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Fast Rotation Search with Stereographic
Projections for 3D Registration
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Abstract—Registering two 3D point clouds involves estimating the rigid transform that brings the two point clouds into alignment.
Recently there has been a surge of interest in using branch-and-bound (BnB) optimisation for point cloud registration. While BnB
guarantees globally optimal solutions, it is usually too slow to be practical. A fundamental source of difficulty lies in the search for
the rotational parameters. In this work, first by assuming that the translation is known, we focus on constructing a fast rotation search
algorithm. With respect to an inherently robust geometric matching criterion, we propose a novel bounding function for BnB that is
provably tighter than previously proposed bounds. Further, we also propose a fast algorithm to evaluate our bounding function. Our
idea is based on using stereographic projections to precompute and index all possible point matches in spatial R-trees for rapid
evaluations. The result is a fast and globally optimal rotation search algorithm. To conduct full 3D registration, we co-optimise the
translation by embedding our rotation search kernel in a nested BnB algorithm. Since the inner rotation search is very efficient, the
overall 6DOF optimisation is speeded up significantly without losing global optimality. On various challenging point clouds, including
those taken out of lab settings, our approach demonstrates superior efficiency.

Index Terms—Point cloud registration, rotation search, branch-and-bound, stereographic projections, R-trees.
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1 INTRODUCTION

D ESPITE significant research efforts, point cloud reg-
istration remains a challenging problem. In general,

given two point clouds, the goal of registration is to find
a transform that maps points from one set to the other
such that the two sets are aligned as well as possible.
Many different formulations exist; see [1] for a survey. In
this paper, we focus on registering two 3D point clouds
that differ by a rigid transform. Such a problem occurs
often in applications involving laser scanners or depth
cameras, e.g., pose estimation and object detection.

For 3D rigid registration, many practical systems still
rely on the classical ICP method [2], which conducts
an EM-like optimisation that alternates between point
assignments and updates to the rigid transform param-
eters. While highly efficient, ICP requires careful initial-
isations since it is only locally convergent. A similar
weakness afflicts the well-known SoftAssign method [3],
which also performs alternating optimisation. In many
applications, the required initialisation is not available
or is too laborious to be acquired. There is thus the need
to consider algorithms that are globally convergent.

One of the earliest globally optimal registration meth-
ods was proposed by Breuel [4] for geometric matching,
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e.g., finding a previously seen configuration of 2D points
in an input image. The method is based on branch-and-
bound (BnB) optimisation [5], which guarantees global
optimality. While Breuel’s original formulation is fast
enough for optimising 2D rigid transforms with 3DOF,
a naive extension to estimate 3D rigid transforms with
6DOF is unwieldy, as the volume of the search space is
significantly increased by going from 2D to 3D.

In practice the point clouds may only partially overlap,
and points in the non-overlapping regions represent
outliers. The geometric matching criterion is inherently
robust to outliers since it only matches points within
a distance threshold. In contrast, the original ICP [2]
which subscribes to the maximum likelihood principle
will attempt to match all the points, including outliers.
This led to extensions such as ICP with M-estimators [6],
[7] and trimmed ICP [8], which do not try to match all
points. In general, the need to handle outliers further
complicates the optimisation. Most robust ICP variants
simply use alternating or iterative optimisation, which
do not give globally optimal solutions. Further, trimmed
ICP requires knowing the number of genuinely matching
points beforehand, which is difficult to ascertain.

Typically, optimising the rotational parameters is less
efficient than the translational parameters, due to the
special structure of SO(3). In this paper we focus on
the rotation search subproblem: given two point clouds,
calculate the rotation that best registers the points. By
no means is this a trivial problem, and significant efforts
have been devoted purely to rotation search [9], [10],
[11], [12]. Our contribution is a fast BnB rotation search
algorithm that optimises the geometric matching crite-
rion. We exploit the geometry of rotational transforms
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to derive a bounding function that is provably tighter
than those proposed previously. This allows pruning of
unpromising rotations to be conducted more aggresively
in BnB, thus speeding up convergence.

Our bounding function is also amenable to very ef-
ficient evaluation. Specifically, we can precompute all
possible point matches using stereographic projections [13]
and index them in circular R-trees [14]. This facilitates
rapid bound evaluations and further increases the per-
formance of BnB. The result is a rotation search al-
gorithm that is robust, globally optimal and fast; our
method can register up to 1000 points in 2 seconds.

To accomplish full 3D registration, we embed our
rotation search “kernel” in a broader optimisation frame-
work. Specifically, we optimise the 6DOF rigid transform
with a nested BnB algorithm [15], whereby an outer BnB
loop optimises the translation and the inner BnB loop
conducts rotation search. The overall result is guaran-
teed to be 6DOF globally optimal. We show that our
novel rotation search algorithm speeds up nested BnB
tremendously without losing global optimality.

This paper is an extension of our previous work
on pure rotation search [16]. The significant additions
we have made include the usage of matchlists [17] to
further speed up bound evaluations (Sec. 2.4), a plane
sweep-inspired algorithm for pre-computing and index-
ing point matches (Sec. 3.3), the extension from pure
rotation optimisation in [16] to 6DOF point cloud regis-
tration (Sec. 4), and a comprehensive benchmarking with
state-of-the-art point cloud registration methods (Sec. 5).

1.1 Related work
1.1.1 Point cloud registration
Significant effort has been devoted to the rigid (Eu-
clidean) registration of point clouds. Available tech-
niques include randomised heuristics [18], [19], feature
detection and matching [20], and methods that construct
alternative representations for the point sets such as
mixture models [21], [22] or Fourier transforms [23].

Of closer relevance to our work is the class of methods
that employ mathematical optimisation to deterministi-
cally find the best solution. Within this class, two groups
can be discerned. The first group [24], [25], [26] takes as
input a priori established point matches between the two
point clouds. Therefore, the quality of the registration is
dependent on the veracity of the given point matches.

The second group of methods [4], [15], [27], [28] use
the original point clouds without prior matching; our
work belongs to this group. Though not exposed to the
potential errors of “hard-coded” point matches, such
methods face a tougher problem since they must also
optimise the matching (either implicitly or explicitly)
along with the rigid transform. In this paper, we focus
on comparing against methods in the second group.

Breuel [4] was one of the earliest to apply BnB for
point set registration. However, only 2D points were
considered and a naive extension to 3D is unwieldy.

Li and Hartley [27] formulated a “Lipschitzised” objec-
tive function that can be globally optimised using BnB.
However, the method must assume one-to-one matching
of the point clouds (i.e., no partial overlaps), which
can be too restrictive for many practical applications.
Further, the reported computational time is quite high.

More recently, Yang et al. [15] proposed a globally
optimal method called Go-ICP, which does not assume
one-to-one point correspondences. The algorithm con-
sists of two nested BnB loops, where the outer loop
optimises the rotation while the inner loop searches
for the translation given candidate rotations. Our 6DOF
globally optimal algorithm (Sec. 4) is inspired by Yang
et al.’s nested BnB approach. However, w.r.t. rotation
BnB, stemming from the fact that we conduct geometric
matching [4] instead of maximum likelihood [2], we can
construct a much tighter bounding function. Further,
our bounding function can be rapidly evaluated with
innovations such as stereographic projections, R-trees
and matchlists, all of which cannot be easily exploited
under maximum likelihood; see Sec. 3 for details. By
virtue of a much faster rotation search kernel, our 6DOF
algorithm outperforms Go-ICP significantly.

