
Using the Incompressibility Method to obtain Local

Lemma results for Ramsey-type Problems

Pascal Schweitzer∗

April 4, 2008

Abstract

We reveal a connection between the incompressibility method and the
Lovász local lemma in the context of Ramsey theory. We obtain bounds
by repeatedly encoding objects of interest and thereby compressing
strings. The method is demonstrated on the example of van der Waer-
den numbers. It applies to lower bounds of Ramsey numbers, large
transitive subtournaments and other Ramsey phenomena as well.

Keywords: Incompressibility; Lovász Local Lemma; Ramsey Theory;
Data Compression; Algorithms

1 Introduction

The incompressibility method is a general tool appearing in proofs in various
fields of mathematics. It is based on the incompressibility of strings: For
strings over any finite alphabet, there is no injective map from the strings
of length ` to the strings of length `′ < `. A more sophisticated approach
to the matter uses Kolmogorov complexity of strings, to establish that not
only the set of strings as whole but also most individual strings turn out to
be incompressible. Li and Vitányi [5] extensively treat the incompressibility
method in their introduction to Kolmogorov complexity. It is well under-
stood how results obtained by the probabilistic first moment method [1] can
be understood in the framework of the incompressibility method. In this
paper we show how Ramsey results in the fashion of those obtained with
the Lovász local lemma can be obtained via the incompressibility method.
On the example of van der Waerden numbers w(k, c) we demonstrate how
repeated compression yields bounds that depend only on the number of
objects that intersect a given one, showing that w(k; c) ≥ ck−1

4·k · k−1
k

. The
obtained bound is not the best one known. Szabó [6] obtained a lower bound
(for the case c = 2) by analyzing explicitly how progressions can intersect

∗Max-Planck-Institut für Informatik, Campus E1 4, 66123 Saarbrücken, Germany.

1

in addition to an application of the local lemma. He proved that for any
ε > 0 the two color van der Waerden number fullfills w(k; 2) ≥ 2k/kε for
sufficiently large k. For specific k even more is known, Berlekamp [2] showed
that w(p + 1, 2) ≥ p · 2p for any prime p. The method explained here can be
adopted straightforwardly to obtain other Ramsey-theoretic lower bounds
for example for Ramsey numbers, large transitive subtournaments and the
like. See the book by Graham, Rothschild and Spencer [3] for a broad treat-
ment of Ramsey theory. It is not the aim of this paper to produce new
bounds for these problems. Instead, we aim at a better understanding of
one of the most prominent tools of the probabilistic method, the Lovász
local lemma, in the framework of the incompressibility method.

2 Classical application of the incompressibility

method

We briefly describe a typical application of the incompressibility method
to obtain a lower bound on van der Waerden numbers that matches the
bound obtained by the first moment method, the original basic probabilistic
method. Let s be a string of length n over an alphabet Σ. In the context of
Ramsey theory we think of s as a coloring χ : {1 . . . n} → Σ of integers. We
say s is colored with c colors, where c = |Σ| is the size of the alphabet. A
k-term arithmetic progression with gap d is a set of the form {a, a+d, . . . , a+
(k − 1) · d} for a, d ∈ N. It is monochromatic if the restriction of χ to it is
constant.
Let w(k; c) be the c-color van der Waerden number for k-term arithmetic
progressions. That is, w(k; c) is the smallest positive integer such that any
string of length w(k; c) over an alphabet of size c contains a monochromatic
arithmetic progressions of length k. Van der Waerden’s theorem [7] ensures
that this number always exists.
Now, let s be an arbitrary string of length n = w(k; c). This means s contains
a monochromatic arithmetic k-term progression. Number all arithmetic pro-
gressions of length k. There are at most n2/k such progressions. Encode one
such monochromatic progression by dlogc(n

2/k)e characters. Delete it from
the string and write the encoding plus the color of the progression with 1
additional character in front of the string. This mapping is injective, there-
fore, by the incompressibility of strings, the resulting string is not shorter
than the one we started with. We get:

dlogc(n
2/k)e + 1 + n − k ≥ n

which quickly yields:

w(k; c) = n >
√

k · c k

2
−1

2

3 Repeated application of the incompressibility

method

We will now describe how to obtain a bound that matches (up to a factor
of 4/e) the one obtained via Lovász’ local lemma. In this section we will
exclusively deal with monochromatic k-term arithmetic progressions. We
will therefore casually omit the length of the progressions and the fact that it
is monochromatic whenever it is evident from the context. For simplicity we
will restrict ourselves to the case of two colors c = 2. We want to strengthen
the result from the previous section about van der Waerden numbers by
repeated application of the compression. The increased compression ratio is
based on the following idea:
Suppose s is a string of length n = w(k; 2) that contains only one progres-
sion AP. We now replace AP with random bits. By this we mean that every
single bit of the progression is replaced by a new bit taken uniformly at ran-
dom. To encode the first progression we need, as before, dlog(n2

k
)e+ 1 bits.

