
Background
Our work

Conclusion

Modelling Go Positions with Planar CRFs

Dmitry Kamenetsky, Nicol N. Schraudolph,
Simon Günter, S.V. N. Vishwanathan

NICTA, Australian National University, Australia

University of Alberta, December 2007

D. Kamenetsky, N. Schraudolph, S. Günter, S.V. N. Vishwanathan Modelling Go Positions with Planar CRFs

Background
Our work

Conclusion

1 Background
Go
Learning in Go
Ising model
Dimer problem

2 Our work
Algorithm
Graph abstraction
Features and parameters
Results

3 Conclusion

D. Kamenetsky, N. Schraudolph, S. Günter, S.V. N. Vishwanathan Modelling Go Positions with Planar CRFs

Background
Our work

Conclusion

Go
Learning in Go
Ising model
Dimer problem

What is Go?

Two players alternate in placing
stones on the intersections of a
grid

Neighbouring stones of the same
colour form a contiguous block

A block can be captured if all its
empty neighbours are occupied
by opponent stones

D. Kamenetsky, N. Schraudolph, S. Günter, S.V. N. Vishwanathan Modelling Go Positions with Planar CRFs

Background
Our work

Conclusion

Go
Learning in Go
Ising model
Dimer problem

What is Go?

Two players alternate in placing
stones on the intersections of a
grid

Neighbouring stones of the same
colour form a contiguous block

A block can be captured if all its
empty neighbours are occupied
by opponent stones

D. Kamenetsky, N. Schraudolph, S. Günter, S.V. N. Vishwanathan Modelling Go Positions with Planar CRFs

Background
Our work

Conclusion

Go
Learning in Go
Ising model
Dimer problem

What is Go?

Two players alternate in placing
stones on the intersections of a
grid

Neighbouring stones of the same
colour form a contiguous block

A block can be captured if all its
empty neighbours are occupied
by opponent stones

D. Kamenetsky, N. Schraudolph, S. Günter, S.V. N. Vishwanathan Modelling Go Positions with Planar CRFs

Background
Our work

Conclusion

Go
Learning in Go
Ising model
Dimer problem

What is Go?

Two players alternate in placing
stones on the intersections of a
grid

Neighbouring stones of the same
colour form a contiguous block

A block can be captured if all its
empty neighbours are occupied
by opponent stones

D. Kamenetsky, N. Schraudolph, S. Günter, S.V. N. Vishwanathan Modelling Go Positions with Planar CRFs

Background
Our work

Conclusion

Go
Learning in Go
Ising model
Dimer problem

What is Go?

Two players alternate in placing
stones on the intersections of a
grid

Neighbouring stones of the same
colour form a contiguous block

A block can be captured if all its
empty neighbours are occupied
by opponent stones

D. Kamenetsky, N. Schraudolph, S. Günter, S.V. N. Vishwanathan Modelling Go Positions with Planar CRFs

Background
Our work

Conclusion

Go
Learning in Go
Ising model
Dimer problem

What is Go?

Two players alternate in placing
stones on the intersections of a
grid

Neighbouring stones of the same
colour form a contiguous block

A block can be captured if all its
empty neighbours are occupied
by opponent stones

D. Kamenetsky, N. Schraudolph, S. Günter, S.V. N. Vishwanathan Modelling Go Positions with Planar CRFs

Background
Our work

Conclusion

Go
Learning in Go
Ising model
Dimer problem

What is Go?

The game terminates once players
agree on the life status of blocks

The blocks and their surrounding
area count towards territory

Territory prediction: Given a
board position predict the owner
of each intersection

Challenging problem for ML!

D. Kamenetsky, N. Schraudolph, S. Günter, S.V. N. Vishwanathan Modelling Go Positions with Planar CRFs

Background
Our work

Conclusion

Go
Learning in Go
Ising model
Dimer problem

Learning in Go

Go is played on a grid graph G, so it is natural to model it with a
graphical model such as CRF

If we want to perform exact inference we can use the Junction
Tree Algorithm (G is loopy)

D. Kamenetsky, N. Schraudolph, S. Günter, S.V. N. Vishwanathan Modelling Go Positions with Planar CRFs

Background
Our work

Conclusion

Go
Learning in Go
Ising model
Dimer problem

Junction Tree Algorithm

State-of-the-art exact method for computing partition function,
marginals and MAP state

Graph is a tree: complexity polynomial in graph size

Graph is not a tree:
Convert the graph into a tree of cliques
Complexity exponential in the treewidth = size of the maximal
clique
For N × N grid the treewidth is N

D. Kamenetsky, N. Schraudolph, S. Günter, S.V. N. Vishwanathan Modelling Go Positions with Planar CRFs

Background
Our work

Conclusion

Go
Learning in Go
Ising model
Dimer problem

What can we do?