A distinct class of methods conduct 3D registration
as a graph matching problem, which involves pairwise
matching constraints. Graph matching is well known to
be fundamentally difficult. Spectral approximations have
been proposed [29], but only very small point sets can
be handled. Enqvist et al. [28] posed graph matching
as a vertex cover problem, and a BnB algorithm was
proposed. In practice, solving vertex cover is computa-
tionally exorbitant. Thus only relatively small point sets
with large overlaps have been tested.

1.1.2 Rotation search
Many recent works on rotation search were geared
towards multi-view geometry problems [9], [10], [12],
[30], [31], e.g., calculating relative camera poses. These
methods can take advantage of image-based feature
matches that relate data from one point set to the
other. Although the matches can be erroneous (which
necessitates the usage of robust costs to preclude wrong
matches), the need for optimising point matching is
obviated and rotation search is simplified tremendously.
However, these methods are only optimal up to the
set of “fixed” feature matches obtained by some other
scheme. In contrast, since our technique operates directly
on raw 3D points, it is not limited by the inaccuracy of
feature matching. However, the associated optimisation
job is harder. Indeed, Hartley and Kahl [9] remarked that
“the problems considered in (Breuel 2003) are harder in the
sense that feature correspondences are not known a priori”.
We show how our novel bounding function significantly
simplifies and speeds up rotation search.

Bazin et al. [12] also applied their method to rotational
alignment of point clouds (3D keypoint matches must
first be a priori established across the point clouds). We
will compare our algorithm with [12] in the experiments.
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2 FAST BNB ROTATION SEARCH

Here, we describe our BnB rotation search approach with
a novel bounding function. In Sec. 3, we propose novel
techniques to rapidly evaluate our bounding function,
while in Sec. 4 we show how 6DOF registration can be
achieved based on our rotation search kernel.

2.1 Objective function and BnB algorithm

Let M = {mi}Mi=1 and B = {bj}Bj=1 be two 3D point
clouds which we assume are potentially related by a 3D
rotation. Based on the geometric matching criterion, we
seek the rotation R ∈ SO(3) that maximises

Q(R) =
∑
i

max
j
b‖Rmi − bj‖ ≤ εc , (1)

where b·c is the indicator function which returns 1 if
the condition · is true and 0 otherwise, and ‖ · ‖ is the
Euclidean norm in R3. The criterion (1) is robust since
two points are matched only if their distance is less than
the inlier threshold ε.

It is instructive to compare (1) against the maximum
likelihood criterion in ICP, where we seek to minimise

E(R) =
∑
i

min
j
‖Rmi − bj‖. (2)

For each point Rmi, its nearest neighbour in B must be
found. Contrast this to (1) where as long as a sufficiently
close point in B exists, we are not concerned with the
distance of Rmi to its nearest neighbour.

Algorithm 1 summarises our BnB algorithm for find-
ing the globally optimal 3D rotation w.r.t. maximis-
ing (1). The basic idea is to recursively subdivide and
prune the rotation space, until the global optimum is
found. We employ the axis-angle parametrisation for
rotations. A 3D rotation is represented as a 3-vector
whose direction and norm specify the axis and angle
of rotation. All rotations are thus contained in a π-ball.
Initially we enclose the π-ball with a cube B of side 2π
then successively subdivide it into eight smaller cubes.
See [9] for details on the axis-angle parametrisation.

Crucially influencing the run time of Algorithm 1 is
the tightness of the bounding function Q̂, which satisfies

Q̂(B) ≥ max
r∈B

Q(Rr), (3)

where Rr is the matrix form of rotation r. A tighter Q̂
will prune more aggressively and yield fewer iterations.
Equally important is the efficiency of evaluating Q and
Q̂, since they are called repeatedly. We make contribu-
tions in both aspects, as described in Secs. 2.3 and 3.

2.2 Previous results

Given two rotation vectors u and v in the π-ball, it has
been established [9] that

∠(Rum,Rvm) ≤ ‖u− v‖, (4)

Algorithm 1 BnB algorithm to maximise (1).
Require: Point sets M and B, threshold ε.

1: Initialise priority queue q, B← cube of side 2π,
Q∗ ← 0, R∗ ← ∅.

2: Insert B with priority Q̂(B) into q.
3: while q is not empty do
4: Obtain highest priority cube B from q.
5: If Q̂(B) = Q∗ then terminate.
6: Rc ← centre rotation of B.
7: If Q(Rc) > Q∗ then Q∗ ← Q(Rc), R∗ ← Rc.
8: Subdivide B into eight cubes {Bd}8d=1.
9: For each Bd, if Q̂(Bd)>Q∗, insert Bd with priority

Q̂(Bd) into q.
10: end while
11: return Optimal rotation R∗ with quality Q∗.

where m is a 3D point, and ∠(·, ·) gives the angular
distance. Further, given a cube B, let p and q be the
points at two opposite corners of B. Then,

c := (p + q)/2 (5)

is the centre of B with rotation matrix Rc. For any
rotation u situated in the cube B, we can see that

∠(Rcm,Rum) ≤ max
u∈B
‖c− u‖

= ‖p− q‖/2 := αB (6)

as a direct consequence of (4). It thus follows that

‖Rcm−Rum‖ ≤ δ, (7)

where the bound δ is based on the cosine rule

δ =
√

2‖m‖2(1− cosαB). (8)

The result (7) immediately suggests the following
bounding function for the objective function (1):

Q̂br(B) =
∑
i

max
j
b‖Rcmi − bj‖ ≤ ε+ δic , (9)

where we define δi as (8) evaluated with mi. This bound-
ing function was also originally proposed by Breuel;
see [4] for proof that (9) is a valid bound for (1).

The bounding function (9) is unnecessarily conserva-
tive. Geometrically, the result (7) says that Rumi may
lie anywhere within a ball of radius δi centred at Rcmi.
Intuitively, we know that this is inaccurate, since the
actions of all possible rotations in B may only allow mi

to lie on a patch on the surface of the sphere with radius
‖mi‖; see Fig. 1. Our method exploits this key insight.

2.3 Improving the tightness of the bound
Let Sθ(m) represent the spherical patch (see Fig. 1) centred
at m with angular radius θ, i.e.,

Sθ(m) = {x ∈ R3 | ‖x‖ = ‖m‖, ∠(m,x) ≤ θ}. (10)

S2π(m) is thus the sphere of radius ‖m‖ centred at the
origin, and Sθ(m) ⊆ S2π(m). Further, the outline of
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Fig. 1. Under the action of all possible rotations in B,
mi may lie only on a spherical patch centered at Rcmi.
However the bounding function (9) assumes that mi may
lie in the δi-ball centred at Rcmi.

Sθ(m) is a circle on the surface of S2π(m). Using the
above notation, we can reexpress the result (6) as

Rum ∈ SαB(Rcm) (11)

where c, u and αB are as defined previously.
Let lε(b) denote the closed ball of radius ε centred at

b:

lε(b) = {x | ‖x− b‖ ≤ ε}. (12)

The objective function (1) can be rewritten as

Q(R) =
∑
i

max
j
bRmi ∈ lε(bj)c . (13)

From (11), since mi can only lie in SαB(Rcmi) under all
possible rotations in B, determining if mi can match with
bj under B amounts to checking if SαB(Rcmi) intersects
with lε(bj). This leads to the upper bound

Q̂sp(B) =
∑
i

max
j
bSαB(Rcmi) ∩ lε(bj) 6= ∅c . (14)

To qualify as a valid bounding function for BnB, Q̂sp has
to meet several conditions, which we prove below.