After we have replaced the progression, we know that a new progression AP′

must have been formed within the string. AP′ intersects the old progression
AP at least in one position. By intersecting we mean here that the arith-
metic progressions as a set of positions intersect. This information enables
us to encode AP′ with less bits. For example we can obtain an encoding
with three pieces of information: If we know at what terms of AP and AP′

they intersect and how big the spread of AP′ is, we can determine AP′ from
AP. For these parameters there are k,k and n/(k − 1) choices respectively.
We then need one additional bit to encode the color of the progression.
Figure 1 shows an example of two intersecting progressions.

. . . 011110110101010001110 . . .

AP

AP
′

Figure 1: Two 5-term progressions with gaps 2 and 5 intersecting in term 2
of AP and term 3 of AP′.

With this encoding we need all in all dlog2(n · k · k
k−1)e + 1 bits to encode

AP′ together with its color. This is a far less than we needed to encode the
first progression AP. Note that AP and AP′ might be monochromatic at
different times during the replacement.
We will now repeatedly use this trick to get arbitrarily close to a compression
that encodes k bits with dlog2(n · k · k

k−1)e new bits. For this we first need
two formal definitions.
We are only concerned with progressions that are contained within the first

3

n = w(k; 2) bits of any string we currently work on. Let AP be such a
progression. There are at most k · k · n

k−1 progressions that intersect AP.
We can encode such a progression AP′ by C = dlog2(k · k · n

k−1)e bits. This
encoding then allows us to determine AP′ given that we know AP.

Definition 1 (encoding a progression AP′ with respect to AP). Fix
from now on a mapping enc: AP u AP → {0, 1}C , from the set of pairs of
intersecting arithmetic progressions within the first n bits to the strings of
length C = dlog2(k · k · n

k−1)e which is injective in the first component. The
string enc(AP′, AP) is called the encoding of AP′ with respect to AP.

Definition 2 (delete/replace a progression). Let s = a1 . . . alg(s) be a
string and AP = {at, . . . , at+k·d} a progression that is contained in the first
n bits. Replacing AP in s gives a new string s′ that is obtained by deleting
all elements of AP and then inserting new bits from the end of s. More
formally we get s′ = â1 . . . âlg(s)−k where

âi =

{

alg(s)−m if i = t + m · d for 0 ≤ m ≤ k − 1,

ai otherwise.

We now describe the compression algorithm. Let s be a very long string that
is to be compressed. The string s should be longer that D ·k, where D is the
number of replacements that are to be performed. Let u be a string of length
w(k; 2) − 1 that contains no arithmetic progression of length k. This string
exists by the definition of the van der Waerden number. We now work on
the string us. We will later see that we can compensate for the additional
bits from the string u by increasing the number of replacements D. Let
AP0 be an arithmetic progression of us among the first w(k; 2) bits. This
progression will certainly contain the bit at position w(k; 2).
Algorithm 1 is a compression algorithm that takes the string s, given on an
input tape, and outputs a new string ps′, which contains a preamble p that
encodes information on how to reobtain the string s from the string s′. It
manages a queue of progressions, initially only containing AP0, such that at
any given time all monochromatic progressions intersect some progression in
the queue. The algorithm repeatedly replaces monochromatic progressions
that intersect the progression at the head of the queue, and documents all
operations as a preamble on the output tape, so that they can be undone.
After D replacements, it attaches the remaining input to the back of the
output tape. (See Algorithm 1.)

Analysis of algorithm 1:

correctness: We do not claim that the output string has any meaning
besides encoding the original string. In the view of this, there are only two

4

Algorithm 1 Repeated compression algorithm

1: change input string s to us
2: insert AP0 to the end of the queue
3: while less than D progressions have been deleted do
4: if there is a monochromatic progression AP that intersects the pro-

gression APfirst at the front of the queue then
5: let AP be the smallest progression (with regard to some fixed or-

dering) that intersects APfirst

6: write enc(AP, APfirst)
7: write the color of the progression
8: insert progression AP at the end of the queue
9: delete progression AP on input tape, replace with new bits from

the end of the input tape
10: write 1
11: else
12: remove the first element of the queue
13: write 0
14: end if
15: end while
16: for any progression remaining in the queue write 0 onto the output tape
17: copy remaining input to the output tape

conditions that might prevent the algorithm from running correctly. First,
the replacement might shorten the string beyond a length of w(k; 2). This
will not happen since we have required the length of s to exceed D · k.
Second, the queue might be completely emptied and afterwards the first
element of the queue might not be well defined.

Claim 1. At any time during the execution any monochromatic progression
AP′ within the first n bits is intersected by some progression AP in the
queue.

