and for any request sequence σ ∈ If

n , Bi makes the same decisions as A in the first n− i
requests in σ. We will show that the claim holds for i + 1 as well. From Lemma 2 there exists an
algorithm B such that B ¹f

b,n Bi, and for every σ ∈ If
n , B makes an LRU-like decision on request

σn−i, and the same decisions as Bi on the first n− i− 1 requests in σ.
Note that B does not necessarily make LRU-like decisions for requests in σ[n−i+1, n]; however,

we can apply the induction hypothesis, and again argue that there exists an algorithm B ′
i ∈ Bi with

the properties that B′
i ¹

f
b,n B, and for every σ ∈ If

n , B′
i makes the same decisions as B on the first

n − i requests of σ, and LRU-like decisions on the last i requests of σ. But then B ′
i ∈ Bi+1, and

again from induction hypothesis, B′
i makes the same decisions as A in the first n − i − 1 requests

of σ ∈ If
n , hence the lemma holds for i + 1, which completes the proof.

Theorem 1. For any online paging algorithm A, and every n, we have LRU ¹f
b,n A.

Proof. For every online algorithm A, Lemma 3 guarantees the existence of an algorithm in Bn

which makes LRU-like decisions on all n requests, given a request sequence σ ∈ If
n , and is no worse

than A. The only algorithm with this property is LRU itself.

8

4 Bijective analysis for list access

In this section we prove that MTF is optimal in the modified cost model. (Recall that in this cost
formulation, accessing an item a which is the i-th item in the list requires time i, and the algorithm
can rearrange the part of the list up to a without cost). In order to show this, we prove optimality
of MTF within a model allowing a larger class of algorithms. More precisely, in the model in which
accessing item a costs i, and in addition rearranging the entire list right after the access can be
done at no cost. Interestingly, this generalization leads to a more accessible proof, and also implies
optimality of MTF in the standard cost model.

Let {a1, . . . , al} denote the l items of a list, and σ denote a request sequence of items to be
accessed. Also, let Lj = 〈aj

1, . . . , a
j
l 〉 denote the list produced by an algorithm A right after serving

request σj . We say that Lj is ordered according to σ[1, j] if aj
1, . . . , a

j
l are ordered by least recent

access (i.e., using terminology of Section 3, we have3 last[aj
1, σ[1, j]] ≥ . . . ≥ last[aj

l , σ[1, j]]).

A pair of elements (aj
i1

, aj
i2

) in Lj , with i1 < i2, is said to be ordered according to σ[1, j] if aj
i1

was requested more recently in σ[1, j] than aj
i2

, otherwise it is called an inversion.
Given the current request σj , we say that an algorithm performs an ordering decision on σj if

after serving σj the list Lj produced by the algorithm is ordered according to σ[1, j].

Lemma 4. Consider the set If
n and a fixed integer j ≤ n. Suppose that A is an online algorithm

such that for every request sequence σ ∈ If
n , A performs ordering decisions on all requests σk for

k ≥ j + 1. Suppose also that there exists a specific request sequence r = r1 . . . rj ∈ I
f
j such that

upon serving rj, A produces a list Lj in which the pair (aj
k1

, aj
k2

) is not ordered according to r.

Consider now algorithm B which serves any sequence σ ∈ If
n of the form σ = rσ′′ by i) making

decisions identical to A for the first j− 1 requests; ii) serving σj = rj as A does, with the exception

that it exchanges items aj
k1

and aj
k2

in Lj; and iii) performs ordering decisions for all remaining

requests σj+1 . . . σn. For requests σ ∈ If
n for which σ[1, j] 6= r, B performs the same decisions as

A on the whole sequence σ. Then B has the property that B ¹f
b,n A.

Proof. To show that B ¹f
n A, suffices to define an appropriate bijection π, satisfying Definition 1.

For definitiveness, let Lj
s = 〈a1 . . . al〉 be the list ordered according to σ[1, j], which means that

ai1 := aj
k2

precedes ai2 := aj
k1

in Lj
s. Let φ be the cyclic permutation of list items defined by:

φ(am) =





ai1 if m = i2,

am+1 if i1 ≤ m < i2,

am otherwise.