Lemma 1. For any cube B

Q̂sp(B) ≥ max
r∈B

Q(Rr). (15)

Also as B collapses to a single point r,

Q̂sp(B) = Q(Rr). (16)

Proof. To prove (15), it is sufficient to show that if the pair
mi and bj contribute 1 to Q(Rr) for any r ∈ B, they must
also contribute 1 to Q̂sp(B). If mi and bj contribute 1 to
Q(Rr), then ‖Rrmi−bj‖ ≤ ε and Rrmi ∈ lε(bj). Since r
is in B then Rrmi must lie in SαB(Rcmi); see (11). This
proves that the intersection SαB(Rcmi)∩ lε(bj) contains
at least the item Rrmi and is thus nonempty.

To prove (16), based on (6) as B collapses to a single
point, p = q = c and αB = 0. Thus SαB(Rcmi) collapses
to a single point Rcmi, rendering (14) to equal (13).

Intuitively, Q̂sp imposes a tighter bound than Q̂br,
since given B, Q̂sp allows mi to vary within a spherical

Fig. 2. Illustrating the idea of matchlists on 1D rotation
search - an analogous idea exists for 3D rotation search.
Here, the origin is at the centre of the largest circle. (Left)
Under the actions of all possible rotations in an interval
B ⊆ [0, 2π], m1 cannot match with any of the bj ’s, whilst
m2 can match (up to ε) with b3 and b4. (Right) For a
subinterval B′ of B, we need only test m2 for potential
intersections (i.e., the matchlist of B′ is {m2}), since it is
not possible for m1 to have a match under B′.

patch while Q̂br allows mi to vary within a ball that
encloses the spherical patch. A formal proof is as follows.

Lemma 2. For any cube B

Q̂br(B) ≥ Q̂sp(B). (17)

Proof. Since both functions are already lower-bounded
by maxr∈BQ(Rr), it is sufficient to show that there are
hypothetical pairs mi and bj that contribute 1 to Q̂br but
0 to Q̂sp. Set bj = Rcmi(1 + ε+δi

‖mi‖ ); clearly the condition
‖Rcmi −bj‖ ≤ ε+ δi holds and mi and bj are matched
under Q̂br. However, then ‖bj‖ − ‖mi‖ > ε and lε(bj)
cannot intersect with SαB(mi), thus giving 0 to Q̂sp.

Applying Q̂sp in BnB instead of Breuel’s original
bound Q̂br allows more aggressive pruning of unpromis-
ing rotations and thus leads to faster convergence.

2.4 Matchlists
Let N be the subset of points in M that can potentially
have matches with B under the rotations in B, i.e.,

N = {m ∈M | ∃b ∈ B, SαB(Rcm) ∩ lε(b) 6= ∅} , (18)

where Rc and αB are as defined in (6) for B. For a
subcube B′ ⊆ B, it can be established that

Q̂sp(B′) ≤ Q̂sp(B) = |N |. (19)

Further, points not in N cannot possibly have matches
under rotations in B′. Thus, we need to sum over only
N when evaluating Q̂sp(B′). Fig. 2 illustrates the idea.

Breuel called N the matchlist of B′ [17]. Using match-
lists avoids redundant intersection queries in (14), espe-
cially in the later stages of BnB. To apply the idea in
Algorithm 1, when inserting a cube B into the queue,
we also record the indices of points that are matched
under B, such that the subcubes of B can benefit from
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using matchlists. Note that the quality evaluation Q(Rc)
for the centre rotation of B (step 6 in Algorithm 1) can
also be speeded up using the matchlist of B.

It is worthwhile to note that matchlists are not appli-
cable in a BnB algorithm for the maximum likelihood
criterion (2), since each mi must always be matched to
its nearest point in B regardless of the distance.

3 EFFICIENT BOUND EVALUATIONS

Using a tighter bound in BnB can be counterproductive
if evaluating the bound itself takes significant time. Kd-
tree is the main workhorse in [4] for evaluating Q and
Q̂br. Points in B are indexed in a single kd-tree which
is queried during BnB with rotated points fromM. This
takes O(M logB) effort per function evaluation.

To evaluate the proposed bound (14), we need to solve
multiple queries of the following kind:

max
j
bSαB(Rcmi) ∩ lε(bj) 6= ∅c . (20)

Intuitively, since SαB(Rcmi) must lie on the surface of
the sphere S2π(mi), only the subset of B whose lε(bj)
intersect with S2π(mi) can possibly have a non-zero
interection with SαB(Rcmi). This subset is defined as

Bmi
= {bj | bj ∈ B, |‖mi‖ − ‖bj‖| ≤ ε}, (21)

and the maximisation in (20) can be taken over just Bmi .
Sec. 3.3 will provide an efficient algorithm for finding
Bmi

for all i, given two point clouds M and B.

3.1 Kd-tree approach
To evaluate (20) quickly, we can index each Bmi

with a
kd-tree. A total of M kd-trees are thus constructed. Given
B, we can perform a range query on the i-th kd-tree with
point Rcmi and range (δi + ε) (recall that SαB(Rcmi)
is enclosed by the (δi + ε)-ball centred at Rcmi). This
disregards points in B that will never match with mi.
Evaluating (14) thus takes O(M logBav) effort, where
Bav ≤ B is the average size of {Bmi}Mi=1.

3.2 Circular R-tree approach
While the M kd-tree approach permits faster bound eval-
uation than naive search, we propose another technique
that gives bigger computational gains. Continuing the
above observations, each lε(bj) for bj ∈ Bmi intersects
S2π(mi) at a spherical patch — recall that a sphere-to-
sphere intersection yields a circle, i.e., the outline of the
spherical patch, see Fig. 3. The size of the patch depends
on the distance of bj to S2π(mi).

Our idea is to stereographically project the spherical
patches onto the xy-plane Ω. Assuming an unit-sphere
and a projection pole at [0, 0, 1]T (North Pole), a point x
on the sphere and its projection p = [p1, p2]T are related
by

x =

[
2p1

1 + pTp
,

2p2
1 + pTp

,
pTp− 1

1 + pTp

]T
. (22)

Fig. 3. A solid ball lε(bj) intersects the surface of the
sphere S2π(mi) at a spherical patch, which has a circular
outline on the sphere. Under stereographic projection, the
spherical patch is projected to become a circular patch.

(a) (b) (c)

Fig. 4. The three types of patches arising from projecting
spherical patches. (a) Interior patch. This is the case
shown in Fig. 3. (b) Exterior patch. The spherical patch
contains the pole, thus the “contents” of the spherical
patch are projected outside the circle. (c) Half-plane. The
pole lies exactly on the outline of the spherical patch.

The crucial property is that circles are projected as circles;
see Fig. 3. To see this, recall that a circle arises from the
intersection between a plane τ and the sphere. Let τ be
[a b c]x = d. Putting (22) into the plane equation yields

(c− d)(p21 + p22) + 2ap1 + 2bp2 − (c+ d) = 0. (23)

If c 6= d, (23) is a circle; else it is a line. In the latter case,
the pole lies on the circle formed by the plane-sphere
intersection. Circle intersections are also preserved, i.e.,
circles on the surface of the sphere that intersect will also
intersect in the projection plane Ω. See [13] for details.

