
Isomorphism of (mis)labeled graphs

Pascal Schweitzer1,⋆

The Australian National University, Canberra, Australia.
pascal.schweitzer@anu.edu.au

Abstract. For similarity measures of labeled and unlabeled graphs, we
study the complexity of the graph isomorphism problem for pairs of
input graphs which are close with respect to the measure. More precisely,
we show that for every fixed integer k we can decide in quadratic time
whether a labeled graph G can be obtained from another labeled graphH
by relabeling at most k vertices. We extend the algorithm solving this
problem to an algorithm determining the number ℓ of vertices that must
be deleted and the number k of vertices that must be relabeled in order to
make the graphs equivalent. The algorithm is fixed-parameter tractable
in k + ℓ.
Contrasting these tractability results, we also show that for those simi-
larity measures that change only by finite amount d whenever one edge is
relocated, the problem of deciding isomorphism of input pairs of bounded
distance d is equivalent to solving graph isomorphism in general.

1 Introduction

Given two graphs G and H , the graph isomorphism problem asks whether there
exists an isomorphism from G to H . That is, the problem asks whether there
exists an adjacency and non-adjacency preserving bijection from the vertices
of G to the vertices of H . Graph isomorphism is a computational decision prob-
lem contained in NP, since the isomorphism represents a witness checkable in
quadratic time. However, it is not known whether the problem is NP-complete
and not known whether the problem is polynomial-time solvable (see [14] or [19]
for an introduction to the problem).

Since graph isomorphism still has unknown complexity, researchers have con-
sidered the complexity of the isomorphism problem on subclasses of graphs.
The isomorphism problem is for example isomorphism complete (i.e., polynomi-
ally equivalent to graph isomorphism) on bipartite graphs and regular graphs
(see [24]). Among many algorithms that have been developed for specific graph
classes, there is Luks’ [16] polynomial-time algorithm for graphs of bounded de-
gree, and polynomial-time algorithms for graphs of bounded genus developed by
Filotti and Mayer [10] and by Miller [18]. For the known bounded degree algo-
rithm and the known bounded genus algorithms, the degree of the polynomial
bounding the running time increases with increasing parameter (i.e., they have a

⋆ Supported by the National Research Fund, Luxembourg, and cofunded under the
Marie Curie Actions of the European Commission (FP7-COFUND).

running time of O(nf(k))). Algorithms with uniformly polynomial running time
(i.e., having a running time of O(f(k) ·nd) with d fixed) have only been devised
for the parameters eigenvalue multiplicity [9], color multiplicity [12], feedback
vertex set number [15], and rooted tree distance width [21]. In parametrized
complexity theory such algorithms are called fixed-parameter tractable. See [8]
or [11] for general parameterized complexity theory, and the introduction of [15]
for a graph isomorphism specific overview.

In the context of the isomorphism problem, the subproblems that have tra-
ditionally been investigated, including all of the ones just mentioned, impose
restrictions on both input graphs. In this paper we investigate the effect on the
complexity when the input graphs are related to each other, i.e., when a certain
similarity between the input graphs is required. This allows each input to be an
arbitrary graph, but of course the input graphs are not independent. For any
given similarity (or distance) measure we thus investigate:

What is the complexity of graph isomorphism when the input is restricted to
be a pair of similar graphs with respect to a given measure?

The permutation distance. Throughout the paper, we always assume the input
graphs are defined over the same vertex set. With regard to our question, we
consider the following measure for labeled graphs: Two isomorphic graphs have
a distance of at most k, if there exists a permutation of the vertices that is
an isomorphism and permutes at most k vertices. For a pair of non-isomorphic
graphs the distance is infinite.

The motivation for this definition is the following question: Suppose we are to
decide whether a labeled graph G is isomorphic to a labeled blueprint graph H .
A one by one comparison of the edges trivially determines whether they are
isomorphic as labeled graphs. If however a small number of vertices (say k) in G
have been mislabeled, how do we determine whether G matches the blueprint H ,
and how do we determine the vertices that have been mislabeled?

We show in Section 2 that there is a fixed-parameter tractable algorithm with
a running time of O(f(k)n2) for this problem. In other words, if the number of
mislabeled vertices is bounded, an isomorphism can be found in time quadratic
in the total number of vertices.

As a generalization, we show in Section 3 that the computation of the max-
imum common subgraph distance of a graph H to all graphs obtained from G
by permuting at most k vertices is fixed-parameter tractable. That is, in the
sense of the previous motivation, this extended problem asks: Given a labeled
blueprint graph H and a labeled graph G in which not only k vertices have been
mislabeled, but additionally for some vertices the adjacencies to other vertices
have been altered, how do we detect the mislabeled vertices and the vertices for
which the adjacencies have been altered?

Other similarity measures. In Section 4 we consider alternative similarity mea-
sures that have been defined for graphs in the literature. Formally, for a similarity
measure d we denote by d(G,H) the distance of G and H . Given a bound k ∈ N

2

on the similarity, the question highlighted above asks for the complexity of graph
isomorphism on input graphs G and H with d(G,H) ≤ k.

There are two substantially different kinds of graph similarity measures,
namely similarity measures that apply to labeled graphs and similarity mea-
sures that apply to unlabeled graphs. From a labeled distance measure one can
obtain an unlabeled distance measure in the following general way: The (un-
labeled) distance from G to H is the shortest labeled distance of G to some
permutation of H . (Recall that we always assume that the input graphs are
defined on the same vertex set and they thus in particular have equal size.)

Among the labeled (and thus also among the unlabeled) distance measures
that have been considered are the maximum common subgraph and the max-
imum common contract distance, both first defined by Zelinka [22,23]. These
distances measure the difference of the size of the input graphs to the size of
the largest common subgraph and to the size of the largest common contract,
respectively. Recall that a contract is a graph obtained by repeatedly contracting
an edge, i.e., identifying two adjacent vertices. Further measures applicable to
both labeled and unlabeled graphs are the edge slide distance (Johnsen [13]),
the edge rotation distance (Chartrand, Saba, and Zou [4]) and with them also
the edit distance (see [2]). These measures are based on local edge replacements
according to certain allowed moves. Finally, the more recent cut distance [1] con-
siders all bipartitions of the vertices and among those measures the maximum
number of crossing edges contained in exactly one of the input graphs.