As a next step, for every k define π′ : Ik → Ik to be the bijection

π′(σ1 . . . σk) =





φ(σ1) . . . φ(σk) if σ1 = ai2 ,

φ−1(σ1) . . . φ−1(σk) if σ1 = ai1 ,

σ1 . . . σk otherwise.

We are now ready to define the required bijection π : If
n → I

f
n . Given σ ∈ If

n , we use the
notation σ′ (resp. σ′′) to define the prefix of the j first requests (resp. suffix of the last n − j
requests) in σ, and thus can write σ = σ′σ′′. Define π as

π(σ) =

{
σ′ · π′(σ′′) if σ′ · π′(σ′′) is consistent with f and σ′ = r,

σ otherwise.

3Without loss of generality, items not accessed in σ[1, j] have last[·, σ[1, j]] value equal to 0, breaking ties arbitrarily.

9

The intuition behind the definition of π is that π′(σ′′) is analogous to σ′′ which we used in the
context of the paging problem. The purpose of σ′′ was to rectify the non-optimal eviction decision
involving pages pi and pk. Similarly, the purpose of π′(σ′′) is to rectify the non-optimal inversion
involving ai1 and ai2 . This is accomplished through φ which, not surprisingly, involves all items
between ai1 and ai2 in the ordered list Lj

s.
Observe that π′ ◦ π′ is the identity and therefore π ◦ π is the identity as well. It follows that π

is a bijection (Appendix B). It remains to show that for all sequences σ, B(π(σ)) ≤ A(σ). Since
this is trivial when σ′ 6= r, for the remainder of the proof we consider sequences σ such that σ ′ = r.

• Case 1: π(σ) 6= σ. In this case, from the definition of π we have that σj+1 ∈ {ai1 , ai2}. The
following proposition establishes that in this case, B(π(σ)) = A(σ).

Proposition 3 (Appendix B). Let 〈at
1 . . . at

l〉 denote the list produced by A after serving sequence
σ[1, t], for j < t ≤ n. Then the list produced by B upon serving π(σ)[1, t] is 〈φ(at

1) . . . φ(at
l)〉, if

σj+1 = ai2, and 〈φ−1(at
1) . . . φ−1(at

l)〉, if σj+1 = ai1. Furthermore, A(σ[1, t]) = B(π(σ)[1, t]).

• Case 2: π(σ) = σ. If σj+1 /∈ {ai1 , ai2}, then both A and B incur the same cost in serving
σj+1 = π(σ)j+1. From that point onwards, the list configuration right after A serves request σt

(t ≥ j+1) is identical to the list configuration after B serves π(σ)t = σt, since both algorithms make
ordering-decisions thereafter. Therefore, B(π(σ)) = B(σ) = A(σ). If σj+1 = ai1 then algorithm
B pays less to serve σj+1 compared to algorithm A. Afterwards, once again, A and B maintain
the same lists throughout, threfore, B(π(σ)) < A(σ). Thus, it only remains to consider the case
σj+1 = ai2 . We show that this case cannot occur, in the sense that if σj+1 = ai2 then σ′π(σ′′)
must be consistent with f (hence Case 1 would apply instead). By way of contradiction, suppose
σj+1 = ai2 : we will prove that in any window [t1, t2] there are at least as many distinct items
in σ[t1, t2] as in π(σ)[t1, t2], hence π(σ) must be consistent with f . If t1 > j or t2 ≤ j this is
straightforward. So assume t1 ≤ j < t2. Recall that 〈a1 . . . al〉 denotes the list ordered according
to σ[1, j]. This means that the set of distinct items in σ[t1, j] is of the form D = {a1, . . . , ak} for
some k. Since σj+1 = ai2 we know that π(σ) = σ′π′(σ′′) = σ[1, j]φ(σj+1) . . . φ(σn).

We first claim that if a is such that a ∈ D and φ(a) /∈ D then it must be that a = ak with
k 6= i2 and φ(a) = ak+1. This follows from the following facts: i) for every item am, with m ∈ [1, l],
we have φ(am) ∈ {am, am+1, ai1}; and ii) if a = ai2 ∈ D then φ(a) = ai1 ∈ D since i1 < i2.

Let D1 (resp. D2) denote the set of distinct pages in σ[j + 1, t] (resp. π(σ)[j + 1, t]) which are
not in D. Suffices then to show that |D2| ≤ |D1|.

