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Abstract. The duality between conflicts and diagnoses in the field
of diagnosis, or between plans and landmarks in the field of plan-
ning, or between unsatisfiable cores and minimal co-satisfiable sets
in SAT or CSP solving, has been known for many years. Recent
work in these communities (Davies and Bacchus, CP 2011, Bonet
and Helmert, ECAI 2010, Haslum et al., ICAPS 2012, Stern et al.,
AAAI 2012) has brought it to the fore as a topic of current inter-
est. The present paper lays out the set-theoretic basis of the concept,
and introduces a generic implementation of an algorithm based on
it. This algorithm provides a method for converting decision pro-
cedures into optimisation ones across a wide range of applications
without the need to rewrite the decision procedure implementations.
Initial experimental validation shows good performance on a number
of benchmark problems from AI planning.

1 Introduction
The concept of duality within fields of sets is a central one for the sci-
ence of combinatorial optimisation. Its basic logical properties have
been observed many times in the literature, most famously by Reiter
in his seminal work on diagnosis [13] but the fact that they apply
uniformly to a much larger class of problems than just those arising
in diagnosis has not been sufficiently appreciated. In a loose way, it
appears to be something everyone knows, and yet every time it is
applied to another problem it is a surprise, and every time the key
underlying theorem gets proved once more. The present paper lays
out the concept clearly, not as a fact about diagnosis, nor about SAT,
nor about any particular kind of reasoning, but as a series of rather
simple observations about fields of sets. Reiter’s result that diagnoses
can be found by covering minimal conflicts is a trivial corollary, as
is the theorem of Stern et al. [17] that this relationship is reversible.

By a hitting set for a family of sets we mean a set whose in-
tersection with every set in the family is non-null. Since the rela-
tionship between dual families of sets is generic, so is the method
of solving problems by generating hitting sets for their duals. Here
we report a problem-neutral implementation aimed at finding cost-
minimal solutions, but adaptable to enumerate all inclusion-minimal
solutions, which immediately yields solvers in areas as diverse as
classical planning and MAX-SAT.

2 Logical preliminaries
Let Σ be a set.2 Let θ be a set of subsets of Σ: the ones with some
property P . We say that P (or equivalently θ) is monotone over Σ if it
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rest of the present paper we assume that Σ is finite.

is up-closed under set inclusion: i.e. for subsets s and t of Σ, if s ⊆ t
and s ∈ θ then t ∈ θ. Many combinatorial optimization problems
can be expressed rather naturally in terms of finding a minimum-
cost member of some monotone family θ of subsets of some suit-
able Σ, where cost is often additive, the cost of a set being the sum
of costs of its members. In the travelling salesman problem, for in-
stance, Σ is the set of arcs of a graph, θ is the family of solutions, cast
as subsets containing a Hamiltonian circuit, and an optimal solution
has a minimal sum of arc weights. In consistency-based diagnosis,
it is common to define a [minimal] diagnosis as a [minimal] set of
components whose removal from the set of those stated to be func-
tioning normally suffices to render a system specification consistent
with some observations. Here Σ is the set of components and θ the
set of (possibly non-minimal) diagnoses. Again, the weighted MAX-
CSP problem is to find a satisfiable subset of a set Σ of constraints
minimising the sum of the penalties for the violated (i.e. unsatisfied)
constraints. This is trivially equivalent to finding a minimal-cost co-
satisfiable subset of the constraints. Hence any problem expressible
as a weighted MAX-CSP is of the kind considered here, making the
class of problems we consider rather general.

By the dual of a set θ ⊆ 2Σ relative to a universe Σ we mean the
set θ∗ = {s ⊆ Σ : s /∈ θ}.3 Thus if θ is the set of diagnoses (sets
of components which may all be malfunctioning), then θ∗ is the set
of conflicts, or sets of components which cannot all be functioning
correctly. Again, if θ is the family of co-satisfiable subsets of some
constraints (i.e. the subsets whose complements are satisfiable), then
θ∗ is the family of unsatisfiable subsets of the constraints.