It turns out that physicists working on the Ising model have
found an answer back in the 1960’s!

The method has been introduced to the Graphical Models
community only last year...

D. Kamenetsky, N. Schraudolph, S. Günter, S.V. N. Vishwanathan Modelling Go Positions with Planar CRFs

Background
Our work

Conclusion

Go
Learning in Go
Ising model
Dimer problem

Ising model

Particles modify their behaviour
to conform with their neighbours

What is the mean energy?

Used in chemistry, physics,
biology...

More than 12,000 papers
published!

D. Kamenetsky, N. Schraudolph, S. Günter, S.V. N. Vishwanathan Modelling Go Positions with Planar CRFs

Background
Our work

Conclusion

Go
Learning in Go
Ising model
Dimer problem

Ising problem

Graph G = (V ,E)

Binary variables: xi ∈ {−1,+1}

No potential for disagreement edges: φij = 0 if xi , xj

Model distribution

P(x) = 1
Z(φ) e

∑
ij∈E[xi=xj]φij , where

Z(φ) =
∑

x

e
∑

ij∈E[xi=xj]φij is the partition function

D. Kamenetsky, N. Schraudolph, S. Günter, S.V. N. Vishwanathan Modelling Go Positions with Planar CRFs

Background
Our work

Conclusion

Go
Learning in Go
Ising model
Dimer problem

Dimer problem

How many perfect matchings
does a graph have?

Perfect Matching: A set of
non-overlaping edges (dimers)
that cover all vertices

D. Kamenetsky, N. Schraudolph, S. Günter, S.V. N. Vishwanathan Modelling Go Positions with Planar CRFs

Background
Our work

Conclusion

Go
Learning in Go
Ising model
Dimer problem

Counting Matchings

Every planar graph has a Pfaffian orientation: each face (except
possibly outer) has an odd number of edges oriented clockwise

Define a skew-symmetric matrix K such that:

Kij =

1 if i→ j
−1 if i← j
0 otherwise

D. Kamenetsky, N. Schraudolph, S. Günter, S.V. N. Vishwanathan Modelling Go Positions with Planar CRFs

Background
Our work

Conclusion

Go
Learning in Go
Ising model
Dimer problem

Kasteleyn Theorem

K =

0 1 0 0 0 -1
-1 0 1 0 1 0
0 -1 0 -1 0 0
0 0 1 0 -1 0
0 -1 0 1 0 -1
1 0 0 0 1 0

Kasteleyn Theorem:
Number of perfect matchings is Pf(K) =

√
|K|

D. Kamenetsky, N. Schraudolph, S. Günter, S.V. N. Vishwanathan Modelling Go Positions with Planar CRFs

Background
Our work

Conclusion

Go
Learning in Go
Ising model
Dimer problem

The connection

Let G4 be G plane triangulated: each face becomes a triangle

Let G∗ be the dual of graph G4: each face in G4 is a vertex in G∗

Let G∗e be the expanded version of G∗: each vertex is replaced
with 3 vertices in triangle

Connection: There is a 1:1 correspondence between agreement
edge sets in G and perfect matchings in G∗e

D. Kamenetsky, N. Schraudolph, S. Günter, S.V. N. Vishwanathan Modelling Go Positions with Planar CRFs

Background
Our work

Conclusion

Go
Learning in Go
Ising model
Dimer problem

From physics to ML

Globerson & Jaakkola 2006 use previous results (Ising model) to
compute the partition function exactly

Restrictions:
Graph is planar: can be drawn without crossing edges
Binary-valued labels
Only edge potentials, no node potentials

Complexity polynomial in graph size!