Using the previous claim we can further deduce that if item a is such that a /∈ D1 and φ(a) ∈ D2

then once again we have a = ak with k 6= i2 and φ(a) = ak+1. This is because φ(a) ∈ D2 implies
φ(a) /∈ D and that φ(a) occurs in π(σ)[j + 1, t], hence a must occur in σ[j + 1, t]. Since a /∈ D1 we
conclude that a ∈ D and we can apply the previous claim.

Suppose then that ak occurs in σ[j + 1, t], and that φ(ak) = ak+1 ∈ D2 (since otherwise for
every item φ(a) ∈ D2 we have a ∈ D1 and therefore |D2| ≤ |D1|.) This implies that i1 ≤ k < i2,
thus ai1 ∈ D and ai2 /∈ D. We then observe that item ai2 has the property that ai2 ∈ D1, but
φ(ai2) /∈ D2. In plain words, when comparing the set of distinct items in σ[t1, t2] and π(σ)[t1, t2],
if it so happens that π(σ)[t1, t2] “gains” a new item (compared to σ[t1, t2]) due to the presence of
ak+1, then for sure it will “lose” one, compared to σ[t1, t2], due to the substitution of ai2 by ai1 .

We conclude that σj+1 cannot be ai2 , thus B(π(σ)) ≤ A(σ) in Case 2, and the lemma follows.

Lemma 5. Suppose that A is an online algorithm with the property that for every sequence
σ1, . . . σn ∈ I

f
n , A performs an ordering decision on request σk for all k > j + 1. Then there

exists an online algorithm B with the following properties: (i) For every sequence σ ∈ I f
n , B makes

the same decisions as A on the first j requests of σ, and makes ordering decisions on all remaining
requests σk with k ≥ j + 1; and (ii) B ¹f

b,n A.

10

Proof. Apply Lemma 4 inductively over the total number of inversions incurred by A on all se-
quences of length j + 1 (see Appendix B for details).

Theorem 2. For any online algorithm A, and every n, MTF ¹f
b,n A.

Proof. Using Lemma 5, we conclude by induction that for every i ≤ n, there exists an algorithm
Bi such that Bi performs ordering decisions on the last i requests of every sequence in If

n and
Bi ¹

f
b,n A. Since Bn is MTF itself, the theorem follows.

Recall that, from the earlier discussion, Theorem 2 applies in a general model and implies
optimality of MTF in both the standard and modified cost models.

5 Extensions

The proofs of Theorem 1 and Theorem 2 are presented in terms of the the Max-model of locality
of reference (see Section 2). However, the results extend straightforwardly to the Average-model,
in which f(w) reflects the average number of faults over all windows of size w. In fact, we observe
that Lemma 1 as well as the arguments in Case 2 of Lemma 4 carry over to the Average-model,
and this is all that is required for the lemmas to be applicable in this more general model.

Even more strongly, one observes that we can derive the optimality of LRU under any framework
in which sequences with locality of reference belong in a set Ln ⊆ In, provided that the statement
of Lemma 1 is satisfied, i.e., by substituting “consistency with f” by “membership in the set Ln”.
Hence for every such set Ln of request sequences, LRU is still optimal according to bijective analysis
over Ln. (See Appendix B for details).

6 Future work

In future work we intend to investigate further applications of bijective analysis. In very recent work
Boyar, Irani and Larsen [11] studied the two-server problem on three collinear points under various
measures, including bijective analysis. But can the latter be applied successfully into a broader
class of problems? Since bijective analysis is significantly less amenable than, say, competitive
analysis, a more relaxed measure may be desirable. For instance, can we formalize a statement of
the form “algorithm A is at most two times worse than any other algorithm according to bijective
analysis.”? Can we extend this type of analysis to randomized algorithms?

In a more concrete setting, Albers and Mitzenmacher [2] study the list update problem under
the assumption that request sequences are generated by a discrete memoryless source according to
a probability distribution, and show that algorithm Timestamp(0) performs better than MTF in
such a setting. Interestingly, on strings processed by the Burrows-Wheeler transform, i.e., strings
with high locality of reference, MTF still appears to perform better in [2]. In a similar vein, Boyar
et al. [9] argue that a variant of LRU, namely algorithm LRU-2, is better than LRU according to
the relative worst-order ratio. Consider then the setting in which the set of allowable sequences is
the set of all sequences consistent with a given frequency pattern. Can we show separation results
based on bijective analysis? We observe that since the latter definition of allowable sequences is not
precisely the set If

n , it would be very interesting to show that variants of LRU and MTF which are
biased towards frequent requests (such as LRU-2 and Timestamp(0)) are in fact better algorithms.