This duality operator has some nice properties. It is easy to show:

1. θ∗∗ = θ
2. (θ ∩ π)∗ = θ∗ ∪ π∗
3. (θ ∪ π)∗ = θ∗ ∩ π∗
4. If θ is monotone (respectively, antitone) then so is θ∗.
5. |θ|+ |θ∗| = 2|Σ|

To prove (1), note that by definition

θ∗∗ = {s : s /∈ θ∗}
= {s : s /∈ {t : t /∈ θ}}
= {s : s ∈ θ}
= θ

For (2)

(θ ∩ π)∗ = {s : s /∈ θ ∩ π}

3 By the complement s of a set s we mean, as should be obvious from the
context, Σ \ s. Similarly, for a family θ of sets, θ is 2Σ \ θ.



= {s : s /∈ θ∨ s /∈ π}
= {S : s ∈ θ∗ ∨ s ∈ π∗}
= θ∗ ∪ π∗

The argument for (3) is similar. In algebraic vocabulary, (1), (2) and
(3) together make ∗ an involutive dual automorphism on the lattice
of subsets of Σ. That is mathematically neat, but properties (4) and
(5) start to be more interesting computationally.

To prove (4) suppose θ is monotone, that s ∈ θ∗ and s ⊆ t. Then
t ⊆ s and s /∈ θ, so t /∈ θ, which is to say t ∈ θ∗. The argument that
if θ is antitone then so is θ∗ is similar. In the light of (4), monotone
combinatorial problems come in dual pairs: if θ is the set of solutions
to one monotone problem then θ∗ is the set of solutions to another.

For (5), observe that the members of θ∗ are just the complements
of the non-members of θ, so obviously |θ∗| = |θ|; but the disjoint
union of θ and θ is just 2Σ, so |θ|+ |θ∗| = 2|Σ|.

Hence if θ is small—if its members are rare, as is the case with
solutions to a problem which is close to critically constrained—then
θ∗ is large, and vice versa. This is good news and bad news. The bad:
where there are enough elements in Σ to make a combinatorial op-
timisation problem interesting (say, more than about 50 of them), it
is physically impossible to enumerate both θ and θ∗ explicitly. The
good: if one of the two problems is tightly constrained, then the other
is radically underconstrained, and vice versa, so depending on the
case there may be attacks which work better on one type of prob-
lem than on the other and which may therefore be employed against
both—if only we have a way of relating them computationally to
each other. Moreover, logic may come to the rescue by providing a
concise statement of one of the two problems which, by duality, may
allow access to the other.

Fortunately, there is a computationally useful relationship between
θ and θ∗. The following hold quite generally:

6. Let s be a subset of Σ such that for every t in θ, s ∩ t 6= ∅. Then
s ∈ θ∗.

7. Let θ be monotone. Then for any s ∈ θ and t ∈ θ∗, s ∩ t 6= ∅.

Proofs are again easy. Suppose the conditions of (6) hold. Clearly s
has an empty intersection with s, so s /∈ θ, which is to say s ∈ θ∗.
Now for (7), suppose θ and θ∗ are monotone and s ∈ θ. If s ∩ t = ∅
then s ⊆ t, so by monotonicity t ∈ θ, meaning t /∈ θ∗. The upshot
of (6) and (7) is that where θ is monotone, θ∗ consists of exactly the
hitting sets (drawn from Σ) for θ. Trivially, in that case, θ is also the
set of hitting sets for θ∗. Moreover, θ is the set of hitting sets for the
set of its own hitting sets.

Finding a minimum (optimal) member (resp. an inclusion-minimal
member, an approximately optimal member, all minimal members,
etc.) of θ is therefore the same thing as finding a minimum (resp.
minimal, approximately minimal, etc.) hitting set for θ∗. Algorithms
for solving hitting set problems are well developed, offering a gen-
eral technique with wide applicability in optimization. In principle at
least, any combinatorial optimisation problem which can be cast as
finding a cost-minimal member of some monotone family θ of sub-
sets of a carrier set Σ can be approached dually via the hitting set
minimisation problem for θ∗. Similar remarks apply to the problem
of enumerating the inclusion-minimal members of θ, as is common
in diagnosis for example. We now outline algorithm templates for
generating a single best solution.

3 Finding the best
We begin with the pure optimisation problem: given a specification
of a monotone family of sets θ, find and return a single member of
θ with minimal cost. This is to be done by determining an optimal
hitting set for θ∗.