An intrinsically unlabeled distance measure is the spectral distance [20],
which is defined as the square root of the sum of the squared differences of
the eigenvalues of two graphs.

Using simple reductions, we show (Section 4) that for a large class of mea-
sures, including all of the above, the isomorphism problem of similar graphs is
isomorphism complete, both in the labeled and the unlabeled case, except of
course for the permutation distance treated in Section 2.

2 The permutation distance as similarity measure

We now consider the similarity measure which, for two labeled graphs over the
same vertex set, measures how many vertices have to be permuted in order to
obtain identical graphs. The distance of two non-isomorphic graphs is infinite.

For every fixed integer k, there is a trivial algorithm running in polynomial
time O(k!

(

n
k

)

n2) ⊆ O(nk+2) that checks whether two graphs have distance at
most k: Indeed, by testing all permutations of all k-tuples of vertices and checking
whether the obtained graphs are identical, every isomorphism with the required
properties will be found. Before we develop an O(n2) algorithm we review basic
definitions and notation for permutation groups.

Basic definitions and notation for permutation groups: Let π be a permutation
of some finite set V . The orbit of an element u ∈ V is the set {u, π(u), π2(u), . . .}.
The support of π, denoted by supp(π), is the set {u ∈ V | π(u) 6= u} of elements

3

G H G △ H

Fig. 1. Only one isomorphism exists between the depicted graphs G and H . This
isomorphism fixes the vertex at the top and swaps the left part with the right part
hanging from that vertex. The example shows that there does not necessarily exist an
isomorphism from G to H that maps a vertex in G△H to a vertex in G△H .

that are not fixed. The composition of two permutations π ·π′ is the permutation
obtained by first applying π and then π′. The permutation π gives rise to a
permutation on the set of all pairs of elements of V . For a pair of elements (u, v)
we define π((u, v)) as (π(u), π(v)). Abusing notation we denote this as π(u, v).
For the purpose of this paper we define the complexity of a permutation.

Definition 1. For a permutation π its complexity compl(π) is the size of the
support of π minus the number of orbits of π which are of size at least 2.

Observe that for any non-trivial permutation π it holds that 0 ≤ compl(π) <
| supp(π)|. Furthermore, if compl(π) = 0 then π is the identity. The complexity
of a permutation is the minimum number of transpositions whose multiplication
gives the permutation [7], but we will not need this fact.

To develop our algorithm, we use the symmetric difference as a concise way of
addressing vertices and edges causing two labeled graphs to be non-identical.

Definition 2. For two graphs G = (V,EG) and H = (V,EH) we define their
symmetric difference to be the graph G△H := (V ′, EG △EH), where V ′ is the
set of vertices that are endpoints of edges in EG △EH .

Intuitively, G△H is the unique smallest graph (w.r.t. inclusion) that has an edge
for all vertex pairs which are adjacent in exactly one of the graphs G and H .

Since we assume that the input graphs G and H are defined over the same
vertex set V , every isomorphism from G to H is represented by a permutation π
of V . (Abusing terminology, we use the terms interchangeably.) To design an
algorithm with a polynomial running time whose degree is independent of k, we
require a small candidate subset of vertices that should be permuted. Intuitively,
such a candidate subset could be V (G△H), since for every edge in G△H one
of its endpoints has to be permuted. However, V (G△H) may be of linear size,

4

Algorithm 1 Labeled isomorphism algorithm ISOk(G,H, c, ψ)

Input: Two labeled graphs G and H over a vertex set V , a recursion depth c for the
algorithm and a permutation ψ of V that permutes at most k vertices.

Output: An isomorphism φ : G→ H that has complexity at most c so that the com-
position φ ·ψ permutes at most k vertices, or report false, if no such isomorphism
exists. The algorithm may also report false if all isomorphisms φ with the described
properties do not satisfy | supp(ψ) ∪ supp(φ)| ≤ k.

1: compute G△H

2: if G△H is empty then

3: return φ = id // where id is the identity
4: end if

5: if c > 0 then // compute set of candidates C
6: if |V (G△H)| ≤ 2k then

7: C ← V (G△H)
8: else

9: if G△H has vertex cover number greater than k then

10: return false

11: else

12: compute a vertex cover C of G△H of size at most k
13: end if

14: end if

15: for all v1, v2 ∈ C do // try swapping all pairs from C

16: ψ′ ← (v1, v2) · ψ
17: form graph H ′ from H by swapping the neighbors of the vertices v1 and v2
18: if ψ′ permutes at most k vertices then
19: call ISOk(G,H

′, c− 1, ψ′) and record the result in φ′

20: if φ′ 6= false then

21: return φ = φ′ · (v1, v2)
22: end if

23: end if

24: end for

25: end if

26: return false

even for bounded k, and more importantly there are examples of isomorphic
labeled graphs for which no isomorphism maps a vertex in V (G△H) to a vertex
in V (G△H). An example of such a pair of graphs is shown in Figure 1.

Description of the algorithm: For a fixed integer k (the number of vertices that
may be permuted) algorithm ISOk takes as input two labeled graphs G and H ,
a recursion depth c and a permutation ψ that keeps track of the alterations that
have been applied to H . The integer c is an upper bound on the complexity
of the permutation representing the isomorphism. To determine whether there
exists an isomorphism permuting at most k vertices, the algorithm is called
as ISOk(G,H, k, id) (i.e., c is set to k, and ψ is the identity). The algorithm
either outputs an isomorphism that permutes at most k vertices, or reports
with false that no such isomorphism exists. (See Algorithm 1.)