A spherical patch is thus projected to become a cir-
cular patch in Ω; see Fig. 3. Given the circular patches
from Bmi

, to solve (20) we first stereographically project
SαB(Rcmi) to obtain the query patch Lq , then check if Lq
intersects any of the spherical patches from Bmi . What
makes this technique more efficient than the M kd-tree
approach is the usage of spatial access data structures [14]
to query for intersections. Note that the stereographic
projection of a circle can be computed in closed form
(constant time), thus it presents little overheads.

In the following, we explain stereographic projection
of spherical patches and efficient indexing schemes for
circular patches. Note that by replacing Lq with the
stereographic projection of Rmi, the methods below can
also be used to evaluate the quality (13).



6

(a) (b) (c)
Fig. 5. Projection of a spherical patch Sα(x). The diagrams show the side view of Fig. 3, where the horizontal axis
represents the xy-plane Ω. As explained in Fig. 4, three cases can arise: (a) an interior patch, (b) an exterior patch, or
(c) a half-plane. In the above diagrams, the bolded segments on the horizontal axes indicate the resulting patches.

3.2.1 Projection of spherical patches
Discussing the full details of stereographic projection of
circles is beyond the scope of this paper. We provide
only the essential details in this subsection and refer the
reader to the supplementary material or the text [13].

Typically the vast majority of spherical patches do
not intersect with or contain the North Pole. These are
projected to become interior patches, i.e., the interior of the
spherical patch is projected to the interior of the circle in
Ω. This is the case in Fig. 3. If a spherical patch contains
the North Pole in its interior, it is projected to become an
exterior patch, i.e., its contents are projected outwards. If
the North Pole lies exactly on the circular outline of the
spherical patch, the projection gives rise to a half-planes.
Fig. 4 shows the three possibilities.

To stereographically project a spherical patch Sα(x), it
is convenient to first normalise the patch such that it lies
on the unit sphere. This implies making ‖x‖ = 1 while
leaving α unchanged. A proportional scaling of the ε-ball
that gave rise to Sα(x) is not required, since the angular
deviation α does not change with this normalisation. Let
(ϕx, θx) be the spherical coordinates of x, where ϕx ∈
[0, π] and θx ∈ [0, 2π] are the inclination and azimuth. If
ϕx − α > 0, Sα(x) does not contain the North Pole; see
Fig. 5a. If ϕx−α < 0, the North Pole lies in the interior of
Sα(x); see Fig. 5b. Finally, if ϕx − α = 0, the North Pole
lies exactly on the circular outline of Sα(x); see Fig. 5c.

Consider first the spherical patches that are projected
to yield interior and exterior patches. The aim is to
project the circular outline of Sα(x) to a circle (pc, rc)
on Ω. Define the radial distance of an inclination as

r(ϕ) =
sin(ϕ)

1− cos(ϕ)
. (24)

Let x̂′ ∈ R2 be the unit vector of the orthogonal projection
of x onto Ω. The maximum deviations in inclination of
x in Sα(x) are given by ϕl = ϕx − α and ϕu = ϕx + α.
Then, the centre and radius of the circle in Ω are

pc =
r(ϕl) + r(ϕu)

2
x̂′, rc =

|r(ϕl)− r(ϕu)|
2

. (25)

See Figs. 5a and 5b. Now consider the Sα(x) that project
to a half-plane. The half-plane is defined by

â′p− d ≥ 0 if ϕu < π (26)
â′p− d < 0 if ϕu ≥ π (27)

where p is an arbitrary point in Ω, d = |r(2α)| is the
radial distance for the inclination ϕu = 2α (recall that
ϕl = 0 in this case), a is the point with inclination ϕu =
2α and â′ the unit vector in R2 corresponding to the
orthogonal projection of a onto Ω. See Fig. 5c.

3.2.2 Indexation for fast intersection queries

Once the spherical patches from Bmi are projected onto
the xy-plane Ω, we index them to facilitate efficient
intersection queries. Here, we describe our indexing
schemes for the three possible types of circular patches.

We first examine the indexation of exterior patches and
half-planes which both arise from spherical patches con-
taining or intersecting the North Pole. As these patches
are infrequent in practice (in fact, no half-planes existed
in our experiments), we simply index them in a list.
Given a query patch Lq , we scan the list to see if Lq
intersects with any of the entries; as soon as a hit is
encountered, we stop and return 1 to (20). In fact, if Lq
is itself an exterior patch or a half-plane, it will always
intersect with an entry in the list (since all the originating
spherical patches contain and intersect at the North Pole)
and the scan can be avoided.

Solving (20) is dominated by testing the interior
patches for overlaps with Lq . To facilitate efficient query-
ing, we index the interior patches (specifically, their
circular outlines) in a circular R-tree. R-trees are indexing
structures designed for spatial access queries; see [14] for
a general exposition. In our circular R-tree, the circles
are hierarchically indexed in a balanced tree. Circles in
the same node are enclosed by a minimum bounding
rectangle (MBR). For example, Fig. 6 shows a circular R-
tree of depth three. The main parameter for tree building
is the branching factor and maximum depth.
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Fig. 6. A set of interior patches in the projection plane is
indexed in a circular R-tree. The MBR at each node is
also drawn. The tree structure is shown on the right. A
query patch Lq is also shown; in this example, Lq does
not intersect with the largest MBR at the root node, hence
the search need not proceed beyond the root.

Regardless of the type of circular patch Lq , querying
the circular R-tree is conducted similarly; the distinction
is just how overlaps are defined. At each node, if Lq
overlaps with the MBR of the node, the children of the
node are traversed; at a leaf node, Lq is simply tested for
overlaps with the interior patches contained therein, and
if a hit is encountered the query is terminated instantly.
If Lq does not overlap with the MBR of a node, the
whole branch can be ignored; contrast this to kd-tree
queries, where the full depth of the tree must be reached
such that candidate nearest distances are obtained to
enable pruning of branches. In fact, in our circular R-
tree, should (20) evaluate to 0, it is usually unnecessary
to explore all tree levels. In many actual cases, only the
first-few levels are descended; Fig. 6 shows an example.
This difference in behaviour is the source of massive
improvements in run time, as we will show in Sec. 5.1.

3.3 Modified plane sweep algorithm

As defined earlier, Bmi
⊆ B is the set of points for which

the ε-ball lε(bj) intersects with the sphere S2π(mi). A
naive method to compute all {Bmi}Mi=1 is thus to test for
each pair (i, j) whether S2π(mi) intersects with lε(bj).
Testing all M×B pairs is wasteful, since not all the pairs
intersect. We propose a more efficient method inspired
by the plane sweep algorithm [32] used for calculating
line segment intersections. See Algorithm 2.

We use concepts such as status and events from plane
sweep. Specifically, we maintain a status containing the
sorted values of the norms {‖mi‖}Mi=1. We then iterate
over events {bj}Bj=1. For each event bj , we insert the
values ‖bj‖− ε and ‖bj‖+ ε into the status; let il and iu
respectively be the position of ‖bj‖ − ε and ‖bj‖ + ε in
the status. Due to the presorting of the norms {‖mi‖}Mi=1,
any mi whose index in status is below il or above iu
cannot intersect with lε(bj). Thus, the algorithm does not
exhaustively test all M×B pairs of data for intersections.
More specifically, the algorithm takes O(B logM) effort,
since we insert into a sorted array (the status) B times.