11

References

[1] Susanne Albers, Lene M. Favrholdt, and Oliver Giel. On paging with locality of reference.
JCSS: Journal of Computer and System Sciences, 70, 2005.

[2] Susanne Albers and Michael Mitzenmacher. Average case analyses of list update algorithms,
with applications to data compression. Algorithmica, 21(3):312–329, 1998.

[3] Spyros Angelopoulos, Reza Dorrigiv, and Alejandro López-Ortiz. On the separation and equiv-
alence of paging strategies. In Proceedings of the he Eighteenth Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 229–237, 2007.

[4] Spyros Angelopoulos, Reza Dorrigiv, and Alejandro López-Ortiz. List update with locality of
reference. In Proceedings of the Eighth Latin American Theoretical Informatics Symposium,
pages 399–410, 2008.

[5] Luca Becchetti. Modeling locality: A probabilistic analysis of LRU and FWF. In Proceedings
of the 12th European Symposium on Algorithms (ESA), pages 98–109, 2004.

[6] Shai Ben-David and Allan Borodin. A new measure for the study of on-line algorithms.
Algorithmica, 11(1):73–91, 1994.

[7] Allan Borodin and Ran El-Yaniv. Online Computation and Competitive Analysis. Cambridge
University Press, 1998.

[8] Allan Borodin, Sandy Irani, Prabhakar Raghavan, and Baruch Schieber. Competitive paging
with locality of reference. Journal of Computer and System Sciences, 50:244–258, 1995.

[9] Joan Boyar, Martin R. Ehmsen, and Kim S. Larsen. Theoretical evidence for the superiority
of lru-2 over lru for the paging problem. In Proceedings of the 4th International Workshop on
Approximation and Online Algorithms (WAOA), pages 95–107, 2006.

[10] Joan Boyar, Lene M. Favrholdt, and Kim S. Larsen. The relative worst-order ratio applied to
paging. J. Comput. Syst. Sci., 73(5):818–843, 2007.

[11] Joan Boyar, Sandy Irani, and Kim S. Larsen. A comparison of performance measures for online
algorithms, 2008. Availabble from arXiv.org, number 0806.0983v1.

[12] Joan Boyar, Kim S. Larsen, and Morten N. Nielsen. The accommodating function: A gener-
alization of the competitive ratio. SIAM J. Comput., 31(1):233–258, 2001.

[13] M. Burrows and D. J. Wheeler. A block-sorting lossless data compression algorithm. Technical
Report 124, DEC SRC, 1994.

[14] Marek Chrobak and John Noga. LRU is better than FIFO. Algorithmica, 23(2):180–185, 1999.

[15] Peter J. Denning. The working set model for program behaviour. Communications of the
ACM, 11(5), May 1968.

[16] Reza Dorrigiv and Alejandro López-Ortiz. A survey of performance measures for on-line
algorithms. SIGACTN: SIGACT News (ACM Special Interest Group on Automata and Com-
putability Theory), 36(3):67–81, September 2005.

[17] Amos Fiat and Gerhard J. Woeginger. Online Algorithms—The State of the Art, volume 1442
of LNCS. Springer-Verlag, 1998.

12

[18] James H. Hester and Daniel S. Hirschberg. Self-organizing linear search. ACM Computing
Surveys, 17(3):295–311, 1985.

[19] i. H. Witten and T. Bell. The Calgary/Canterbury text compression corpus. Anonymous ftp
from ftp://ftp.cpsc.ucalgary.ca/pub/projects/text.compression.corpus.

[20] Haim Kaplan, Shir Landau, and Elad Verbin. A simpler analysis of burrows-wheeler based
compression. In Proceedings of the 17th Annual Symposium on Combinatorial Pattern Match-
ing, pages 282–293, 2006.