5

The algorithm first determines whether the two labeled input graphs are
identical. If not, it computes the symmetric difference of the two input graphs,
and then, depending on the number of vertices in the symmetric difference,
performs one of two operations: If the number of vertices in the symmetric
difference is at most 2k, for all pairs of vertices in the symmetric difference, it
calls itself after having transposed the two vertices in the graph H . Otherwise
it tries to compute a vertex cover of the symmetric difference of size at most k
and, if successful, performs the transposition with every pair of vertices in the
vertex cover, before performing the recursive calls. Returning from a successful
recursive call, the obtained isomorphism is altered by the transposition of the
two vertices that have been swapped, and subsequently returned. If a call is
unsuccessful, algorithm proceeds with the next pair. At any point in time the
algorithm keeps track of the permutation that has been performed on graph H
with the help of input parameter ψ. If this permutation moves more than k
vertices, no recursive call is performed.

The intention not to return any isomorphism that moves more than k ver-
tices complicates the intermediate calls. More precisely, it may be the case that
the permutation ψ that has been performed, together with some permutation φ
of complexity c yields an isomorphism ψ · φ that permutes at most k vertices,
but that the intermediate steps require to consider permutations that permute
more than k vertices. If no isomorphism avoids this issue, the algorithm may
output false independent of these existing isomorphisms. Intuitively, this situa-
tion only happens, when on a previous recursion level the algorithm moved away
from the sought isomorphism by swapping a wrong pair of candidate vertices.

2.1 Correctness:

Since the algorithm keeps track of the permutation performed on H , any iso-
morphism permutes at most k vertices. By definition of the algorithm, it is
immediate that it never returns a map that is not an isomorphism (i.e., it has
no false positives).

To establish the correctness, we show that if there exists an isomorphism
that permutes k vertices or less, it will be found within a recursion depth of k.
By induction, a product of c transpositions has complexity at most c, thus the
algorithm will not output an isomorphism of complexity larger than c.

We show that if an isomorphism exists that permutes k vertices or less with
a complexity of c, then the algorithm will call itself on an instance for which an
isomorphism of complexity at most c− 1 exists that also permutes k vertices or
less. This is ensured by identifying two vertices that lie in the same orbit, and
by using a basic fact on permutations:

Lemma 1. If π is a permutation and v, v′ are distinct elements in an orbit of π,
then for the permutation π′ = π · (v, v′) (i.e., π followed by the transposition of v
and v′) it holds that supp(π′) ⊆ supp(π) and compl(π′) < compl(π).

Proof. Transposing v and v′ either splits the orbit that contains both v and v′

into two orbits, of which at least one has size larger than 1, or v and v′ form a

6

complete orbit of π, in which case the support of the permutation decreases by
two, while the number of orbits of size larger than 1 is only reduced by one. ⊓⊔

To identify two vertices lying in the same orbit we consider the symmetric
difference G△H of the input graphs.

Lemma 2. Let G and H be non-identical graphs on the same vertex set. If there
is an isomorphism from G to H represented by a permutation π, then there exist
two distinct vertices v, v′ ∈ G△H contained in the same orbit under π.

Proof. Suppose otherwise, i.e., that for every vertex v ∈ G△H no other vertex
in the orbit of v is contained in G△H . Let (u, v) be an edge in G△ H . This
implies that u or v is not fixed. By assumption v and u are the only vertices in
their respective orbits which are contained in G△H .

W.l.o.g. suppose (u, v) ∈ E(G) and therefore (u, v) /∈ E(H). Let i be the least
positive integer for which (πi(u), πi(v)) = (u, v). We now show by induction that
for all j ∈ {0, . . . , i − 1} the pair πj(u, v) = (πj(u), πj(v)) is an edge in G: By
assumption π0(u, v) = (u, v) ∈ E(G) and for 0 < j < i if πj−1(u, v) is an edge
in G, then πj(u, v) is an edge in H , since π is an isomorphism from G to H .
By the definition of i we know that πj(u) is different from u, and therefore not
contained in V (G△H) or πj(v) is different from v, and therefore not contained
in V (G△H). Either way πj(u, v) is not in G△H . Thus the fact that πj(u, v)
is an edge in H implies that it is also an edge in G.

Finally, since πi−1(u, v) is an edge in G and π is an isomorphism, πi(u, v) =
(u, v) is an edge in H . This yields a contradiction. ⊓⊔

To address the issue that the set G△H may be of linear size, and thus too
large in order to be a candidate set for vertices to be permuted, we consider a
vertex cover of G△H .

Lemma 3. Suppose G and H are graphs on the same vertex set. If π is an
isomorphism from G to H, then the support of π is a vertex cover of G△H.

Proof. Since π is an isomorphism, no edge (u, v) ∈ E(G△H) can be fixed by π.
Thus for every edge (u, v), one of the vertices u, v is not fixed by π. ⊓⊔

The lemma implies that G△H has vertex cover number at most k if there
is an isomorphism that maps G to H and leaves at most k vertices unfixed.

Lemma 2 shows that there are vertices in G△H that lie in the same orbit.
However when the candidate set C is restricted to a vertex cover of G△H , to
apply Lemma 1 we require that two vertices from C lie in the same orbit. Such
two vertices do not exist in general, as shown by the example in Figure 2. The
next lemma helps us to circumvent this problem, by performing a case distinction
depending on the size of G△H relative to 2k.

Lemma 4. Let G and H be two graphs on the same vertex set V and let C be a
vertex cover of G△H of size at most k. Suppose there is an isomorphism from G
to H represented by a permutation π that leaves at most k vertices unfixed. If
every orbit of π contains at most one vertex from C, then |V (G△H)| ≤ 2k.

7

G H G△H

Fig. 2. The figure depicts isomorphic graphs G and H and their symmetric difference
G△H . In G△H the only minimum vertex cover C is highlighted by the gray shaded
vertex. No isomorphism from G to H has an orbit that contains two vertices of C.