While it is rarely feasible to generate all of θ∗ explicitly, fortu-
nately there are better ways. The property P defining θ may admit
of a relatively low-cost decision procedure, and there may be small
subsets κ of θ∗ such that a minimum hitting set for κ also happens
to hit all of θ∗. This gives rise to an algorithm template which yields
promising solutions in a range of cases.

In what follows, for any family F of sets, we write hs(F ,s) to
mean ∀t ∈ F(s∩t 6= ∅). The first function required is a generator of
optimal hitting sets. Assuming the cost functionC somehow defined:

MHS (κ) : set
Choose s such that

hs(κ, s) ∧
∀t (hs(κ, t)⇒ C(s) ≤ C(t))

Any optimal hitting set generator may be used for this purpose. A
standard branch and bound algorithm performs reasonably well, but
it is also easy to encode the problem as a MIP, allowing any off-
the-shelf MIP solver to be used instead. If optimality is not required,
it is also possible to substitute an incomplete solver based on local
search—large neighbourhood search is reported [10] to do well with
cognate minimum set cover problems. We have not yet experimented
with this, but it would obviously be straightforward to do so.

The technique for building κ will be to start with the empty set
and iterate the following process: find a hitting set h for the currrent
κwhich is as large as possible while still remaining a non-member of
θ—do this by starting from a small hitting set s and adding as many
elements to it as possible; then h is a small member of θ∗ not hit by
h, so add it to κ. Continue in this fashion until a minimal-cost hitting
set for κ is found which is a member of θ: this is the optimal solution.

Where θ is a monotone family of sets and s is any non-member of
θ, we need to choose a set in θ∗ disjoint from s. In practice it pays to
choose sets of small cardinality, but in principle any choice (even, in
the worst case, s itself) will suffice:

SEL (θ, s) : set
Choose t such that
t ∈ θ∗ ∧
s ∩ t = ∅

or fail

For any t ⊆ Σ, deciding whether t is in θ∗ amounts to deciding
whether t is in θ, so the decision procedure required to show s /∈ θ
can also be used to test any candidate t for membership of θ∗.

Now obviously if the cost function C is monotone-increasing with
set inclusion, and κ ⊆ θ∗, a minimum-cost hitting set for κ which
also happens to be in θ is a minimum-cost hitting set for θ∗. So:

OPT (θ, κ) : set
Let h← MHS(κ);
If h ∈ θ then

return h
else

return OPT(θ, κ ∪ {SEL(θ, h)})

The required optimal member of θ is then OPT(θ, ∅).
The function OPT does not need to be much more complicated

than the few lines of pseudo-code above. MHS is responsible for all



of the optimisation. As noted, it can use any off-the-shelf solver for
the minimum hitting set problem. For experiments, we used our own
implementation of the algorithm presented by De Kleer [5] which is
described below. The MHS function is generic—invariant over dif-
ferent problems. The function SEL and the decision procedure for θ,
on the other hand, are problem-specific.

The algorithm works by progressively building up a subset κ of
θ∗, starting with the null set and at each step adding a set not hit by
an optimal hitting set (h) for the current κ. This means that θ∗ need
never be constructed explicitly, for a subset (typically much smaller
than θ∗) suffices. Moreover, membership of θ∗ is determined using
the decision procedure for P , which in many cases is reasonably ef-
ficient [11] and again does not require θ∗ to be known in detail.

In some cases, in fact, P is testable in polynomial time,4 and even
where it is not, decision is typically much easier than (provable) op-
timisation. This makes it possible for a version SELmin of SEL to
return an inclusion-minimal member of θ∗ at each iteration of OPT:

SELmin (θ, s) : set
If s ∈ θ then

Fail
else

let A← s;
For each x ∈ Σ do

If A ∪ {x} /∈ θ then
A← A ∪ {x}

Return A

We check that s is not in θ, so A initially lacks P , and this prop-
erty is preserved at every subsequent step, so A is always in θ∗, and
since every possible one-element extension of A has been tried and
rejected, at the end of the iteration through Σ it is also inclusion-
minimal. Moreover, since s ⊆ A, obviously A and s are disjoint.
Since true minimality is not actually required for the purposes of
OPT, it is possible to use a sound approximation to the decision pro-
cedure for P inside SELmin: false positives will only make the re-
turned set A a little bigger than necessary, which is not fatal. This
enables an approximate version of SELmin to run fast even where
the decision procedure is not polytime.