As there is always some progression among the first n bits by the claim the
queue is never empty. We now prove the claim. There are two cases why
some progression AP might be in the first n bits. Either it has been there
from the beginning, it then intersects AP0 in the n-th bit, or it developed
during the replacement step of some progression AP′. But then AP and
AP′ intersect, and AP′ is enqueued at this point. Since in both cases the
respective progression on the stack cannot be removed until AP has been
replaced the claim follows.

injectivity: We now argue that the mapping that transforms s to the
output is injective. Assume two strings s and s′ yield the same output. We
can prove by induction that the executions on s and s′ at any step yield the

5

same queue as well as the same IF decision (in line 4). The fact that this
holds for the IF decision is guaranteed by (and the exact reason why) the
algorithm writes 0 and 1 (line 10, 13 and 16) onto the tape depending on
the existence of progressions.
Now either s and s′ differ in a bit i that is within a progression that is
replaced at some point, in which case the progression or the color of it is
encoded differently, or it is never deleted at all, in which case it remains
within the string and is copied to the output tape in the last step. In both
cases th difference on the output tape yields the desired contradiction.
A formal proof, which we omit here, can be obtained if one defines the space
of states as tuples consiting of: A line number that indicates in which step
the execution is at some given time, the sequence of progressions that reside
on the stack, the content of the input tape and the content of the output
tape. One then has to prove that every execution of a single line is reversible,
which shows the injectivity.

compression factor: We will now compare the length of the output string
to the length of the input string:
Say that we have replaced D progressions. This means we have deleted
D · k bits from the string. We have written D times 1 (line 10) for the case
that we found a progression, since every 1 is followed by a deletion of a
progression from the original string. We have written D times 0 since any
progression in the queue leads to exactly one 0 being written, either if it
is removed (line 13) or if it remains in the end (line 16). The map enc()
encodes each progressions with dlog2(k · k · n

k−1)e bits. Additionally we use
one bit to encode the color of a progression. Therefore dlog2(k · k · n

k−1)e+1
bits are written per deleted progression. In total the new string has length:
lg(s) + (w(k; 2) − 1) + D · (dlog2(k · k · n

k−1)e + 3) − D · k.
Observe that length of the output string depends only on the length of the
input string.
The difference to the old string is therefore (w(k; 2) − 1) + D · (dlog2(k · k ·

n
k−1)e+3)−D ·k which must be, by the incompressibility of strings, at least
0, in other words:

(w(k; 2) − 1) + D · (dlog2(k · k · n

k − 1
)e + 3) ≥ D · k.

Since this holds for arbitrary D we get:

dlog2(k · k · n

k − 1
)e + 3 ≥ k ,

which then gives:

n >
2k−4

k
· k − 1

k
.

Having analyzed the algorithm we now turn to an improvement of it. First
of all the fact that the number of bits needed has to be rounded to an integer

6

is merely an artifact of encoding the possibilities as string. If we reinterpret
the inequalities as a form of double counting possibilities it will vanish. In
our case there is second more direct way to see this. Instead of repeatedly
encoding progressions we can encode the entirety of these progressions at
once. This will then yield the inequality

(w(k; 2) − 1) + dD · (log2(k · k · n

k − 1
) + 3)e ≥ D · k .

It strengthens the bound by a factor of two. Secondly the method can
also be used to bound multicolored van der Waerden numbers from below.
Analyzing all steps in the previous section with c colors in mind instead of
two, we get that:

Theorem 1. The van der Waerdern number w(k; c) for c-colored k-term
arithmetic progressions is bounded below by

w(k; c) ≥ ck−3

k
· k − 1

k
=

ck−3

k
(1 − o(1)).

The obtained bound matches the one originally obtained by Lovász and is
worse than later applications of the local lemma by a factor of e/4. Note
that as mentioned in the introduction even these are not the best bounds
known. Consult [4] for recent Ramsey theory on the integers.
The local lemma and the method described in this section have in common
that they reduce to intersecting objects, since coloring disjoint objects yields
independent events. It is therefore not surprising that the bounds obtained
by using this repeated compression method are in close connection to those
obtained by the local lemma.

4 Application to other Ramsey objects

Naturally the same method can be applied to establish other Ramsey-
theoretic lower bounds for example for Ramsey numbers or transitive sub-
tournaments. In both cases the factor e/4 vanishes asymptotically as n
appears superlinear in the equations. The bounds therefore match (up to
the k-th root of a constant) the bounds obtained with the Lovász local
lemma [1].

References

[1] N. Alon and J. H. Spencer. The Probabilistic Method. Wiley and Sons,
New York, 1992.

[2] E. Berlekamp. A construction for partitions which avoid long arithmetic
progressions. Canad. Math. Bull., 11:409–414, 1968.

7

[3] R. L. Graham, B. L. Rothschild, and J. H. Spencer. Ramsey Theory.
John Wiley & Sons, New York, 1990.

[4] B. M. Landman and A. Robertson. Ramsey Theory on the Integers.
American Mathematical Society, Feb. 2004.

[5] M. Li and P. Vitányi. An introduction to Kolmogorov complexity and its
applications (2nd ed.). Springer-Verlag New York, Inc., Secaucus, NJ,
USA, 1997.

[6] Z. Szabó. An application of Lovász’s local lemma - a new lower bound for
the van der Waerden number. Random Struct. Algorithms, 1(3):343–360,
1990.

[7] B. L. van der Waerden. Beweis einer Baudetschen Vermutung. Nieuw.
Arch. Wisk, 15:212–216, 1927.

8

	Introduction
	Classical application of the incompressibility method
	Repeated application of the incompressibility method
	Application to other Ramsey objects