Proof. Since |C| ≤ k and π permutes at most k vertices, it suffices to show that π
has no fix-point in V (G△H) \ C. For contradiction assume u /∈ C is a vertex
fixed under π and there is an edge (u, v) ∈ G△H . W.l.o.g. assume (u, v) ∈ E(G),
and therefore (u, v) /∈ E(H). Since (u, v) cannot be fixed under π, the vertex v
is in C ∩ supp(π). Consider the orbit of (u, v) under π. Let i be the least positive
integer for which πi(v) = v. By assumption for no positive j < i is πj(v) in C.
Therefore, for 0 < j < i, the pair πj(u, v) = (u, πj(v)) is not an edge in G△H .
By induction we show that for all j ∈ {0, . . . , i− 1} the vertex pair πj(u, v) is an
edge in G: This is true for j = 0, and if πj−1(u, v) is an edge in G, then since π
is an isomorphism from G to H , πj(u, v) is an edge in H . Since πj(u, v) is not
in G△H we conclude that πj(u, v) is an edge in G.

Finally since πi−1(u, v) is an edge in G and π is an isomorphism, πi(u, v) is
an edge in H , which yields a contradiction. ⊓⊔

Assembling Lemmas 1–4 we now conclude that Algorithm 1 finds two vertices
whose transposition reduces the complexity of the sought isomorphism.

Lemma 5. Let ψ be a permutation. If two labeled graphs G and H differ by
an isomorphism φ of complexity c such that | supp(ψ) ∪ supp(φ)| ≤ k then
ISOk(G,H, c, ψ) returns an isomorphism from G to H.

Proof. We show the statement by induction on c. If c = 0 then G and H are
identical and ISOk(G,H, 0) returns the identity. Suppose c > 0. Let φ be the
isomorphism that mapsG toH and that fulfills the assumptions. If |V (G△H)| ≤
2k the algorithm simulates the permutation of all pairs of vertices in V (G△H)
by swapping vertices in H . By Lemma 2 there exist two distinct vertices v1, v2
in V (G△H) that lie in the same orbit under φ. By Lemma 1 their transposition
reduces the complexity of φ and does not increase the number of vertices that
have to be permuted.

If on the other hand |V (G△H)| > 2k, then by Lemma 3 the graph G△H
has vertex cover number at most k. By Lemma 4, for any vertex cover C of
G△H of size at most k there exist two vertices v1, v2 in C that lie in the same
orbit. Again by Lemma 1 their transposition reduces the complexity.

Note that in both cases v1, v2 ∈ supp(φ). Therefore | supp((v1, v2) · ψ) ∪
supp(φ · (v1, v2))| ≤ | supp(ψ) ∪ supp(φ)| ≤ k. Thus, by induction, the call to

8

ISOk(G,H
′, c−1, φ·(v1, v2)) with a permutedH returns an isomorphism. Since π

is an isomorphism for the input pair (G,H) if and only if π · (v1, v2) is an
isomorphism for the modified input pair (G,H ′), the returned isomorphism is
altered to an isomorphism from G to H and subsequently returned. ⊓⊔

The lemma establishes that the call ISOk(G,H, k, id) of Algorithm 1 finds an
isomorphism if there exists an isomorphism that permutes at most k vertices.

2.2 Running time:

Having established the correctness of the algorithm, we now analyze its running
time. The following theorem shows that our problem is fixed-parameter tractable.

Theorem 1. For any integer k Algorithm 1 solves graph isomorphism for labeled
graphs that differ by a permutation of at most k vertices in O(f(k)n2) time.

Proof. The time spent within each call of the algorithm is dominated by the
computation of G△H and the computation of a vertex cover of G△H of size
up to k. The computation of G△H can be performed in O(n2) time, as it only
requires a simple one-by-one comparison of the edges in G and H . Having a
representation of the graph G△H , with the classical fpt-algorithms (see [11]),
the vertex cover problem can then be solved in O(f(k)n2) time.

It remains to bound the number of selfcalls of the algorithm. For this we
observe that each iteration calls its own algorithm at most (2k)2 times: Indeed
this bound holds for both cases of the size of V (G△H). The recursion depth of
the algorithm is at most k, thus there are at most ((2k)2)k calls of the algorithm.
The overall running time is thus in O((2k)2k · f(k) · n2). ⊓⊔

Note that currently, for the parameter vertex cover number, the best known
fpt-algorithm for the vertex cover problem, by Chen Kanj and Xia [5], runs in
time O(1.2738k + kn) ⊆ O(1.2738k · n2). This gives an overall running time
of O((2k)2k · 1.2738k · n2) for our algorithm.

3 Extension to maximum common subgraph distance

For two labeled graphsG andH defined on a vertex set of n vertices, let d0(G,H)
be n minus the size of the maximum common (labeled) subgraph of G and H .
That is, d0(G,H) is the number of vertices that have to be removed from the
vertex set of the graphs G and H to obtain identical labeled graphs. It is easy to
show that d0(G,H) is equal to the vertex cover number of G△H . This implies
that the computation of d0(G,H) is fixed-parameter tractable.

We define dk(G,H) to be the minimum of all d0(G
′, H) where G′ ranges over

all graphs obtained from G by permuting at most k vertices. For the complete
graph Kn, the distance d0(G,Kn) is equal to n minus the size of the largest
clique in G. Thus, with k as parameter, computation of dk(G,H) is W[1]-hard.
(In fact, it is even NP-complete for k = 0.)

However, if we take both the parameters k and dk for the input graphs into
account, then the computation is fixed-parameter tractable.

9

Theorem 2. There is an algorithm that computes for two graphs G and H
the distance dk(G,H) (i.e., the maximum common subgraph distance between
H and all graphs obtained from G by a permutation of at most k vertices) in
time O(f(k, dk(G,H)) · n2). Here f(k, d) = (k + d)2k · 2k·(k+d).

The description of the algorithm, which is an adaptation of Algorithm 1, and
the proof of the theorem, which generalizes the proof of Theorem 1, are deferred
to the appendix.