On most calls to SEL, s is not in fact in θ. It is used only as the
seed for another member of θ∗ with which to extend κ. Hence, s does
not actually need to be minimal: any hitting set for the current κ will
do, though one of small cardinality is likely to be better than a large
one because there is more freedom to extend it to at least one large
non-member of θ. It therefore pays to use an approximately minimal
hitting set which can be generated fast rather than calling MHS on
every iteration. Only when s is in θ need MHS be called to replace
it with a minimum-cost s′ for the search to continue. This leads to a
more elaborate version of OPT, making use of a function HSapprox

which returns a small, but not necessarily minimal, hitting set:

OPTA (θ, κ) : set
Let h← HSapprox(κ);
If h ∈ θ then

Let h← MHS(κ);
If h ∈ θ then

return h;
return OPTA(θ, κ ∪ {SEL(θ, h)})

4 Blocks World planning and delete-free planning, described below, are ex-
amples of NP-hard optimisation problems with linear time decision proce-
dures.

MCHS (F , H, b) : set
Simplify(F , H);
If C(H) + Cest(H,F) ≥ b then

return FAIL
else if F = ∅ then

return H
else

Choose a ∈
⋃
F ;

Let F ′ ← {s \ {a} : s ∈ F};
Let H1 ← MCHS(F , H ∪ {a}, b);
If H1 = FAIL then

Let H2 ← MCHS(F ′, H, b)
else

Let H2 ← MCHS(F ′, H, C(H1))
If H2 = FAIL then

return H1

else
return H2

Figure 1. Recursive minimum cost hitting set algorithm

Since Σ is finite, termination is guaranteed provided SEL and the
decision procedure for P terminate: MHS terminates (see below) and
every call from OPT or OPTA to SEL adds to κ a set which cannot
have been already there as it is disjoint from h. In the limit, κ = θ∗

and so h is eventually returned.
The problems addressed are generally NP-hard, so exponential

running time is expected. In the worst case, it may be double-
exponential in |Σ|, since the naı̈ve bound on the number of calls to
OPT is given by |θ∗| which may be close to 2|Σ|, and each such call
may involve solving a co-NP-hard subproblem such as showing that
a graph has no Hamiltonian circuit. The experimental results below,
however suggest that this worst case is not an impediment to many
applications.

Implementation
For the remainder of this section, we assume that costs are additive,
and writeC(s) for the cost of s (the sum of the costs of its members).
More sophisticated notions of cost could be handled, but this would
require modification of the algorithm to compute hitting sets, which
we have not considered at this point.

The heart of the algorithm (Figure 1) is the function returning min-
imum hitting sets. The method used here is rather simple, and not at
all original with this paper, of course [5]. It consists of a search by
DFBB, backtracking on the choice of whether to include an element
in the hitting set or exclude it from the problem. At each node in
the search tree the problem of generating a hitting set H for F is
“simplified” by iterating to a fixpoint:

1. remove from F any set which is hit by H;
2. remove from F any subsumed set (i.e. any proper superset5 of

another in F);
3. remove from all sets in F any element x dominated by another y

(which is of no greater cost and in at least all the same members
of F);

4. add the member of any singleton in F to H .

5 Since F is a set, it cannot contain duplicates, so all subsumption is proper.



Figure 1 shows the recursive search function. MHS(F) is just
MCHS(F ,∅,∞). The family F (which will be κ in practice) is given
explicitly as a list of sets, in contrast to θ and θ∗, which are defined
implicitly by some sort of decision procedure. Simplifying the prob-
lem at a node is polynomial-time in the number of sets and their car-
dinality. Note that Cest(s,F) is the estimated cost of extending s to
become a hitting set for F , according to some admissible heuristic.
Termination is clear, since the search tree branches only two ways at
each node, and the length of each branch is bounded by the cardinal-
ity of

⋃
F because the element on which the search splits is removed

from the two resulting sub-problems. It is well known that the mini-
mum hitting set problem is NP-equivalent. De Kleer [5] reports that
the algorithm outlined here performs competitively with the state of
the art across a range of hitting set problems, including both artificial
ones and those drawn from problems in diagnosis of static systems.
We implemented it straightforwardly in C with a simple API allow-
ing it to be incorporated easily into problem-specific programs.