D. Kamenetsky, N. Schraudolph, S. Günter, S.V. N. Vishwanathan Modelling Go Positions with Planar CRFs

Background
Our work

Conclusion

Algorithm
Graph abstraction
Features and parameters
Results

Overview

Faster and simpler version of Globerson and Jaakkola algorithm

No need to compute the dual G∗ and expanded version G∗e

Showed how to compute gradients and thus perform parameter
estimation

Applied to territory prediction in Go

D. Kamenetsky, N. Schraudolph, S. Günter, S.V. N. Vishwanathan Modelling Go Positions with Planar CRFs

Background
Our work

Conclusion

Algorithm
Graph abstraction
Features and parameters
Results

Algorithm

Original graph G = (V ,E)

D. Kamenetsky, N. Schraudolph, S. Günter, S.V. N. Vishwanathan Modelling Go Positions with Planar CRFs

Background
Our work

Conclusion

Algorithm
Graph abstraction
Features and parameters
Results

Algorithm: Step 1

Obtain a planar embedding

Using Boyer-Myrvold algorithm
the complexity is O(n), where
n = |E|

D. Kamenetsky, N. Schraudolph, S. Günter, S.V. N. Vishwanathan Modelling Go Positions with Planar CRFs

Background
Our work

Conclusion

Algorithm
Graph abstraction
Features and parameters
Results

Algorithm: Step 2

Add edges to plane triangulate
the graph

Using simple ear-clipping the
complexity is O(n)

D. Kamenetsky, N. Schraudolph, S. Günter, S.V. N. Vishwanathan Modelling Go Positions with Planar CRFs

Background
Our work

Conclusion

Algorithm
Graph abstraction
Features and parameters
Results

Algorithm: Step 3

Orient the edges such that each
vertex has odd in-degree

Equivalent to having a Pfaffian
orientation in the dual graph

Complexity is O(n)

D. Kamenetsky, N. Schraudolph, S. Günter, S.V. N. Vishwanathan Modelling Go Positions with Planar CRFs

Background
Our work

Conclusion

Algorithm
Graph abstraction
Features and parameters
Results

Algorithm: Step 4 (intuition)

Add nodes to each face

Orient edges towards those nodes

Equivalent to expansion in the
dual graph

Construct a skew-symmetric
2|E| × 2|E| matrix K (for dual
edges):

Kij = ±eφij if ij crosses original
Kij = ±1 if ij crosses added

Complexity is O(n)

D. Kamenetsky, N. Schraudolph, S. Günter, S.V. N. Vishwanathan Modelling Go Positions with Planar CRFs

Background
Our work

Conclusion

Algorithm
Graph abstraction
Features and parameters
Results

Algorithm: Step 4 (implementation)

Number each edge
Number the sides of each edge k

LHS = 2k
RHS = 2k − 1

2
1

8
7 5

6

10 9
3

4

12 11

1 2

34

5 6

Pseudo Code

For each vertex v:
For each edge k incident on v
(clockwise):

if k points away from v:
K2k,p = 1 (2→ 8)
p = 2k − 1

else
K2k−1,p = 1 (7→ 1)
K2k−1,2k = eφk (7→ 8)
p = 2k

Return K − KT

D. Kamenetsky, N. Schraudolph, S. Günter, S.V. N. Vishwanathan Modelling Go Positions with Planar CRFs

Background
Our work

Conclusion

Algorithm
Graph abstraction
Features and parameters
Results

Algorithm: Parameter estimation

Compute partition function: Z(φ) = 2
√
|K|

Compute gradients: ∂ ln Z(φ)
∂φk

= −[K−1 � K]2k−1,2k

Computing inverse and determinant takes at most O(n3) time

D. Kamenetsky, N. Schraudolph, S. Günter, S.V. N. Vishwanathan Modelling Go Positions with Planar CRFs

Background
Our work

Conclusion

Algorithm
Graph abstraction
Features and parameters
Results

Graph abstraction: common fate graph

Blocks always live or die as a unit; Grid graph G does not
capture this

Common fate graph Gf (Graepel et al., 2001) merges all stones
in a block into a single node

13

26

8 9 12

11

13

17

D. Kamenetsky, N. Schraudolph, S. Günter, S.V. N. Vishwanathan Modelling Go Positions with Planar CRFs

Background
Our work

Conclusion

Algorithm
Graph abstraction
Features and parameters
Results

Graph abstraction: block graph

Use Manhattan distance to classify empty regions into 3 types:
black surround (�), neutral(�) and white surround(�)