4 Similarity measures and intractability

Contrasting the tractability of the isomorphism problem for graphs of low per-
mutation distance, we now show intractability of the graph isomorphism problem
for a wide range of other measures. The following folklore observation relates the
evaluation of similarity measures to the complexity of similar graphs.

Theorem 3. Let d(·, ·) be an arbitrary real-valued function that takes two labeled
graphs as input.

1. If d(G,H) 6= 0 implies G ≇ H and d(G,H) = 0 can be decided in polynomial-
time, then the problem of deciding isomorphism for graphs of bounded dis-
tance (i.e., d(G,H) ≤ k for a fixed constant k) is isomorphism complete.

2. If d(G,H) = 0 is equivalent to G ∼= H then evaluation of d(·, ·) is at least as
hard as deciding graph isomorphism.

Proof. For the first part of the theorem observe that graph isomorphism re-
duces to the problem of deciding isomorphism of graphs of bounded distance
in the following way: By assumption, it can be decided in polynomial time
whether d(G,H) = 0. If d(G,H) > 0 then the graphs are non-isomorphic. Other-
wise any algorithm that solves the isomorphism problem for graphs of bounded
distance decides whether G and H are isomorphic.

The second claim follows from the fact that under the assumption, decid-
ing d(G,H) = 0 is equivalent to deciding whether G and H are isomorphic. ⊓⊔

The theorem applies to labeled similarity measures in general, but the as-
sumptions are typically fulfilled by unlabeled similarity measures (i.e., measures
invariant when replacing the inputs with isomorphic copies). For example, Part 1
applies to the spectral distance: Indeed the characteristic polynomial of both
graphs can be computed in polynomial time, and their comparison determines
whether the graphs have the same eigenvalues. This is of course well known
(see [6, Section 1.2]). Part 2 applies to all other unlabeled measures from the
introduction. The evaluation of many of them (e.g., rotation distance [17] and
edit distance [3]) is even known to be NP-hard.

Independent of the complexity of the similarity measures’ evaluation, we still
obtain hardness results for similarity measures which govern graphs as close,
whenever the graphs differ by the repositioning of one edge: We say that two
graphs G and H over the same vertex set differ by the repositioning of one edge,
if G and H have the same number of edges and G△H has exactly two edges.

10

Theorem 4. Deciding whether two labeled graphs G and H that differ by the
repositioning of one edge are isomorphic is graph isomorphism complete. More-
over, the problem remains graph isomorphism complete for input graphs that
have a universal vertex (i.e., a vertex adjacent to every other vertex).

Proof. We reduce the graph isomorphism problem to the problem of deciding
whether two labeled graphs G and H that differ by the repositioning of an edge
are isomorphic. Let G and H be two input graphs. W.l.o.g. we assume that G
and H are connected, have the same number of edges, neither graph is complete,
and their vertex-sets are disjoint. Let v and v′ be two non-adjacent vertices of G.
We construct a set of pairs of new input graphs as follows:

The first graph is always U1 = (G + (v, v′)) ∪̇ H , i.e., the disjoint union of
the graph H with the graph obtained from G by adding the edge (v, v′).

For the second graph we take all choices of non-adjacent vertices u, u′ ∈
H and form the graph U2(u, u

′) = G ∪̇ (H + (u, u′)). Note that there are at
most |V (H)|2 such graphs. For any choice of non-adjacent vertices u, u′ the
graphs U1 and U2(u, u

′) differ by at most two edges.
It suffices now to show that G and H are isomorphic if and only if there

exist u, u′ such that U1 is isomorphic to U2(u, u
′). Suppose φ is an isomorphism

from G to H , then by construction U1 is isomorphic to U2(φ(v), φ(v
′)). Suppose

now that G and H are non-isomorphic. Since G and H have the same number
of edges, for any choice of u, u′, any isomorphism must map the components
of U1 to components of U2(u, u

′). Moreover, due to the number of edges, the
component of U1 that is an exact copy of G must be mapped to the component
of U2 that is an exact copy of H , which yields a contradiction.

To see that the input graphs can also be required to have a universal vertex,
note that the addition to both input graphs of a vertex that is adjacent to
every other vertex preserves isomorphism, non-isomorphism and the symmetric
difference. This operation thus reduces the problem to the special case of input
graphs having a universal vertex. ⊓⊔

The theorem has intractability implications for all graph similarity measures
which change only by a bounded amount whenever an edge is added or removed.

Corollary 1. Let d(·, ·) be the labeled or unlabeled version of the maximum com-
mon subgraph distance, the maximum common contract distance, the edge rota-
tion distance, the edge slide distance or the cut distance. There is a k ∈ N, such
that the graph isomorphism problem is graph isomorphism complete for the class
of input pairs G and H with d(G,H) ≤ k.

Proof. By definition, for of each of the distances, graphs that differ by the repo-
sitioning of an edge and have a universal vertex are of bounded distance. ⊓⊔

Acknowledgements

I thank Danny Hermelin for posing to me the core question of the paper answered
by Theorem 1. I also thank Reto Spöhel for helpful comments and suggestions.

11

References

1. C. Borgs, J. T. Chayes, L. Lovász, V. T. Sós, B. Szegedy, and K. Vesztergombi.
Graph limits and parameter testing. In STOC ’06, pages 261–270, New York, 2006.

2. H. Bunke. On a relation between graph edit distance and maximum common
subgraph. Pattern Recognition Letters, 18(8):689–694, 1997.

3. H. Bunke. Error correcting graph matching: on the influence of the underlying cost
function. Pattern Analysis and Machine Intelligence, 21(9):917–922, 1999.

4. G. Chartrand, F. Saba, and H.-B. Zou. Edge rotations and distance between
graphs. Časopis Pěst. Mat., 110(1):87–91, 1985.

5. J. Chen, I. A. Kanj, and G. Xia. Improved parameterized upper bounds for vertex
cover. In MFCS ’06, pages 238–249, London, 2006.