Algorithm 2 Modified plane sweep algorithm for finding
the intersecting ε-ball set {Bmi}Mi=1.
Require: Point sets M and B, threshold ε.

1: Set Bmi
= ∅ for all i = 1, . . . ,M .

2: status← sort {‖mi‖}Mi=1 for all mi ∈M.
3: Reorder M based on their position in status.
4: for j = 1, . . . , B do
5: il ← smallest i such that status(i) ≥ ‖bj‖ − ε.
6: iu ← largest i such that status(i) ≤ ‖bj‖+ ε.
7: if both il and iu are not null then
8: for i = il, . . . , iu do
9: Bmi

← Bmi
∪ {lε(bj)}.

10: end for
11: end if
12: end for

3.4 Computational analysis
To evaluate the proposed bounding function (14), we will
need to build and query M circular R-trees. Similarly for
the kd-tree approach, M kd-trees are required. Search
efficiency is of greater interest since querying occurs
multiple times during BnB. Theoretically, R-trees and kd-
trees have similar search complexities, which is O(log n).
In the worst case we will need to traverse the full
depth of the tree and visit other branches (in both cases,
we can bail out early since any overlapping interior
patch or sufficiently close neighbour will do). In practice,
however, we see significant speedups using circular R-
trees. A reason behind this was given in Sec. 3.2.2.

Of secondary interest is the tree-building time, which
occurs only once before the main loop of Algorithm 1.
Given Bmi

, constructing a balanced circular R-tree and
kd-tree have similar complexities. In particular, there
exists a linear time worst case algorithm for insertion
in R-tree; see [14] for details. Both types of trees will
require finding {Bmi}Mi=1 using Algorithm 2.

In the next section, we will embark on utilising our
novel rotation search algorithm for 6DOF registration.
Readers who wish to first appraise the performance of
our rotation search algorithm should skip to Sec. 5.1.

4 6 DOF REGISTRATION

Here, we show how our fast rotation search method can
be used for full 3D (6DOF) point cloud registration.

4.1 Locally optimal method (Loc-GM)
We first present a locally optimal method. Whilst locally
optimal methods for the maximum likelihood criterion
are abundant [2], [7], [33], there appear to be no such
algorithms for the geometric matching criterion.

Formally, we wish to maximise

Q(R, t) =
∑
i

max
j
b‖Rmi + t− bj‖ ≤ εc , (28)

where t ∈ R3 is a translation vector. Our proposed algo-
rithm is simple: given the current parameters (R(t), t(t)),
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we repeatedly update R and t by holding one of the
components constant at each iteration. However, both
subproblems are nonconvex. We conduct BnB to solve
each subproblem globally. Fixing R(t), the new trans-
lation component t(t+1) is obtained by BnB over the
translation parameter space. Optimising over R3 is more
efficient than SO(3), since the underlying “rectangular”
structure of R3 enables the tightest possible bound. The
translation search can be done easily by a 3D extension
of Breuel’s algorithm [4]. Given t(t+1), we obtain R(t+1)

via Algorithm 1. We solve the subproblems repeatedly
until Q(R, t) does not change with the updates.

4.2 Globally optimal method (Glob-GM)
To conduct globally optimal 6DOF registration, we lever-
age on the nested BnB idea used in Go-ICP [15], where
two BnB algorithms (one each for R and t) are executed
in a nested manner to reach globally optimal solutions.
Different from Go-ICP, our inner BnB optimises rotation
and the outer one optimises translation. See Algorithm 3.

Our goal is to maximise the objective function

Q(R, t) =
∑
i

max
j
b‖R(mi + t)− bj‖ ≤ εc. (29)

Here, to simplify exposition, we slightly abuse conven-
tion to define the rigid transform as f(m) = R(m + t);
cf. (29) and (28). From the perspective of the outer BnB
loop, the goal is to find the translation that maximises

V (t) = max
R

∑
i

max
j
b‖R(xi + t)− bj‖ ≤ εc, (30)

where V (t) is “evaluated” given t by invoking Algo-
rithm 1 to rotationally align points M+ t and B. Given
a box of translations T ⊂ R3 the upper bound

V̂ (T) = max
R

∑
i

max
j
b‖R(mi + tc)− bj‖ ≤ ε+ δc, (31)

can again be evaluated by using Algorithm 1 to rotation-
ally align points M+ tc and B, where tc is the centre of
T, and δ is half of the longest diagonal in T. Effectively,
both R and t are co-optimised and the final result is
guaranteed to be 6DOF globally optimal [15].

Another crucial feature of Go-ICP that we adopt is
an auxiliary local method to improve the quality of the
current best solution - see Line 10 in Algorithm 3. It has
been shown in [15] that such an auxiliary routine (ICP
was used in their case) helps to significantly speed up the
overall 6DOF algorithm. To this end, we use our locally
convergent method Loc-GM described in Sec. 4.1.

5 RESULTS

5.1 Rotation search
We first examine the efficiency of our 3D rotation search
method (Sec. 2). The efficiency of our 6DOF point cloud
registration algorithm (Sec. 4) will be analysed in Sec. 5.2.

Our experiment was designed as follows. We used
scans of objects from three different sources, namely,

Algorithm 3 Nested BnB algorithm to maximise (30).
Require: Point sets M and B, threshold ε.

1: Initialise priority queue q, V ∗ ← 0, t∗ ← ∅, R∗ ← ∅.
2: Insert initial translation cube T into q.
3: while q is not empty do
4: Obtain highest priority cube T from q.
5: tc ← centre of T.
6: Calculate V (tc) by calling Algorithm 1 to align

M+ tc with B based on threshold ε.
7: If V (tc) = V ∗, then terminate.
8: if V (tc) > V ∗ then
9: V ∗ ← V (tc), t∗ ← tc, R∗ ← R from Line 6.

10: Call Loc-GM (Sec 4.1) to refine (R∗, t∗).
11: end if
12: Subdivide T into 8 sub-cubes {Td}8d=1.
13: for each Td do
14: δ ← 1/2 of the length of the diagonal of Td.
15: tc ← centre of Td.
16: Calculate V̂ (Td) by calling Algorithm 1 to align

M+ tc with B based on threshold ε+ δ.
17: If V̂ (Td) > V ∗, queue Td with priority V̂ (Td).
18: end for
19: end while
20: return Optimal rotation R∗ and translation t∗.

the Stanford 3D Scanning Repository [34] (specifically
bunny, armadillo, dragon, and buddha), Mian’s dataset1

(specifically parasaur, t-rex and chicken) and our own
dataset of laser scans of underground mines (specifically
mine-a, mine-b and mine-c). For each object, two partially
overlapping point clouds V1 and V2 were chosen. Fig. 7
shows the point clouds used in this experiment, whilst
Columns 2–3 in Table 1 list the sizes of V1 and V2.

For each object, we generated realistic point clouds
M and B as input for rotation search. This was accom-
plished by detecting 3D keypoints on the pair of input
point clouds, extracting points in the neighbourhood of
the keypoints; refer to supplementary material for the
detailed procedure. To “normalise” the sizes we ensured
M ≤ B; since B is indexed in efficient data structures,
its actual size is of less concern. See Column 4 in Table 1
for the average size of M for each object.