[21] Anna R. Karlin, Mark S. Manasse, Larry Rudolph, and Daniel Dominic Sleator. Competitive
snoopy caching. Algorithmica, 3:77–119, 1988.

[22] Anna R. Karlin, Steven J. Phillips, and Prabhakar Raghavan. Markov paging. SIAM J.
Comput., 30(3):906–922, 2000.

[23] Claire Kenyon. Best-fit bin-packing with random order. In In Proceedings of the Seventh
ACM-SIAM Symposium on Discrete Algorithms, pages 359–364, 1996.

[24] Elias Koutsoupias and Christos Papadimitriou. Beyond competitive analysis. SIAM J. Com-
put., 30:300–317, 2000.

[25] C. Mart́ınez and R. Roura. The competitiveness of the move-to-front rule. Theoretical Com-
puter Science, 1–2(242):313–325, 2000.

[26] James Ian Munro. On the competitiveness of linear search. In Proceedings of the Eighth
European Symposium on Algorithms, pages 338–325, 2000.

[27] Konstantinos Panagiotou and Alexander Souza. On adequate performance measures for paging.
In Proceedings of the thirty-eighth Annual ACM Symposium on Theory of computing, pages
487–496, 2006.

[28] Frank Schulz. Two new families of list update algorithms. In Proceedings of the 9th Interna-
tional Symposium on Algorithms and Computation, pages 99–108, 1998.

[29] Abraham Silberschatz, Peter Baer Galvin, and Greg Gagne. Operating System Concepts. John
Wiley & Sons, Inc., New York, NY, USA, 2001.

[30] Daniel D. Sleator and Robert E. Tarjan. Amortized Efficiency of List Update and Paging
Rules. Communications of the ACM, 28:202–208, 1985.

[31] Eric Torng. A unified analysis of paging and caching. Algorithmica, 20(2):175–200, 1998.

[32] Neal E. Young. The k-server dual and loose competitiveness for paging. Algorithmica,
11(6):525–541, June 1994.

[33] Neal E. Young. Bounding the diffuse adversary. In SODA ’98: Proceedings of the ninth annual
ACM-SIAM symposium on Discrete algorithms, pages 420–425, 1998.

[34] Neal E. Young. On-line paging against adversarially biased random inputs. J. Algorithms,
37(1):218–235, 2000.

[35] Neal E. Young. On-line file caching. Algorithmica, 33(3):371–383, 2002.

13

Appendix

A A comparison of measures for the analysis of online paging

algorithms

Measure Positive results Negative re-
sults

Comments

Competitive analy-
sis [30]

applicable to a variety of
problems and settings

all marking algo-
rithms are equiv-
alent

standard
model of
analysis

Loose competitive-
ness [32] [35]

more realistic ratios for pag-
ing algorithms

Adequate Performance
Measure [27]

more realistic ratios for pag-
ing algorithms

Diffuse adver-
sary [24] [33] [34]

more realistic ratios for pag-
ing algorithms LRU<FWF,
LRU<FIFO

probabilistic
analysis

Access Graph [8] LRU ≤ FIFO

Max/Max ratio [6] direct comparison, influence
of lookahead

LRU=FIFO=FWF

Relative worst order ra-
tio [10] [9]

direct comparison, influence
of lookahead, LRU < FWF,
LRU-2 < LRU

LRU=FIFO

Concave analysis [1] LRU < FIFO,FWF fault-rate cost
model

Torng’s model [31] more realistic ratios, influ-
ence of lookahead

LRU=FIFO=FWF uses full access
cost model

Bijective Analysis [3] [4] direct comparison, influence
of lookahead, FWF<LRU

all lazy al-
gorithms are
equivalent

No assump-
tions of local-
ity of reference

Average analysis + Con-
cave analysis [3] [4]

LRU is the sole optimal pag-
ing algorithm

Uses the local-
ity of reference
model of [1]

Table 1: Known measures for the analysis of online paging algorithms.

B Omitted Proofs

The mapping π is bijective:

• For the paging problem (defined in the proof of Lemma 2). If σ′pσ′′ is consistent with f and A
does not make an LRU-like decision on σ′p, then A does not make an LRU-like decision on request
p, when presented with π(σ) as input either. Combined with the fact that the complement of σ ′′

(wrt i,k) is σ′′ itself, it then follows that π(π(σ)) is σ, in this case.
If either σ′pσ′′ is not consistent with f , or A does not make an LRU-like decision on σ′p, then

from the definition of π, π(σ) = σ, hence π(π(σ)) is σ.

