
Submitted to:
UITP 2016

c© Slaney, Kuspanova
This work is licensed under the
Creative Commons Attribution License.

Why there is no solution: A diagnosis tool for teaching logic

John Slaney
john.slaney@anu.edu.au

Nursulu Kuspanova
Australian National University

This paper reports our experience in developing an online tool which uses automated reasoning to
support the teaching of elementary logic at the undergraduate level. For this particular application,
the back-end reasoner searches for satisfying interpretations rather than for proofs, but the key issue
of helping users to make sense of automatic reasoning is expected to be common to many inference
systems. We have enhanced the user interface by adding functionality to help diagnose errors in the
case that the user’s expression of a logical problem is syntactically well-formed but inconsistent. In
this paper, we describe the teaching tool and the diagnoser, and report preliminary user feedback.

1 The setting

Elementary logic is notoriously harder for many students to learn than to all appearances it ought to
be. As teachers, we commonly find ourselves labouring the perfectly obvious; yet every student who
infers Fa from ∃xFx in a natural deduction calculus, or who moves from the truth of p→q to the truth
of q when constructing an analytic tableau, reminds us that the perfectly obvious easily becomes lost in
the details of its explicit expression. It is frustrating, and at times even puzzling, that such gross errors
persist however often and however carefully we explain the operation of a logical calculus. At their root
is the tendency of many students to see superficial learning of the calculus “rules” as an easy option in
comparison with any deeper study; as a result, they reject attempts to engage them in depth learning, and
their understanding remains limited.

1.1 Logic for use

This tendency to reduce logic to symbol-pushing has an unfortunate side effect. While students’ ma-
nipulation of the calculi may be error-prone but improves with practice, their use of logical notation to
specify situations and problems in many cases remains poor. The reason is not hard to see: faced with a
problem and the task of expressing it formally in first order logic, there is no alternative to understand-
ing the semantics of the problem description, understanding the semantics of logic, and matching the
two. There is no symbol-pushing algorithm for that. Given that “freestyle” formalisation is too hard for
many, we sometimes fall back on setting exercises in which more or less convoluted sentences in stilted
English are to be rendered formally by abbreviating words to single letters and writing the well-marked
connectives and quantifiers as squiggles according to a look-up table. This makes formalisation easier
for the students, and undeniably easier for us when we have to assess their work, but it allows students
to emerge from “Logic 101” without the most important skill we want them to acquire.

Logic is indeed a medium for formal proof, and understanding the concepts of validity, derivation
and (dually) satisfaction is important, but in practice the notation of logic is used far more often for
knowledge representation—as a concise and well-defined language framework for describing situations,
processes and problems. Those of us who work on theorem-proving software may tend to think of logic
primarily in terms of deduction, but the harsh truth is that once Logic 101 is finished, the ability to
construct natural deduction proofs is almost useless, whereas the ability to express things logically, to

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 Why there is no solution

disambiguate, to clarify and to render problems amenable to formal reasoning is of value across many
areas of endeavour. If students leave us without having acquired fluency in reading and writing logic to
some purpose, we have failed to teach what they really need to know.

1.2 Logic for Fun

The web-based tool Logic for Fun [4, 6] is an attempt to address the above issue directly. It asks users to
encode a range of finite-domain problems in such a way that a black-box solver on the site can produce
solutions. The solver is essentially a SAT solver with a few extra features to make problem encoding
easier, and what it gives as a “solution” is actually an interpretation, in the ordinary sense appropriate
to first order logic, satisfying the formulae given by the user. The formal language used as input to the
solver is a many-sorted first order logic with the usual connectives and quantifiers and with a few built-in
predicate and function symbols and (very) limited support for integers. The problems range from the
trivial (e.g. “Find a number, x, which when added to 2 gives 4”, encoded as “2 + x = 4.”) through a
variety of logic puzzles, to some challenging state-transition problems from AI planning, for instance,
and to some problems in combinatorics, diagnosis, etc. which hint at the real uses of logic.