Note that our focus in this experiment is rotation
search performance, thus we are not concerned with
actually registering the point clouds (again, this will
be examined in Sec. 5.2). We benchmark the following
rotation search methods. All methods were implemented
in C++ and executed on an Intel Core i7 3.40 GHz CPU.
• 1KDT: Breuel’s original method [4], i.e., BnB with

objective (1) and bound (9). The bound is evaluated
using 1 kd-tree.

• MKDT: BnB with objective (13) and bound (14). The
bound is evaluated using M kd-trees (see Sec. 3.1).

• MCIRC: BnB with objective (13) and bound (14). The
bound is evaluated using steoreographic projection

1. http://staffhome.ecm.uwa.edu.au/∼00053650/3Dmodeling.html
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Object |V1| |V2| avg M
inliers 1KDT 1KDT-ML MKDT MKDT-ML MCIRC MCIRC-ML

(%) time (s) time (s) time (s) time (s) time (s) time (s)
bunny 7055 6742 379.27 42 9.53 6.14 9.04 5.91 2.80 1.73
armadillo 5619 5483 356.94 14 17.81 10.30 16.17 9.11 4.54 2.38
dragon 6991 6200 349.28 29 9.26 5.95 8.50 5.69 2.00 1.22
buddha 5312 5109 374.71 20 14.09 8.04 12.44 6.85 3.43 1.74
mine-a 1285 917 362.33 10 233.84 65.48 172.74 46.96 48.96 12.39
mine-b 1445 1271 168.52 42 42.80 15.66 28.92 10.77 8.14 2.78
mine-c 1274 1102 183.10 81 45.38 16.33 30.34 11.10 8.29 2.83

parasaur 4495 3642 295.77 34 15.79 6.79 7.17 4.88 1.79 1.21
t-rex 6970 7636 226.72 13 11.83 7.97 8.96 5.77 2.48 1.49
chicken 7592 7829 294.51 17 11.53 8.51 8.56 6.10 2.18 1.53

TABLE 1
Comparing the performance of BnB rotation search methods using different bounds and bound evaluation methods.
1KDT: bound (9) using 1 kd-tree, MKDT: bound (14) using M kd-trees, MCIRC: bound (14) using M circular R-trees.

1KDT-ML, MKDT-ML and MCIRC-ML are variants of the above using matchlists (Sec. 2.4).

Fig. 7. Point clouds used in the evaluation of rotation
search: bunny, armadillo, dragon, buddha, mine-a, mine-
b, mine-c, parasaur, t-rex and chicken.

and M circular R-trees (see Sec. 3.2).
• 1KDT-ML, MKDT-ML and MCIRC-ML: Variants of

the above with matchlists (see Sec. 2.4).
Note that all the BnB methods above optimise the same
geometric matching criterion for rotation search (in fact,
they all achieve the same globally optimal quality), thus
their run time results are directly comparable.

The average run time of all methods are listed in
Columns 6–11 in Table 1. Note that the recorded times
include durations for all data structure preparations (e.g.,
building kd-trees or circular R-trees). It can be seen that
the datasets differ significantly in difficulty. In general,
the run time is an order of magnitude larger on the
undergound mine dataset, possibly due to the more
“organic” looking 3D structures. Also, using matchlists
generally help in substantially speeding up BnB conver-

gence, and this effect is more pronounced in the harder
point clouds. The results also point to the significant
computational gains obtained via the proposed bound-
ing function and bound evaluation algorithm. Specifi-
cally, our approach requires an order of magnitude less
processing time than Breuel’s original method. Using
matchlists also allows MCIRC-ML to be several times
faster than our previous method MCIRC [16].

5.1.1 Scalability of rotation search algorithm
To investigate the scalability of the rotation search al-
gorithms, we repeated the above experiment with only
the armadillo scans to avoid excessive run times. We also
varied the neighbourhood size δloc to test a wider range
of sizes of M and B. In Fig. 8a, we plot the average run
time as a function of the size of M. Note that for the
BnB rotation search algorithms, the size of M is a good
representation of the problem size, since B is indexed
in data structures and its size is not influential to run
time. These results verify the superior performance of
our algorithm on a large range of problem sizes.

5.1.2 Comparison with other BnB rotation search
Comparing with other formulations and techniques for
rotation search is nontrivial, but we shall strive to quanti-
tatively benchmark against [12]. While they also use BnB,
there are crucial differences. First, their algorithm takes
a set of point matches as input. In our case, Algorithm 1
does not require any a priori determined point matches
between M and B. Using point matches obviates the
need to search for matches during BnB optimisation.
Second, the error used in [12] is the angular error be-
tween matching points, while we use the l2 distance.
In the experiment of [12], keypoint matches were first
obtained from two partially overlapping scans of the
bunny dataset. The scans differed purely by rotation.
The number of keypoint matches were not explicitly
reported, but from [12, Fig. 3] there seems to be approx-
imately 100 keypoint matches. It was further reported
that their algorithm “converges in a couple of seconds”.
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Fig. 8. (a) Median run time versus problem size M . (b)
Median run time versus problem size M for MCIRC-ML.
In this experiment, we ensured that the input point clouds
M and B are of equal size so as compare against [12].

We reran the scalability experiment in Sec. 5.1.1. To
obtain results that are comparable, here we ensured that
the size of B is similar to the size of M, by using an
appropriately selected radius on the subsampled point
clouds (note that this does not mean that the resulting
point clouds have one-to-one correspondence). Fig. 8b
shows the median run time of MCIRC-ML. Our algo-
rithm is evidently superior, since it can align up to 1000
points within 2 seconds despite the need to conduct
matching between M and B during the optimisation.

5.2 Globally optimal 6DOF registration
We now examine the performance of our globally op-
timal 3D registration method (Glob-GM, Algorithm 3)
which encapsulates our fast rotation search algorithm.
As described earlier in Sec. 1.1, the closest work to ours
is Go-ICP [15], which globally minimises the maximum
likelihood criterion (2). Glob-GM was inspired by Go-
ICP’s nested BnB scheme (although their outer BnB
loop optimises the rotation and the inner BnB loop
estimates the translation). In Go-ICP, the standard ICP
algorithm [2] was also incorporated to locally refine
intermediate solutions. An equivalent step also exists in
Glob-GM, where our novel local method Loc-GM (Sec. 4)
is used to speed up convergence.

In the experiments in [15], nearest neighbours (NN)
distance calculations were speeded up using distance
transforms (DT) [7]. A DT is basically a discrete lookup

table for NN distance values. If the data does not lie
on an uniform grid, DT can only approximate the true
NN distances. Thus, the global optimality guarantee of
Go-ICP can be compromised by the approximations. We
stress, however, that the original ideas of nested BnB
and local refinement for speedup remain valid. In our
experiment, we replace the DT in Go-ICP with a kd-tree,
which gives exact NN distances (since the point sets lie
in 3D, using kd-tree is ideal). Thus our implementation
of Go-ICP can achieve the true global minimum.

We also compare Glob-GM against K-4PCS [35], which
is a state-of-the-art approximate algorithm for point
cloud registration. K-4PCS randomly generates and eval-
uates rigid transforms to find the best alignment. Briefly,
4 approximately coplanar points in B are sampled and
tested/matched against points from M. The number of
samples or iterations is determined from the overlap
ratio (equivalent to inlier rate), which must be known
beforehand or estimated on-the-fly (note that this in-
formation is not required in Go-ICP and Glob-GM). To
improve efficiency, K-4PCS first subsamples the dense in-
put point clouds by 3D keypoint detections. Since in our
experiments, M and B were already subsampled (see
below for details of our subsampling), we did not further
conduct 3D keypoint detection for data reduction.