Evaluation

As this paper has been at pains to emphasise, the dual hitting set
method is not new. Variants of it have been reported by many authors,
and the fact that it is somehow generic has been pointed out, notably
by Moreno-Centeno and Karp [11], but its set-theoretic basis and the
facts proved in the first section of the present paper have, to the best
of our knowledge, never been fully laid out. In 2011–12, three papers
appeared, independently reporting excellent results for dual hitting
set algorithms for MAX-SAT [4], static system diagnosis [17] and
delete-free classical planning [8]. Other examples go back at least to
the optimal blocks-world solver [15] which we reported in 1996.

Our generic tool for converting decision procedures into optimis-
ers has yet to be fully validated experimentally. As an initial step, it
has been compared with our own previous implementations of opti-
misation algorithms which use hitting set minimisation. In particular,
in application to the AI planning problems noted above, the generic
solver performs at a level competitive with the existing state of the
art, without requiring problem-specific implementation.

Optimal delete-free planning

For the purposes of optimal planning, using standard algorithms such
as A*, it is critically important to make use of good admissible
heuristics. Most admissible heuristics used in practice, such as hmax

and LM-cut [9], are based on the delete-free relaxation of planning
problems, obtained by ignoring the delete lists of actions. They de-
liver lower bounds on h+, defined as the cost of the optimal delete-
free plan reaching the goal. In general, computing h+ is hard: the
problem is NP-equivalent [3] and not approximable [2]. Recently
[8] we presented an effective algorithm for computing h+ exactly in
practical cases, using the dual hitting set method. This is arguably the
technique of choice for the problem, as attested by its performance
across standard planning benchmarks. It is therefore of interest to
compare the generic solver presented in the present paper with the
special-purpose one designed for the delete-free planning problem.

Since the relaxed plans do not involve deletions, they may be re-
garded as sets of actions: such a set is a valid plan if every goal propo-
sition is eventually produced by closing the initial state description
under actions in the plan. The dual notion is that of a disjunctive ac-
tion landmark, or a set of actions at least one of which appears in
every valid plan. Clearly, given a putative plan, reachability of the

Domain # 1 sec 30 sec 5 min
old new old new old new

Airport 50 26 25 47 47 49 50
Barman 20 5 5 20 5 20 5
Blocks 3-ops 35 32 35 35 35 35 35
Blocks 4-ops 35 35 35 35 35 35 35
Cybersec 30 8 7 27 20 28 20
Depots 22 12 10 17 12 18 13
Driverlog 20 7 8 8 10 11 11
Freecell 60 0 0 4 2 7 3
Logistics 28 26 28 28 28 28 28
Miconic 150 150 150 150 150 150 150
Non-Mystery 20 3 0 4 4 4 4
Openstacks 30 27 27 30 30 30 30
Parc Printer 30 29 29 30 30 30 30
Pathways 30 4 6 5 8 7 9
PegSol 30 30 30 30 30 30 30
Pipes No Tank 50 9 9 11 10 11 10
Pipes Tankage 50 6 6 9 9 10 10
PSR small 50 50 49 50 50 50 50
Satellite 36 5 5 6 6 7 7
Scanalyzer 30 6 4 11 5 14 5
Sokoban 30 30 30 30 30 30 30
Storage 30 17 17 21 19 27 22
TPP 30 10 9 13 11 16 12
Transport 30 5 3 6 5 6 6
Trucks 30 12 18 19 30 21 30
Visitall 20 0 4 2 11 5 20
Woodworking 30 10 10 17 22 22 27

Table 1. Numbers of problems in each domain solved by each solver
within a second, within 30 seconds and within 5 minutes.

goal is decidable in time polynomial in the number of actions and
propositions, simply by chaining forward to a fixpoint.

For the experiment, the two solvers—the old one from 2012 and
the new one using the generic method of this paper—share code
for reading and preprocessing problems. The test for reachability of
goals is also the same, as is the SEL function. The main differences
lie in the ways hitting sets are generated, both where optimal ones
are sought and where sub-optimal ones are used for quick discovery
of new landmarks. The 2012 planning-specific solver generates bet-
ter sub-optimal hitting sets, as it was tuned in this regard by means
of many experiments with planning benchmarks whereas the new
generic solver uses a simple general-purpose scheme which has not
been tuned at all. However, the new solver is more efficient in the
generation of optimal hitting sets. The behaviour of the two systems
also diverges on problems with high numbers of zero-cost actions,
although of course the values they return for h+ are the same.