6. D. M. Cvetković, P. Rowlinson, and S. Simić. Eigenspaces of Graphs. Cambridge
University Press, Cambridge, UK, 1997.

7. J. Dénes. The representation of a permutation as the product of a minimal number
of transpositions, and its connection with the theory of graphs. Magyar Tud. Akad.
Mat. Kutató Int. Közl., 4:63–71, 1959.

8. R. G. Downey and M. R. Fellows. Parameterized Complexity (Monographs in
Computer Science). Springer, London, UK, 1998.

9. S. Evdokimov and I. N. Ponomarenko. Isomorphism of coloured graphs with slowly
increasing multiplicity of Jordan blocks. Combinatorica, 19(3):321–333, 1999.

10. I. S. Filotti and J. N. Mayer. A polynomial-time algorithm for determining the
isomorphism of graphs of fixed genus. In STOC ’80, pages 236–243, 1980.

11. J. Flum and M. Grohe. Parameterized Complexity Theory (Texts in Theoretical
Computer Science. An EATCS Series). Springer, London, UK, 2006.

12. M. L. Furst, J. E. Hopcroft, and E. M. Luks. Polynomial-time algorithms for
permutation groups. In FOCS ’80, pages 36–41, Washington, USA, 1980.

13. M. Johnson. An ordering of some metrics defined on the space of graphs. Czechoslo-
vak Math. J., 37(112)(1):75–85, 1987.

14. J. Köbler, U. Schöning, and J. Torán. The graph isomorphism problem: its struc-
tural complexity. Birkhäuser Verlag, Basel, Switzerland, 1993.

15. S. Kratsch and P. Schweitzer. Isomorphism for graphs of bounded feedback vertex
set number. In SWAT ’10, pages 81–92. Springer, 2010.

16. E. M. Luks. Isomorphism of graphs of bounded valence can be tested in polynomial
time. Journal of Computer and System Sciences, 25(1):42–65, 1982.

17. D. Marcu. Note on the edge rotation distance between trees. International Journal
of Computer Mathematics, 30(1):13–15, 1989.

18. G. L. Miller. Isomorphism testing for graphs of bounded genus. In STOC ’80,
pages 225–235, New York, 1980.

19. P. Schweitzer. Problems of unknown complexity : graph isomorphism and Ramsey
theoretic numbers. Phd thesis, Universität des Saarlandes, Saarbrücken, 2009.

20. R. C. Wilson and P. Zhu. A study of graph spectra for comparing graphs and
trees. Pattern Recognition, 41(9):2833–2841, 2008.

21. K. Yamazaki, H. L. Bodlaender, B. de Fluiter, and D. M. Thilikos. Isomorphism
for graphs of bounded distance width. Algorithmica, 24(2):105–127, 1999.

22. B. Zelinka. On a certain distance between isomorphism classes of graphs. Časopis
Pěst. Mat., 100(4):371–373, 1975.

23. B. Zelinka. Contraction distance between isomorphism classes of graphs. Časopis
Pěst. Mat., 115(2):211–216, 1990.

24. V. N. Zemlyachenko, N. M. Korneenko, and R. I. Tyshkevich. Graph isomorphism
problem. Journal of Mathematical Sciences, 29(4):1426–1481, 1985.

12

A Appendix

The appendix contains a proof of Theorem 2. The proof consists of a description
the algorithm that solves the extension of our problem to the maximum com-
mon subgraph distance, a correctness proof and a running time analysis for this
algorithm.

A.1 Description of the algorithm for the extended problem:

For the theorem, we design an algorithm that is similar to Algorithm 1. The
major modifications are as follows: Instead of checking whether G△H is empty
in Line 2 we output the vertex cover number of G△H . (This is necessary, since
the algorithm does not know when it has found the permutation that minimizes
the distance.)

Also, after computing a vertex cover C that is not too large, we iterate
over all subsets P ⊆ C, and form a candidate set C′ in a way depending on
whether (G \ P)△ (H \ P) > k + 2|C|. Intuitively, the set P is the set of those
vertices in C whose adjacencies have been compromised. Thus, for our purpose,
it is not important whether adjacencies with vertices of P are preserved, when
considering the symmetric difference. We therefore only consider vertices outside
of P . However, there may be further vertices outside of C with compromised
adjacencies. We take this into account when considering the size of (G \ P) △
(H \ P) by comparing it to k + 2|C| as opposed to 2k.

Details are given by Algorithm 2.

A.2 Correctness of Algorithm 2:

The proof is based on the proof of Theorem 1. Appropriate generalizations of
Lemmas 2–4 are assembled analogously to Lemma 5. The running time analysis
of Algorithm 2 is an adaptation of the one in Section 2.

We need two more definitions concerning permutations: Let π be a per-
mutation of a set V . For a set C ⊆ V , we define Orbπ(C) to be the set of
elements that are contained in the same orbit as some element of C. For a
graph G = (V,E) with vertex set V we define π(G) to be the graph (V, π(E)),
where π(E) = {π(u, v) | (u, v) ∈ E}.

We first present three adequate adaptations/generalizations of Lemmas 2–4
given by Lemmas 6–8 respectively.

For the two input graphs G and H , our goal is to find a permutation π of at
most k vertices that minimizes d0(π(G), H), the number of vertices that have
to be deleted from π(G) and from H to obtain identical labeled graphs. Thus,
different from the special case of Algorithm 1 where d0(π(G), H) = 0, there are
edges in G△H for which no end-point has to be moved. However, according to
the following lemma, we can still find two distinct vertices v and v′ in G△ H
that lie in the orbit. Moreover, we can choose v and v′ from a restricted subset
of G△H , which will later help us to take care of the vertices with compromised
adjacencies.

13

Algorithm 2 Labeled isomorphism algorithm Ext-ISOk(G,H, c, d, ψ)

Input: Two labeled graphs G, H over a vertex set V , a recursion depth c for the
algorithm, a maximum distance d and a permutation ψ of V that permutes at
most k vertices.