Two different settings were tested in this experiment:
• Full overlap: M is a subsample of B, i.e., M ⊂ B.

This is the same setting as that used in [15].
• Partial overlap: M and B are two different scans,

thus not all the points in M have a match in B.
Based on the objects used in Sec. 5.1, we created data for
the above two settings as follows.

For the full overlap scenario, for each object, we
selected and downsampled one of the scans to obtain
B. M is created as a sampled region of 100 points from
B. For the underground mine dataset, we performed the
above for each individual scan, thus yielding six pairs
of M and B which we named mine-1 to mine-6. Fig. 10
shows the data in their initial (unregistered) poses.

For the partial overlap scenario, the point cloud pairs
M and B were simply down-sampled versions of the
original V1 and V2 used in Sec. 5.1. See Fig. 10 for the
resulting data and their initial (unregistered) poses.

To avoid excessive run times, we fixedM between 400
and 1200 points for the full overlap case and between
180 and 410 points for the partial overlap scenario. The
sizes of M and B are listed in Columns 2 and 3 of
Tables 2 and 3 for both settings. Each point cloud set was
uniformly scaled to fit the cube [−50, 50]3. For further
preprocessing details, see the supplementary material.

The following variants of our method were compared
against Go-ICP and K-4PCS:
• Glob-GM-N: Algorithm 3 with local refinment

(Step 10) disabled.
• Glob-GM: Algorithm 3 with local refinement.
• Glob-GM-N-ML, Glob-GM-ML: Variants of the

above methods with the usage of matchlists in the
rotation search.
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Note that matchlists cannot be easily applied in Go-ICP,
since each point mi in M must always be matched to a
nearest point in B (see Sec. 2.4).

For Glob-GM and variants, the matching threshold ε
was chosen as half of the cell grid side used during the
downsampling step; see Column 4 in Tables 2 and 3 for
the actual values. For Go-ICP, following the experiment
in [15], the algorithm was terminated when the differ-
ence between the upper and lower bounds is ≤

√
0.05.

Two variants of K-4CPS were designed by changing
the method settings (see supplementary material for
details). The first variant K-4PCS-Quick was tuned to
return fast approximate results, while the second vari-
ant K-4PCS-Quality was tuned to obtained high quality
results. Since K-4PCS is randomised in nature, we report
the median of 10 runs of each variant.

Tables 2 and 3 report the run times and quality metrics
for the optimised alignment. A timeout of 5 hours (18000
seconds) was imposed for all methods - if a method
cannot terminate successfully within the time limit, the
result is marked with a ‘-’ in the tables. For comprehen-
sive benchmarking, four quality metrics are used:
• geometric matching value (28).
• angular error (ang. err.) of the optimised rotation

with respect to the ground truth rotation.
• translation error (tr. err.) with respect to the ground

truth translation.
• RMS error (cost function minimized by ICP).

In the full overlap setting, Glob-GM and variants pre-
dictably obtained the alignment with the highest possi-
ble quality value (Q∗ = 100, since |M| = 100 for all data).
Go-ICP also expectedly found the result with ≤

√
0.05

RMS error. As expected, the quality of K-4PCS-Quality
is better than K-4PCS-Quick, at the cost of longer run
times. In fact, in the case of full overlap, K-4PCS-Quality
is as accurate as the globally optimal methods - we stress,
however, that unlike the globally optimal algorithms, K-
4PCS-Quality cannot guarantee optimality of its results.
Among the Glob-GM variants, clearly the usage of local
refinement and matchlists provide significant speedups.
The results also confirm that the partial overlap setting
is more challenging than the full overlap setting. See
Fig. 10 for the globally optimal registration by Glob-GM.
In the partial overlap setting, although K-4PCS-Quality
was more accurate than K-4PCS-Quick, it was not able
to correctly align for all datasets, e.g., no acceptable
alignments were obtained for the mine objects (plots of
results are presented in the supplementary material).

Comparing Go-ICP and the Glob-GM variants, it is
evident that the latter is much more efficient than the
former. In fact, in the partial overlap setting, Go-ICP did
not finish executing within the time limit for all data. A
major factor behind the superior efficiency of Glob-GM
is a faster rotation search kernel, which is enabled by
our tighter rotational bounding function and its efficient
evaluation based on stereographic projection and circu-
lar R-trees. The usage of matchlists also contributes to
more efficient optimisation.
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Fig. 9. Evolution of upper and lower bounds as a function
of iteration count in our Glob-GM method (Algorithm 3).
The time instances where a result is updated and then
refined by the local method (Loc-GM) are also plotted.
The algorithm is terminated only when the upper bound
equals the lower bound (at ≈ the 2750-th iteration).

5.2.1 Convergence of BnB algorithm
To illustrate the convergence of Algorithm 3, Fig. 9 plots
the evolution of the upper and lower bounds during
the registration of the bunny dataset. The time instances
where a result is updated and then refined by the local
method (Loc-GM) are also plotted. The result clearly
affirms the ability of the local refinement idea of Yang et
al. [15] to speed up BnB convergence.

Fig. 9 also shows that, similar to all BnB methods, the
bulk of the time in Algorithm 3 is spent on waiting for
the gap between the bounds to reduce to zero, even if
the globally optimal estimate has been obtained much
earlier (at approximately the 1250-th iteration). Thus,
for practical applications we can terminate Algorithm 3
much earlier by using a non-zero convergence gap (e.g.,
as mentioned earlier, Go-ICP is terminated when the
lower and upper bounds differ by ≤

√
0.05).

6 CONCLUSIONS
We have presented a novel BnB algorithm for 3D rotation
search. Our method is based on the geometric matching
criterion, and we proposed a novel bounding func-
tion that is provably tighter than previously available
bounds. A very efficient algorithm to evaluate the bound
based on stereographic projections and circular R-trees
are also presented. Our globally optimal rotation search
algorithm was shown to be an order of magnitude faster
than the original BnB algorithm of Breuel [4].

We also presented a globally optimal 6DOF point
cloud registration algorithm that encapsulates our ro-
tation search method. Experimental results demonstrate
the superior efficiency of our algorithm for point cloud
registration, owing to a faster rotation search kernel.
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Full overlap (Glob-GM and variants)

Dataset |M| |B| ε
Glob-GM-N Glob-GM-N-ML Glob-GM Glob-GM-ML

Q∗ ang. err. tr. err. RMS
time (s) time (s) time (s) time (s)

bunny 100 566 3.25 1600.42 1143.01 1721.08 995.46 100 3.06 2.75 2.07
armadillo 100 1162 2.00 921.80 730.51 589.19 496.77 100 4.04 3.35 1.27
dragon 100 691 2.75 902.85 532.11 823.00 498.59 100 7.31 4.13 1.82
buddha 100 843 2.00 5484.89 3778.08 327.48 265.01 100 4.93 2.73 1.09
parasaur 100 703 1.50 5516.18 4523.27 2372.94 1842.79 100 1.73 1.29 1.12
t-rex 100 743 2.00 11001.40 7557.27 57.43 44.96 100 6.50 2.46 1.38
chicken 100 714 2.00 4177.20 3131.83 4000.96 2960.39 100 3.06 1.71 1.33
mine-1 100 412 0.88 1515.23 777.15 1513.00 845.01 100 1.88 0.40 0.48
mine-2 100 649 1.25 305.21 166.64 148.53 83.97 100 0.77 1.14 1.04
mine-3 100 627 1.25 126.07 84.29 132.13 76.85 100 1.71 0.89 0.79
mine-4 100 678 1.00 1760.09 1219.15 1750.77 1240.67 100 3.06 0.98 0.61
mine-5 100 933 1.00 11777.50 7816.78 11440 7695.75 100 1.73 0.77 0.78
mine-6 100 496 1.00 4249.53 2091.67 4238.54 2079.69 100 1.68 0.76 0.75