The apparatus of logic is not presented at the start as something to be learned and then applied,
but rather introduced when needed, as a collection of techniques to help users express what they want
to express. Along the way, there are certainly instances of traditional formalisation exercises such as
expressing the constraint “Not every team that defeated the Aces defeated every team the Aces defeated”,
but by the end the challenges are more open-ended and higher-level: “Find a way to get all the cannibals
and missionaries across the river without any unfortunate setback for cultural imperialism.” To tackle
the advanced problems, users must invent suitable vocabulary (with type specifications) and use it in
logical formulae with the right semantics to force its models to be valid plans or whatever; the problem
statement in English gives little direct help with this task, and the solver only looks at the logic, returning
models of the input or the information that no model exists. Users must then debug their work until the
solutions are as desired.

An example will help illustrate the tool. We wish to express not a problem but a first order theory
about life in the country and the ways of ruminants:

Mary had a little lamb,
Its fleece was white as snow,
And everywhere that Mary went
The lamb was sure to go.

This is hardly deep as logic goes: as the name of the tool suggests, it’s just for fun. There is no unique
correct encoding, of course, but a reasonable starting point is to divide the domain of discourse into
several disjoint subdomains or sorts. We need to quantify over people, animals, times and places, and it
will also be useful to specify some lists of colours and sizes. We therefore have:

Sorts:

person.

animal.

time.

place enum: home, school, mountain, farm.

size enum: microscopic, little, medium, big, huge.

colour enum: green, black, white, purple.

Slaney, Kuspanova 3

The vocabulary we need will be declared with (first order) types in terms of these sorts:

Vocabulary:

predicate {
had(person,animal).

isLamb(animal).

}
function {
stature(animal): size.

hue(animal): colour.

location p(person,time): place {surjective}
location a(animal,time): place.

}
name Mary: person.

Since we wish to keep persons and animals as distinct sorts, the location function cannot apply to both
persons and animals. Hence there are two, one for each sort. The location of persons is made surjective
(by annotating its declaration) just to ensure that every place gets visited (by someone) at least once; this
is not required by the theory, but it is harmless and makes the story more interesting.

Finally, here is the constraint:

∃ x (

had(Mary,x) ∧
isLamb(x) ∧
stature(x) = little ∧
(hue of snow = white → hue(x) = white) ∧
∀ t (location a(x,t) = location p(Mary,t))

).

The solver generates some unexpected models along with the expected ones: for instance, there are
solutions in which the lamb is green—but it is still just as white as snow because snow is purple!

Logic for Fun is not the only tool of its kind. Its best-known precursor is Tarski’s World [2, 1]
which was originally written (for PC rather than for the Web) in 1991 and which provides a range of
machine-checked formalisation exercises. More recently, a web-based tool [7] very much in the style
of Logic for Fun has been deployed to help in teaching MiniZinc [3], a subset of the Zinc modelling
language associated with the constraint programming platform G12 [8]. Like Logic for Fun, it asks
users to encode problems rather than single statements, though its focus is more on efficient encoding
for constraint programming whereas Logic for Fun aims purely to teach logic.

2 The problem

The workflow of the dialogue between the user and the site is essentially a loop, in which the user
submits a candidate encoding, and the solver replies with solutions or an error message, giving the user
information with which to debug the encoding for the next iteration. The loop is broken when the user
is satisfied with the solution(s) or gives up. Work can be saved at any stage for later recall. Students

4 Why there is no solution

will characteristically put at least an order of magnitude more work into encoding problems this way
than they would into doing the exercise on paper, but frustration with the system is a critical problem,
experienced by almost all users at some time.

2.1 The customer is always wrong

In a good sense, the system is only doing useful work when the user is making mistakes. The quality
of relevant feedback is therefore a key issue. Errors are of two kinds: syntactic and semantic. Syntax
errors are relatively straightforward: they are trapped by the parser or the type checker and reported with
explanatory messages. For example, if the user types

had(Mary, ∃ x isLamb(x))

presumnably trying to say Mary had some x such that x is a lamb, then the solver replies:

Input error on line 18: had(Mary, SOME x isLamb(x)).

Type mismatch with argument of had

Detailed diagnostics: in the formula

had(Mary,SOME x isLamb(x))

the main operator "had" expects argument 2 to be

of type animal, but argument 2 is

SOME x isLamb(x)

which is of type bool.

Vocabulary used in the formula is:

predicate had(person,animal).

name Mary: person.

quantifier SOME.

variable x: animal.

predicate isLamb(animal).