14

• For the list access problem (defined in the proof of Lemma 4). From the definitions of π ′ and φ,
it is straightforward that π′(π′(σ)) = σ. Using this fact, we then deduce that π(π(σ)) = σ, for all
σ by using an argument analogous to the one showing that the mapping we used for the paging
problem is bijective (see above).

Proof of Proposition 1: Suppose, by induction on l, that the claim holds for l < n, we will show
that it holds for l + 1. Note that the claim is straightforward for l = j + 1; in particular, observe
that the actions of B on π(σ)j+1 and the choice of initial tags guarantee that C[A, σ[1, j + 1]] =
C[B, π(σ)[1, j + 1]]. We consider cases concerning request σl+1.

• If σl+1 /∈ {pi, pk}, then σl+1 = σl+1. If σl+1 is a hit for A, it is also a hit for B, and both A and
B will only update the tag of page σl+1 to l + 1 in their corresponding caches. If σl+1 results in
a fault for A, then by the induction hypothesis concerning the cache configuration of B, σ l+1 will
likewise result in a fault for B. In addition, A and B evict the same page from their cache, and set
the tag of σl+1 to l + 1, thus the proposition holds for l + 1.

• If σl+1 = pi, then σl+1 = pk. Once again, we consider two cases concerning whether σl+1

incurred a hit or fault for A. If the request resulted in a hit, then by induction hypothesis pk ∈
C[B, π(σ)[1, l]], thus σl+1 is a hit for B. Furthermore, after serving request σl+1, A sets the
tag of pi equal to l + 1, and likewise B sets the tag of pk equal to l + 1, thus C[A, σ[1, l + 1]] =
C[B, π(σ)[1, l+1]]. If, on the other hand, σl+1 incurred a fault for A, then from induction hypothesis
σl+1 = pk /∈ C[B, π(σ)[1, l]]. At that point, A and B evict pages complementary wrt. to i and k,
in order to bring pages pi and pk into their cache, respectively, and update the respective tags to
l + 1, which again guarantees that C[A, σ[1, l + 1]] = C[B, π(σ)[1, l + 1]].

• If σl+1 = pk, then we apply an argument symmetric to the case σl+1 = pi. ¤

Details for the proof of Proposition 2, Case 2. A incurs a fault in σ[j + 2, t − 1]. Let σl

with l ∈ [j + 2, t − 1] be the earliest request in σ[j + 2, t − 1] on which A incurs a fault (recall
that σl cannot be pk). It is easy to see that every request in π(σ)[j + 2, l] is a hit for B, and
that C[A, σ[1, l − 1]] = C[B, π(σ)[1, l − 1]]. Upon request σl, A incurs a fault, evicts pk (in an
LRU-like decision), brings the page σl into the cache, and sets its tag to l. Since σl /∈ {pi, pk}, it
follows that B will likewise incur a fault in π(σ)l, and replace pi with σl in its cache in a tag-based
eviction (also setting the tag of σl to l). These actions imply that C[A, σ[1, l]] = C[B, π(σ)[1, l]].
As argued in Case 1, it follows that the actions of A on σ[l + 1, n] are identical to the actions of B
on π(σ)[l + 1, n], request-by-request, and thus B(π(σ)) = A(σ).

Proof of Proposition 3. We show the statement by induction on t. We only treat the case
in which σj+1 = ai2 ; the case σj+1 = ai1 is shown in a very similar manner. We start with the
base case t = j + 1. Since B behaves like A up to the j-the request and σ[1, j] = π(σ)[1, j]
we know that A(σ[1, j]) = B(π(σ)[1, j]). From the definition of B, the list produced by B af-
ter it has served σ[1, j] is the list algorithm A produces after serving σ[1, j], with ai1 and ai2

interchanged. Furthermore σ[1, t] = σ[1, j]ai2 and π(σ)[1, t] = σ[1, j]φ(ai2) = σ[1, j]ai1 . Al-
gorithm A and algorithm B therefore pay the same cost to serve σt = ai2 and π(σ)t = ai1

respectively. Recall that we denote by Lj
s = 〈a1 . . . al〉 the list that is ordered according to