Output: The algorithm prints numbers. If there is a permutation π of complexity
at most c such that π · ψ permutes at most k vertices for which d0(π(G),H) ≤
d, then the smallest printed number is the minimum of d0(π

′(G),H) ≤ d over
all such permutations π′. Otherwise all printed numbers are larger than d. If no
permutation π with the prescribed properties fulfills | supp(ψ) ∪ supp(π)| ≤ k, all
printed numbers may also be larger than d.

1: compute G△H

2: if G△H has vertex cover number greater than k + d then

3: return

4: end if

5: compute a smallest vertex cover C of G△H

6: print |C|
7: if c > 0 then // compute set of candidates C′

8: for all P ⊆ C do

9: C′ ← C

10: if (G \ P)△ (H \ P) has at most k + 2|C| vertices then
11: C′ ← P ∪ V ((G \ P)△ (H \ P))
12: end if

13: for all v1, v2 ∈ C
′ do // try swapping all pairs from C′

14: ψ′ ← (v1, v2) · ψ
15: form the graph H ′ from H by swapping the neighbors of the vertices v1

and v2
16: if ψ′ permutes at most k vertices then
17: call Ext-ISOk(G,H

′, c− 1, d, ψ′)
18: end if

19: end for

20: end for

21: end if

Lemma 6. Let G and H be two graphs on the same vertex set. If there is a
permutation π of the vertices of G for which d0(π(G), H) < d0(G,H), then there
exist two distinct vertices v, v′ ∈ G△H which are contained in the same orbit
under π.

Moreover, let C be a minimum vertex cover of π(G)△H. If P is some subset
of Orbπ(C)∩V (G△H), then v and v′ can be chosen in P ∪V ((G\P)△(H \P)).

Proof. The first part of the theorem follows directly from the second by tak-
ing P = {}.

For a subset P of the vertices we define P ′ = P ∪ V ((G \ P) △ (H \ P)).
To prove the second part, suppose for some P ⊆ Orbπ(C) ∩ V (G △ H) the
statement is not true, i.e., that for every vertex v ∈ P ′ no other vertex in the
orbit of v is contained in P ′. Since C is a minimum vertex cover of π(G) △H
and d0(π(G), H) < d0(G,H), no vertex cover of G△H has size at most |C|.

14

Let C′ := Orbπ(C) ∩ P ′ be the set that consists of the vertices in P and
those vertices in (G \ P) △ (H \ P) which are contained in the same orbit as
some vertex of C. Since there is only one vertex of P ′ in every orbit (because we
suppose for P the theorem is not true), we know that |C′| ≤ |C|. Thus, C′ is not
a vertex cover of G△H (and therefore not a vertex cover of P ′) and there is an
edge (u, v) in V ((G \P)△ (H \P)) with u /∈ C′ and v /∈ C′. This implies that u
or v is not fixed. By assumption v and u are the only vertices in their respective
orbits which are contained in P ′ and no vertex in their respective orbits is in C.

(Now, we are in a similar situation as in the proof of Lemma 2, hence a
similar argument applies:)

W.l.o.g. suppose (u, v) ∈ E(G) and therefore (u, v) /∈ E(H). Let i be the least
positive integer for which (πi(u), πi(v)) = (u, v). We now show by induction that
for all j ∈ {0, . . . , i − 1} the pair πj(u, v) = (πj(u), πj(v)) is an edge in G: By
assumption π0(u, v) = (u, v) ∈ E(G) and for 0 < j < i if πj−1(u, v) is an
edge in G, then πj(u, v) is an edge in π(G). But neither πj(u) nor πj(v) is in C,
thus πj(u, v) /∈ π(G)△H , and therefore πj(u, v) is an edge inH . By the definition
of i either πj(u) is different from u, and therefore not contained in P ′ or πj(v)
is different from v, and therefore not contained in P ′. Either way πj(u, v) is not
in G△H . Thus the fact that πj(u, v) is an edge in H implies that it is also an
edge in G.

Finally, since πi−1(u, v) is an edge in G, we know πi(u, v) = (u, v) is an
edge in π(G), and (again), since neither πj(u) nor πj(v) is in C, we conclude
that (u, v) is an edge in H . This yields a contradiction. ⊓⊔

An analog of Lemma 3 takes into account that in order to cover G△H we
also have to cover the edges G△H for which neither endpoint is moved.

Lemma 7. Suppose G and H are graphs on the same vertex set. If π is a
permutation of at most k vertices, then G △ H has a vertex cover of size at
most d0(π(G), H) + k.

Proof. Let C be a minimum vertex cover of π(G)△H , which is necessarily of size
d0(π(G), H). It suffices to argue that the set C ∪ supp(π) is a vertex cover: For
every edge (u, v) ∈ E(G△H) one of the vertices is not fixed, or π(u, v) = (u, v) ∈
E(π(G)△H). In both cases the edge is covered by a vertex in C ∪ supp(π). ⊓⊔

After removing vertices whose adjacencies have been compromised we can
again show that if no two vertices in a vertex cover lie in the same orbit under π
then the size of the entire symmetric difference is bounded.

Lemma 8. Let G and H be two graphs on the same vertex set V and let C be a
vertex cover of G△H. Suppose π is a permutation with d0(π(G), H) < d0(G,H)
that leaves at most k vertices unfixed.

If in every orbit of π there is at most one vertex from C, then there is a
subset P ⊆ C such that (G \ P)△ (H \ P) has at most k + 2|C| vertices.

Proof. Let C′ be a minimum vertex cover of π(G) △ H . Since d0(π(G), H) <
d0(G,H), we have |C′| ≤ C.

15

Let P := Orbπ(C
′)∩C be the set of those vertices in C which are contained

the same orbit as some vertex of C′.

It suffices to show that, under the assumption, the permutation π has no
fix-point in the set V ((G \ P)△ (H \ P)) \ (C ∪ C′).

Thus, suppose u ∈ V ((G\P)△ (H \P))\ (C ∪C′) is a vertex fixed under π.
Then there is an edge (u, v) ∈ V ((G \ P)△ (H \ P)). Since C is a vertex cover
of V (G△H) and u /∈ C we know v ∈ C ∩ V (G△H).