The benchmark problems are those from 27 domains used in the
International Planning Competitions (IPC) from 1998 to 2011. These
domains all require propositional strips planning, and some have ac-
tion costs. A time limit of 5 minutes was imposed, rather than the 30
minutes allowed in the competition: this is reasonable, given that we
are only solving the delete-free relaxations rather than the problems
themselves.

Broadly, the performance with and without special-purpose coding
is comparable (see Figures 1 and 2). Note the log scale. The results
do vary somewhat between domains, as may be seen in Table 1: the
Barman and Scanalyzer problems, for instance, are solved better by
the old system, while the Visitall and Trucks domains are easier for
the new one. In the main, however, the differences are not great. This
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Figure 2. New solver for optimal delete-free planning, based on the
generic hitting set generator, versus the existing special-purpose planner.
Problems are those in the classical strips domains from the International

Planning Competitions. Runtimes are in seconds, with a cutoff at 5 minutes.

is encouraging, as it suggests that there is little to gain by imple-
menting the dual hitting set algorithm specially rather than using the
generic version.

A special case: blocks world

The blocks world (BW) is a standard example and testbed for clas-
sical planners and planning formalisms. Though not, as naturally ex-
pressed, delete-free, it is sufficiently close to the above problems to
be solved by similar means. A state of BW consists of a finite set of
blocks stacked up into towers which rest on a surface, conventionally
called the table, taken to be big enough to hold all the blocks if nec-
essary. The only actions are to move a clear block (i.e. with nothing
above it) from its current position to rest on top of another clear block
or on the table. A plan is a sequence of such moves. For simplicity,
we consider problem instances in which both the initial state and the
goal state are fully specified, and identify actions by the block moved
and its destination.

A block is said to be in position if (a) what it is on now is what
it will be on in the goal, and (b) what it is currently on is in posi-
tion. The table is always in position. Clearly, every “constructive”
move which puts a block into position occurs in every successful
plan, so its singleton is a landmark. Among the other landmarks are
those corresponding to deadlocks, where a deadlock is a set of blocks
forming a cycle, none of which can move into position until the next
block in the cycle has moved [7]. A plan may easily be extracted [15]
from any hitting set for the set of deadlocks. Put another way, the set
of constructive moves together with a hitting set for the landmarks
corresponding to deadlocks hits all landmarks, and a minimal such
hitting set generates an optimal plan.

Provably near-optimal BW planning can be achieved in linear time
[15] so large instances are easy provided optimality is not required.
In the optimal planning case, however, problems with as few as 25
or 30 blocks pose difficulties for most planners. The optimal solver
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Figure 3. New version of the optimal Blocks World solver, based on the
generic hitting set generator, versus the existing special purpose one.

Problems are randomly generated in the range 100–180 blocks. Runtimes
are in seconds.

‘bwopt’6 uses a linear-time near-optimal solver to decide θ and a
version of MHS to generate plans out of the deadlocks. It returns op-
timal plans in acceptable time for arbitrary problems of 150 blocks.
This performance has remained unchallenged for over 15 years.

A new implementation of the optimal solver, using the generic
code for generating minimum hitting sets while retaining the same
near-optimal solver for deciding θ, clearly out-performs the existing
one, as shown in Figure 3. The main reason appears to be superior
propagation in the optimal hitting set generator, though generation
of non-optimal hitting sets is also relevant. Since minimum hitting
set generation is the only bottleneck in the algorithm, a better imple-
mentation improves performance significantly. For this experiment,
10 problem instances of each size (number of blocks) from 100 to
180 were generated using the problem generator ‘bwstates’ [16] to
produce uniformly distributed random problems. On all nontrivial
instances (taking more than about 0.1 seconds to solve on the given
hardware) the new version of the solver is faster. Note that the scale
in Figure 3 is logarithmic, so it is clear from these results that the
improvement is exponential. The median runtime for the new solver
on random problems of 300 blocks is 1.5 seconds on the given hard-
ware, whereas the old one has a median runtime of around half a
minute on 200-block problems and is completely unable to handle
300-block ones.