σ[1, j], then A produces the list 〈ai2a1 . . . ai1 . . . âi2 . . . al〉 after serving σt and B produces the list

15

〈ai1a1 . . . âi1 . . . ai2 . . . al〉 = 〈φ(ai2)φ(a1) . . . φ(ai1) . . . φ̂(ai2) . . . φ(al)〉 after serving π(σ)t. Here, we
denote by σ1 . . . σ̂i . . . σn the sequence σ1 . . . σi−1σi+1 . . . σn obtained by deleting σi from sequence
σ1 . . . σn.

For the induction step assume the statement is true for j < t < n. Then A(σ[1, t]) =
B(π(σ[1, t])) and if σt+1 is the k-th item in the list A produces after processing σ[1, t] then
π(σ)t+1 = φ(σt+1) is the k-th element in the list B produced after processing π(σ)[1, t], so
A(σ[1, t + 1]) = B(π(σ)[1, t + 1]). Algorithm A then moves the k-th item in its list, namely
σt+1 to the front, and likewise algorithm B moves the k-th item in its list π(σ)t+1 = φ(σt+1) to
the front. Therefore, the list produced by B after serving σt+1 is 〈φ(at+1

1) . . . φ(at+1
l)〉, and the

statement holds for t + 1 as well. ¤

Details in the proof of Lemma 5. For an algorithm that performs ordering-decisions on
requests σk for all k > j + 1 define

inv(A) :=
∑

σ′∈I
f
j+1

(number of inversions in the list after serving σ′).

Let B be the algorithm with minimum inv(B), and with the properties that i) B ¹f
b,n A; ii) B

makes the same decisions on the first j requests as A; and iii) makes ordering decisions for k > j+1.
Then B does not incur an inversion on any request σj+1 (i.e. inv(B) = 0), since otherwise Lemma 4
would yield an algorithm B′ with inv(B′) < inv(B) with the same properties. Therefore, since
inv(B) = 0, algorithm B performs an ordering decision on the (j + 1)-th request of every sequence

σ ∈ If
n .

Details on the Extensions (section 5).

• We argue that Lemma 1 is also applicable in the Average-model. If σ ′ is not consistent with f ,
then there is a window size w such that the average number of faults (over all subsequences of size
w) in σ′ exceeds f(w). This implies that there exists a pair (j1, j2) such that the number of distinct
pages in σ[j1, j2] exceeds the number of distinct pages in σ′[j1, j2]. The proof then proceeds along
the same lines as the proof of Lemma 1.

• Suppose that Ln ⊆ In represents the set of request sequences of size n with locality of reference.
Suppose also that the following variant of Lemma 1 is shown to be true concerning Ln.

Lemma: Let σ = σ1 . . . σn be a sequence of n requests with σ ∈ Ln. Let t ≤ n be an integer such that
σ[1, t] contains a request to pi, and in addition, pk does not appear in σ[1, t] after the last request
to pi in σ[1, t].

Let σ′ denote the sequence σ[1, t] ·σ[t+1, n], and suppose that σ′ /∈ Ln. Then σ[t+1, n] contains
a request to pi; furthermore, no request to pk in σ[t + 1, n] occurs earlier than the first request to pi

in σ[t + 1, n].

We conclude then that in any model in which Ln represents the inputs of high locality of
reference, Theorem 1 still applies. Informally, we observe that a set Ln complies with the statement
of the above lemma, if it obeys the following property: if the sequence . . . pk . . . pi . . . pk . . . pi . . .
is in Ln, then so is the sequence . . . pk . . . pi . . . pi . . . pk Arguably, this is a property which one
should expect from sequences with high locality of reference.

• For list access, we give a brief argument that shows that Theorem 2 applies to the Average model
as well. The proof of Lemma 4, and in particular, Case 2, makes use of the following property:

16

Given σ ∈ If
n , and a list configuration 〈a1, . . . , al〉 ordered according to σ[1, t], if σt+1 = ai2 , then

π(σ) is also in If
n . This holds for the average case as well, following the same reasoning as in the

one presented in Case 2. In particular, any window in π(σ)[t1, t2] contains no more distinct items
than σ[t1, t2].

17