By the choice of u we have u = π(u) /∈ C′. If v were fixed, then (u, v) =
π(u, v) ∈ π(G) △H . But since π(u) /∈ C′ this would imply π(v) ∈ C′, which is
not the case since v /∈ P . Thus v is not fixed.

(Now, we are in a similar situation as in the proof of Lemma 4, hence a
similar argument applies:)

W.l.o.g. assume (u, v) ∈ E(G), and therefore (u, v) /∈ E(H). Consider the
orbit of (u, v) under π. Let i be the least positive integer for which πi(v) = v.
By assumption for no positive j < i is πj(v) in P . Therefore, for 0 < j < i, the
pair πj(u, v) = (u, πj(v)) is not an edge in π(G) △ H . By induction we show
that for all j ∈ {0, . . . , i − 1} the vertex pair πj(u, v) is an edge in G: This
is true for j = 0, and if πj−1(u, v) is an edge in G, then πj(u, v) is an edge
in π(G). But neither πj(u) = u nor πj(v) is in C′, thus πj(u, v) /∈ π(G) △ H ,
and therefore πj(u, v) is an edge in H . Since πj(u, v) is not in G△H we conclude
that πj(u, v) is an edge in G.

Finally (again) since πi−1(u, v) is an edge in G, πi(u, v) is an edge in π(G).
Since neither πi(u) = u nor πi(v) = v is in C′ we conclude that πi(u, v) is an
edge in H , which yields a contradiction. ⊓⊔

Assembling Lemmas 6–8 we can show that in each iteration Algorithm 2
finds two vertices that lie in the same orbit of the sought permutation π that
minimizes d0(π(G), H) and therefore will eventually print d0(π(G), H).

Lemma 9. Let c,k,d be non-negative integers and let G and H be two labeled
graphs on the same vertex set. If dk(G,H) ≤ d then dk(G,H) is the smallest
number printed by Ext-ISOk(G,H, k, d, id). If dk(G,H) > d, all printed numbers
are larger than d.

Proof. The algorithm only recurses if the total permutation ψ performed on
graph H moves at most k vertices. Thus, when printing in Line 6, the algorithm
prints the number d0(π(G), H) ≤ d for some permutation π that permutes at
most k vertices. Therefore the algorithm does not output any number smaller
than dk(G,H). It suffices now to show the following:

If π is a permutation of complexity at most c such that π · ψ permutes
at most k vertices for which additionally d0(π(G), H) ≤ d and | supp(ψ) ∪
supp(π)| ≤ k, then Ext-ISOk(G,H, c, d, ψ) prints a number d′ ≤ d0(π(G), H).

We show the statement by induction on c. For c = 0 the permutation π is
the identity and if d0(G,H) ≤ d then G△H has vertex cover number at most d
thus the call Ext-ISOk(G,H, 0, d) will proceed to Line 6 and print d0(G,H).

16

Now suppose c > 0: If d0(π(G), H) ≤ d, then by Lemma 7, the graph G△H
has vertex cover number at most d0(π(G), H) + k ≤ d + k. Thus Algorithm 2
will proceed up to Line 7.

If d0(π(G), H) > d0(G,H) then the number d′ printed in Line 6 is d′ =
d0(G,H) < d0(π(G), H), which was to be shown. Otherwise, if d0(π(G), H) ≤
d0(G,H) then there are two cases:

Case 1): There are two vertices v1 and v2 in C which are contained in the
same orbit under π. In this case, by Lemma 1, for P = {} the transposition of v1
and v2 will reduce the complexity of π. Since v1, v2 ∈ supp(π), | supp((v1, v2) ·
ψ) ∪ supp(π · (v1, v2))| ≤ | supp(ψ) ∪ supp(π)| ≤ k.

Thus by induction the call Ext-ISOk(G,H
′, c−1, d), whereH ′ is the graph ob-

tained from H by transposing v1 and v2, will return a number d′ ≤ d0(π(G), H).
Case 2): In any orbit under π there is at most one vertex of C. Then by

Lemma 8 there is a subset P ⊆ C such that (G\P)△(H\P) has at most k+2|C|
vertices.

By Lemma 6 there are two vertices in (G\P)△(H\P) lying in the same orbit
under π. The algorithm swaps these two vertices in H to obtain the graph H ′,
decreasing the complexity, and calls itself on Ext-ISOk(G,H

′, c−1, d). As in the
previous case, since v1, v2 ∈ supp(π), | supp((v1, v2) · ψ) ∪ supp(π · (v1, v2))| ≤
| supp(ψ) ∪ supp(π)| ≤ k. By induction, this call then returns a number d′ ≤
d0(π(G), H). ⊓⊔

A.3 Running time of Algorithm 2:

Theorem 5. For non-negative integers k and d Algorithm 2 (which is called
as Ext-ISOk(G,H, k, d)) runs in O(f(k, d) · n2), where f = (k + d)2k · 2k·(k+d).

Proof. The time spent within each call of the algorithm consists of four parts:
the computation of V (G△H), the computation of a vertex cover of V (G△H)
of size up to k+d, a loop over all subsets P ⊆ C and the recursive sub-calls. The
first two parts can be performed in O(n2). For the third part, each iteration for
a subset P takes time O(|C|2n2). Thus, for the third part in total, this gives a
running time of O(|C|22|C|n2). Since |C| is bounded by k+ d, this running time
can be expressed as O(f ′(d, k)n2) for the function f ′(k, d) = (k + d)2 · 2k+d.

It remains to bound the number of selfcalls of the algorithm. For this we
observe that each iteration recursively calls the algorithm at most f ′(d, k) times.
The recursion depth of the algorithm is at most k, thus there are at most f ′(d, k)k

calls of the algorithm. For the function f(k, d) = (k + d)2k · 2k·(k+d), the overall
running time can thus be bounded by O(f(k, d) · n2). ⊓⊔

17

	Isomorphism of (mis)labeled graphs