Parsed [sub]formula structure is:

Mary

had

(SOME x (

isLamb (

x

)

)

)

While such messages can always be improved and made more user-friendly, they are not the focus of the
present report. The more challenging question is how to deal with semantic errors.

2.2 Why is there no solution?

There are no canned answers to the problems in Logic for Fun. Even the vocabulary used to express a
given problem is provided by the user, not by the system. Clearly, it is not possible in general for the

Slaney, Kuspanova 5

solver to identify semantic errors with much precision: where logic has been used correctly to say the
wrong thing, there is no knowing just what the mistakes are without a description of the right thing. All
the solver can do, therefore, if the input is syntactically well-formed, is to evaluate it and report whatever
models it finds. Where there are unintended models, as in the case of the little green lamb, the user can
inspect them, compare them with the English text to which they should correspond, and generally detect
the missing or incorrectly expressed constraints. The case in which there are no solutions at all, however,
is more common in practice, and the three-word feedback

No solution found

is less than ideally informative. Since the user’s code is not executed, but only evaluated, there is no
possibility of debugging in familiar ways such as stepping through the execution or inserting “print”
statements. One is quickly driven to the option of commenting out lines and re-solving, or solving the
problem by hand and adding redundant constraints expressing parts of the true solution to detect which
formulae are inconsistent with them. These techniques are cumbersome and not always very effective. It
would clearly be useful if the dialogue between user and solver could be helped along further in the case
where the constraints are inconsistent.

3 The diagnosis tool

A range of possible tools might help. One can imagine a useful role for visualisation, starting with the
constraint graph of the input, for instance. Another option would be to discover proofs of inconsistency,
either by analysing the failed search for models or by applying independent automated reasoning tech-
niques, and to present them in a human-readable form, though preliminary experiments in that direction
are not encouraging. The difficulty with proofs is that the problems are essentially based on finite do-
mains, so inconsistency often involves the fact that decision variables must take one of the n values,
expressed logically as many ground clauses of length n; such things tend to give rise to ugly proofs,
especially for n greater than about 3 or 4. We have also considered reversing the formalisation process
by rendering the first order formulae in stilted but maybe comprehensible English, in the hope that this
may help explain to users what they have written, but have not experimented with this yet.

What we have implemented, however, is a diagnoser which essentially automates the process of
commenting out constraints and observing the results. This requires no judgments about the correctness
or incorrectness of any particular formulae, but directs the user’s attention to the minimal edits required to
restore consistency. It does this in two complementary ways: by generating and presenting unsatisfiable
cores and approximate models.

There are three levels of representation of the constraints in a problem encoding. On the highest
level are the first order formulae supplied by the user. These contain quantifiers and connectives freely
nested as one would expect. After parsing, these are put into clause form, resulting in the second level
of problem representation. In general, one first order formula may result in several first order clauses, in
which there is no nontrivial nesting of connectives, and from which quantifiers have been removed in the
standard way. On the lowest level are the (many) instances of these clauses flattened and grounded on
the chosen finite domain and represented to the solver as a single data structure indexed in quite complex
ways and used to manipulate the permitted and forbidden tuples of values for the decision variables of a
CSP. The diagnoser currently operates on the clause level only when generating unsatisfiable cores, but
on the low level when generating approximate models.

An unsatisfiable core, as is familiar, is a minimal subset of the clauses which has no model within
the framework provided by the sort and vocabulary declarations. Clearly, every unsatisfiable core must

6 Why there is no solution

be repaired by removing or editing at least one of its component clauses, so the identification of such a
core can furnish the user with valuable information by restricting attention to a part of the encoding in
which there must be an error. Our diagnoser gives the user the option of seeing an arbitrary unsatisfiable
core, usually generated quite quickly, or one which is guaranteed to be optimal in the sense of being of
minimal cardinality. Finding a core requires solving a sequence of NP-hard and co-NP-hard problems, so
it is computationally hard in the worst case. Proving optimality makes the problem considerably harder
in practice, even if it does not change the complexity class, so the diagnoser sometimes times out before
returning an optimal core.

An approximate model is an interpretation of the language satisfying as many as possible of the
ground-level constrtaints. That is, since there is no interpretation satisfying all of the constraints, we
treat the problem as a MAX-CSP with a fixed penalty of 1 for each constraint violation and solve that
by DFBB. In the case of logic puzzles, the problems are usually fairly small, so it is feasible to return
provably optimal solutions in most cases, but DFBB can function as an anytime algorithm, so if the
solver times out it usually returns a reasonably good solution—often an optimal one without finishing
the proof of optimality.