Full overlap (Go-ICP and K-4PCS variants)

Dataset |M| |B| ε
Go-ICP K-4PCS-Quick K-4PCS-Quality

time (s) Q ang. err. tr. err. RMS time (s) Q ang. err. tr. err. RMS time (s) Q ang. err. tr. err. RMS
bunny 100 566 3.25 9364.16 100 1.7E-4 6.8E-5 3.2E-5 32.15 16 142.38 23.58 48.08 143.35 38 145.75 29.69 46.74
armadillo 100 1162 2.00 6321.26 100 4.5E-4 2.4E-4 3.0E-5 21.01 33 161.77 62.58 48.75 1277.53 100 1.4E-3 8.7E-4 5.0E-4
dragon 100 691 2.75 4314.57 100 3.5E-4 1.8E-4 2.3E-5 0.04 84 4.68 2.68 2.62 23.13 100 1.2E-3 6.8E-4 2.8E-4
buddha 100 843 2.00 2027.46 100 1.4E-4 8.9E-5 1.4E-5 0.43 58 9.62 4.40 3.45 33.82 100 1.9E-3 9.1E-4 4.9E-4
parasaur 100 703 1.50 5171.75 100 1.8E-4 1.1E-4 1.2E-5 1.03 66 11.81 3.43 2.91 202.19 100 1.2E-3 4.1E-4 2.7E-4
t-rex 100 743 2.00 14137.80 100 4.4E-4 8.9E-5 1.8E-5 0.35 69 9.18 3.91 2.21 11.25 100 3.2E-3 4.7E-4 5.8E-4
chicken 100 714 2.00 9936.01 100 2.2E-4 1.1E-4 1.7E-5 0.37 55 42.45 2.17 6.42 18.11 100 9.2E-4 5.0E-4 3.6E-4
mine-1 100 412 0.88 1270.40 100 1.3E-4 2.0E-5 1.0E-5 0.97 100 1.71 0.46 0.47 17.86 100 4.6E-4 2.4E-4 2.2E-4
mine-2 100 649 1.25 - - - - - 0.30 82 6.26 0.24 1.28 25.14 100 1.8E-4 2.6E-4 2.7E-4
mine-3 100 627 1.25 12496.60 100 1.1E-4 5.4E-5 1.4E-5 0.23 91 3.12 0.65 1.15 2.03 100 1.2E-3 5.9E-4 6.1E-4
mine-4 100 678 1.00 14723.70 100 5.7E-5 7.8E-5 1.9E-5 0.03 100 3.0E-3 1.8E-3 7.0E-4 1.47 100 1.6E-3 1.1E-3 4.3E-4
mine-5 100 933 1.00 12189.10 100 7.7E-5 6.2E-6 6.0E-6 2.42 100 1.8E-3 2.0E-4 3.6E-4 119.00 100 6.1E-4 2.2E-4 2.9E-4
mine-6 100 496 1.00 - - - - - 0.17 99 2.16 0.44 0.36 11.24 100 2.0E-3 4.5E-4 5.0E-4

TABLE 2
Comparing performance of 3D registration methods on point clouds with full overlap. Glob-GM: Alg. 3, Glob-GM-N:
Alg. 3 w/o local refinement, Glob-GM-ML and Glob-GM-N-ML: variants of the above with matchlists, K-4PCS-Quick:

K-4CPS optimised for fast approximate solutions, K-4PCS-Quality: K-4CPS optimised for quality.

Partial overlap (Glob-GM and variants)

Dataset |M| |B| ε
Glob-GM-N Glob-GM-N-ML Glob-GM Glob-GM-ML

Q∗ ang. err tr. err RMS
time (s) time (s) time (s) time (s)

bunny 359 340 2.75 - 16576.50 - 14545.80 176 1.22 0.76 1.89
armadillo 281 276 2.00 7082.31 3469.95 6926.02 3427.36 211 1.19 0.86 1.41
dragon 358 343 2.75 - 6358.54 - 5987.86 305 0.52 0.87 1.76
buddha 232 199 2.75 - 9462.10 - 9302.98 161 11.78 2.42 3.49
parasauro 371 311 1.50 6414.84 2670.91 5479.75 2271.37 249 0.32 0.37 1.12
t-rex 371 417 2.00 12438.00 5213.35 12121.80 4955.63 265 0.98 0.30 1.33
chicken 379 407 2.00 13807.70 5942.92 13813.40 6139.23 293 0.47 0.75 1.38
mine-a 305 195 1.00 - 9592.71 - 9206.10 129 5.89 0.35 0.78
mine-b 264 188 1.68 - 13647.90 - 12832.40 145 3.73 0.26 1.19
mine-c 235 218 1.50 11952.20 5638.28 11125.00 5199.41 164 1.59 0.23 0.99

Partial overlap (Go-ICP and K-4PCS variants)

Dataset |M| |B| ε
Go-ICP K-4PCS-Quick K-4PCS-Quality

time (s) Q ang. err. tr. err. RMS time (s) Q ang. err. tr. err. RMS time (s) Q ang. err. tr. err. RMS
bunny 359 340 2.75 - - - - - 94.51 62 13.09 8.10 9.70 1212.46 162 0.91 1.80 2.22
armadillo 281 276 2.00 - - - - - 1.04 132 3.38 1.72 2.61 28.22 192 0.55 0.48 1.21
dragon 358 343 2.75 - - - - - 0.72 241 4.67 1.68 3.14 36.92 291 1.13 0.73 1.71
buddha 232 199 2.75 - - - - - 0.31 83 48.94 7.48 12.05 11.88 140 4.16 0.71 2.05
parasauro 371 311 1.50 - - - - - 1.17 155 2.42 1.58 1.91 12.36 227 0.88 0.45 1.07
t-rex 371 417 2.00 - - - - - 7.36 163 4.38 3.05 3.82 206.14 232 0.97 0.62 1.54
chicken 379 407 2.00 - - - - - 6.01 129 4.38 3.12 3.79 168.59 276 1.06 0.47 1.37
mine-a 305 195 1.00 - - - - - 35.58 85 59.24 9.70 16.26 416.48 86 59.21 10.68 18.05
mine-b 264 188 1.68 - - - - - 3.99 82 4.17 9.15 9.25 62.45 99 7.37 11.44 11.59
mine-c 235 218 1.50 - - - - - 5.08 80 176.06 7.82 9.44 109.83 145 3.82 9.73 9.79

TABLE 3
Comparing performance of 3D registration methods on point clouds with partial overlap. Glob-GM: Alg. 3,

Glob-GM-N: Alg. 3 w/o local refinement, Glob-GM-ML and Glob-GM-N-ML: variants of the above with matchlists,
K-4PCS-Quick: K-4CPS optimised for fast approximate solutions, K-4PCS-Quality: K-4CPS optimised for quality.
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