4 Finding all minimal solutions
Much of the literature on solving problems by generating hitting sets
for the duals concerns the challenge of enumerating all minimal (i.e.
inclusion-minimal) solutions rather than generating a single cost-
minimal solution. In diagnosis, for instance, it is frequently important
to find all minimal diagnoses, whereas the notion of the “best” one
may be of little significance. The algorithm in Reiter’s 1987 paper
[13] is such an enumerator of minimal solutions. One example from
another field which has influenced the present work is Bailey and

6 http://users.cecs.anu.edu.au/ jks/bw.html



Stuckey’s dynamic programming technique [1] for enumerating un-
satisfiable cores of problems arising in debugging Haskell programs.
Mention should also be made of the work of Eiter and Gottlob [6] on
the complexity of hypergraph traversal in the abstract.

It is not difficult to devise a generic algorithm like that of Bai-
ley and Stuckey to enumerate minimal solutions using the function
SEL and the iterative construction of κ. We do not detail such an
algorithm here, as the focus of the present paper is on optimisation,
but are experimenting with it in the context of correctness debug-
ging of constraint models. Again, there seems no reason to expect
performance to be significantly worse than that of a problem-specific
implementation.

5 Conclusion

Dual hitting set minimisation is not a magic bullet: like most generic
techniques, it is widely applicable in principle but for most problems
there are domain-specific methods which work better. Most notably,
problems calling for optimal permutations of sequences, which are
common in scheduling for instance, are not naturally monotone and
are not usefully approached through their hitting set duals. Nonethe-
less, as noted above, there are cases in which hitting set minimisation
is the technique of choice, and many more in which it yields tolerable
results without requiring much implementation work. It is therefore
a worthwhile weapon to have in the optimisation armoury.

Here we have reported problem-neutral implementations of meth-
ods for generating an optimal solution and for generating all mini-
mal ones. Preliminary tests comparing the generic implementation
against the best problem-specific generator of optimal delete-free
plans for a range of planning problems suggest that any loss in perfor-
mance is slight in comparison with the gain in ease of programming.

Unfinished business includes extending the algorithm templates
of this paper to include more techniques for dual reasoning, experi-
menting with more applications and deepening the underlying math-
ematical theory. The following are all indicated directions for future
work:

• There are several good approaches to generating minimal hitting
sets. Our system should make it easy to switch between the exist-
ing DFBB solver and others based on MIP or SAT, for instance.

• It is easy to use an approximate solution method such as large
neighbourhood search or other kinds of local search to generate
suboptimal but “good” hitting sets quickly in cases to which the
exact methods will not scale. The quality of solutions obtainable
in this way and their possible applications will surely bear inves-
tigation.

• Exploiting duality in both directions, to generate simultaneously
minimal members of θ as hitting sets for θ∗ and minimal members
of θ∗ as hitting sets for θ [17] is a natural extension of the ideas
outlined here. Its correctness is immediate from observations 1
and 4 in the first section of the present paper. It may have applica-
tions in cases where neither θ nor θ∗ is easy to explore by itself:
these may arise in diagnosis or in MAX-SAT, for instance.

• The generic solvers need to be benchmarked against challenging
problems from more fields, certainly including model-based di-
agnosis, to confirm or qualify the result from the experiments in
planning, that there is little or no degradation in performance asso-
ciated with using the generic system as opposed to special purpose
ones.

• The mathematics of duality should be further pursued. The ab-
stract algebra of dual automorphisms on distributive lattices has

been well studied, and was related as long ago as the 1960s and
70s [12] to non-classical logic. The treatment of paraconsistent
negation in the semantics of substructural logics [14] also makes
use of a duality operator on possible worlds. Even without know-
ing where the inquiry will lead, it is natural to explore the rela-
tionships between fields suggested by the common mathematical
thread.
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[16] John K. Slaney and Sylvie Thiébaux, ‘Blocks world revisited’, Artificial
Intelligence, 125, 119–153, (2001).

[17] Roni Tzvi Stern, Meir Kalech, Alexander Feldman, and Gregory M.
Provan, ‘Exploring the duality in conflict-directed model-based diag-
nosis’, in Proceedings of the 26th AAAI Conference on Artificial Intel-
ligence (AAAI), pp. 828–834, (2012).