When an approximate model is presented to the user, the clauses which fail in it are listed. The user
may decide that some or all of them are correct, in which case they can be marked as hard constraints,
meaning that they are no longer allowed to be violated, and another approximate model generated. After
a few iterations of this process, it is quite likely that attention is focussed on the real culprit. At least the
process allows the user to explore the space of interpretations roughly satisfying their theory, and to gain
some feel for which clauses hang together: if a given clause fails, we see what else fails with it.

The set of clauses which are unsatisfied in an approximate model is obviously a hitting set for the
set of all unsatisfiable cores. We call such a hitting set a diagnosis: it could be presented to the user
as a suggestion as to which clauses need to be repaired. The set of unsatisfiable subsets and the set of
(possibly sub-optimal) diagnoses form a dual pair of monotone problems [5]. One outcome of this is that
if there are many diagnoses then there are few unsatisfiable cores, and vice versa. Another is that there is
a simple method for turning decision procedures into optimisers: in particular, since the existing solver of
Logic for Fun can decide satisfiability (and hence unsatisfiability) it can be used without modification to
generate optimal unsatisfiable cores. See the cited paper [5] for details of the dual hitting set minimisation
technique, which we use for finding optimal cores.

If there is a small unsatisfiable core, that is usually the best hint as to where to find the error in
the encoding. Sometimes, however, there is no small core: the contradiction implicit in the theory may
require almost all of the input formulae for its derivation. In that case, approximate models are likely to
give more useful information. In the worst case, neither cores nor diagnoses are small, or the problem
is so clumsily encoded that the solver times out without producing much information, or perhaps there
just is no graspable explanation of the lack of solutions.1 Hence there will always be cases in which
the diagnosis tool gives no real help. However, more usually, it does provide some information which
students may use for purposes of self-correction; the educational value of this process is anyway greater
than that of copying an answer produced by a more elaborate tool.

Slaney, Kuspanova 7

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10

How easy is the diagnoser to use?
How useful is the diagnoser in finding bugs?
How successful is the tool in performing its intended task?

Answers on a scale from 1 (not at all) to 10 (extremely).

Figure 1: Results of a survey of 12 volunteer users of the prototype

4 User response

The diagnosis tool was incorporated into the live Logic for Fun site in February 2016, and is currently
(April 2016) undergoing a field trial with a class of 80 students in an introductory logic course at the
Australian National University. At the time of writing, the results are not yet available, though the trial
will end in early June, so some information concerning usage and user experience will be available by
July.

A small experiment was conducted in September 2015, in which 12 volunteers who were all experi-
enced users of the site were shown a prototype of the new tool and asked to use it, without supervision,
to help in encoding problems of their own choice. Their sessions with the enhanced site were scheduled
to last roughly an hour, and in practice ranged from about 45 minutes to 2 hours. Obviously, given such
a small number of users, the experiment did not produce very meaningful statistical results—and nor
was it intended to. The users completed a short questionnaire at the end of their session, but their verbal
responses were more helpful in informing the further development of the software.

The point of testing the prototype with human subjects was not to evaluate its effectiveness in terms
of learning outcomes, but rather to assess its acceptability and to gather reports on whether users felt it
to be useful. The initial results were reassuringly positive (see Figure 1) though the small sample size
and lack of a comparison class mean that quantitative results should be taken as indicative only. All
users reported that being able to continue the dialogue with the solver in this way is greatly preferable to
being left only with the message “No solution found”. Half of them found the unsatisfiable cores more
valuable than the approximate models for debugging purposes, though a quarter of them reported the
opposite experience and the remaining quarter rated the two types of feedback as equally valuable.

The usage pattern among the current class of students (the first to use the diagnosis tool in actual
practice) shows around 50% of students making regular use of it. They typically run it between 5 and 20
times in the course of arriving at an encoding of a puzzle; at this point it is not clear whether they tend
to ask mainly for unsatisfiable cores or for approximate models. By comparison, they will run the solver
between 100 and 150 times on average in working on one problem, though around half of these runs are
just syntax checks.

1For example, why is ∀x∀y(f (f (f (y,x),y),y) = x) unsatisfiable in a domain of size 10? There appears to be no explanation:
it is just a brute fact of combinatorics.

8 Why there is no solution

5 Conclusion and future work

THe diagnosis tool has now been fully integrated into Logic for Fun, where it is providing generally
useful feedback and enhancing the user experience of the site. From the technical viewpoint, the principal
direction for future work is to incorporate a contemporary high-performance solver in place of the rather
limited reasoner currently used. In view of the fact that basic numerical reasoning is needed for many
of the more interesting problems, an SMT solver may be more appropriate than a purely logic-based
one, though for the purposes of logic teaching it is also important not to stray too far into arithmetic.
The back-end solver stands alone, independently of the scripts running the website, and is opaque to the
user in any case, so its exact nature is unimportant as long as it deals quickly with small finite-domain
problems and does not intrude into the high-level logical syntax.

Meanwhile, another project is currently in progress, mining the usage log of the current site (without
the diagnoser, at this point) to identify and analyse strategies used by students when working on encoding
logical problems. The record of their activity is a rich source of information, as it provides comprehen-
sive, accurate and highly detailed observations of the learning process obtained non-intrusively with
minimal perturbation of the observed behaviour. The first results from this project are expected later in
2016, though it will continue into the future. An obvious extension for the next iteration of data collec-
tion will be to examine records from the diagnoser as well as the solver: this is not technically difficult,
and will enable us to know in detail in what circumstances students use the diagnoser, how they interact
with it and what use they make of the information it provides.

What is already clear is that non-expert users of reasoning software, such as the logic students learn-
ing formalisation skills via Logic for Fun, need an environment which supports them with relevant infor-
mation, especially when they make errors. It is useful to think of the human-computer interaction as a
dialogue in which the user is guided by the program’s responses. “No solution found” is too brusque as
a response: if the dialogue cannot be continued past that point, the user easily becomes frustrated or dis-
illusioned and may abandon the process. Our diagnoser does continue the dialogue, helping the user to
understand why there is no solution by displaying near-solutions and by pinpointing the axioms involved
in contradictions. One benefit is that the information is presented on the human-readable level—i.e. in
terms of the formulae written by the user and approximate solutions in exactly the style of the full so-
lutions the user wished to see. The response so far has been positive. While the differences between
satisfiability solvers and theorem provers make it impossible for automated deduction systems to adopt
our diagnosis tool directly, the motivation and the idea of presenting global information (e.g. in the form
of models of clause sets) rather than the low-level results of drilling down do carry over to cognate
reasoning software including theorem provers.

References

[1] Dave Barker-Plummer, Jon Barwise & John Etchemendy (2008): Tarski’s World.

[2] Jon Barwise & John Etchemendy (1993): Tarski’s World.

[3] Nicholas Nethercote, Peter Stuckey, Ralph Becket, Sebastian Brand, Gregory Duck & Guido Tack (2007):
MiniZinc: Towards a standard CP modelling language. In: Principles and Practice of Constraint Programming
(CP), pp. 529–543.

[4] John Slaney: Logic for Fun, Version 2 Beta. http://L4F.cecs.anu.edu.au/.

[5] John Slaney (2014): Set-theoretic duality: A fundamental feature of combinatorial optimisation. In: European
Conference on Artificial Intelligence (ECAI), pp. 843–848.

Slaney, Kuspanova 9

[6] John Slaney (2015): Logic considered fun. In: Proceedings of the 4th International Conference on Tools for
Teaching Logic, pp. 215–222.

[7] Peter Stuckey & Carleton Coffrin: Modelling Discrete Optimization.
https://www.class-central.com/mooc/3692/coursera-modelingdiscrete-optimization.

[8] Peter J. Stuckey, Maria J. Garcı́a de la Banda, Michael J. Maher, Kim Marriott, John K. Slaney, Zoltan Somo-
gyi, Mark Wallace & Toby Walsh (2005): The G12 Project: Mapping Solver Independent Models to Efficient
Solutions. In: Principles and Practice of Constraint Programming (CP), pp. 13–16.

	The setting
	Logic for use
	Logic for Fun

	The problem
	The customer is always wrong
	Why is there no solution?

	The diagnosis tool
	User response
	Conclusion and future work