Collapse empty regions to form the block graph Gb

13

26

8 9 12

11

13

17

0 13

5

8

2

4

6

7

10 11

9 12

15

13 14

16 17

1819

D. Kamenetsky, N. Schraudolph, S. Günter, S.V. N. Vishwanathan Modelling Go Positions with Planar CRFs

Background
Our work

Conclusion

Algorithm
Graph abstraction
Features and parameters
Results

Graph abstraction: block graph

Surrounds encode the possibility for obtaining territory

Gb is more concise than Gf , but preserves the kind of
information required for predicting territory

13

26

8 9 12

11

13

17

0 13

5

8

2

4

6

7

10 11

9 12

15

13 14

16 17

1819

D. Kamenetsky, N. Schraudolph, S. Günter, S.V. N. Vishwanathan Modelling Go Positions with Planar CRFs

Background
Our work

Conclusion

Algorithm
Graph abstraction
Features and parameters
Results

Graph abstraction: group graph

Group: set of blocks of the same colour that share at least one
surround

Construct the group graph Gg by collapsing groups of Gb

0 13

5

8

2

4

6

7

10 11

9 12

15

13 14

16 17

1819

D. Kamenetsky, N. Schraudolph, S. Günter, S.V. N. Vishwanathan Modelling Go Positions with Planar CRFs

Background
Our work

Conclusion

Algorithm
Graph abstraction
Features and parameters
Results

Feature engineering: nodes

Given a node v ∈ Gb, for each point i ∈ v compute the number of
adjacent points Ai that are also in v

Node’s feature is a vector F, where Fk = |{i : Ai = k}|

Provides a powerful summary of the region’s shape

F = {2, 4, 2, 1}
D. Kamenetsky, N. Schraudolph, S. Günter, S.V. N. Vishwanathan Modelling Go Positions with Planar CRFs

Background
Our work

Conclusion

Algorithm
Graph abstraction
Features and parameters
Results

Feature engineering: edges

For two nodes v1, v2 ∈ Gb, A1
i is the number of points in v2 that

are adjacent to i ∈ v1 and vice-versa for A2
i

Edge’s features are two vectors F1 and F2 that are constructed
using A1 and A2 respectively

Provide information of node’s liberties and boundary shape

F1 = {3, 3, 1},F2 = {6, 3, 0}
D. Kamenetsky, N. Schraudolph, S. Günter, S.V. N. Vishwanathan Modelling Go Positions with Planar CRFs

Background
Our work

Conclusion

Algorithm
Graph abstraction
Features and parameters
Results

Parameter sharing

Parameter sharing takes
into account all relevant
symmetries

Current Edge Neighbour Edges
Param. Feat. Param. Feat.

Nodes
~θ� � ~θn� �

~θ� � ~θn� �

~θn� �

Edges

~θ�� �→ � ~θn�� � → �

~θ�� �→ � ~θn�� �→ �

~θn��
�→ �

�→ �

~θn��
�→ �
�→ �

D. Kamenetsky, N. Schraudolph, S. Günter, S.V. N. Vishwanathan Modelling Go Positions with Planar CRFs

Background
Our work

Conclusion

Algorithm
Graph abstraction
Features and parameters
Results

Experiments: Learning

9 × 9 endgame positions of van der Werf et al., 2005

1000-2000 games

Use the block graph Gb

Optimization with LBFGS

D. Kamenetsky, N. Schraudolph, S. Günter, S.V. N. Vishwanathan Modelling Go Positions with Planar CRFs

Background
Our work

Conclusion

Algorithm
Graph abstraction
Features and parameters
Results

Experiments: Prediction

906 games

Currently compute MAP state using variable elimination
(exponential)

Can be done in polynomial time with min-weight perfect
matching!

Can also use marginals from each node

Problem: Computed labeling is for edges, not nodes

Use the group graph Gg

D. Kamenetsky, N. Schraudolph, S. Günter, S.V. N. Vishwanathan Modelling Go Positions with Planar CRFs

Background
Our work

Conclusion

Algorithm
Graph abstraction
Features and parameters
Results

Results

Error (%)
Algorithm Vertex Block Winner Game

Naive 6.79 17.57 30.79 75.70
Stern et al., 2004 4.77 7.36 13.80 38.30

Block graph 2.36 3.56 4.53 13.02
Block graph + neighbour features 1.87 2.76 3.42 9.60
Block graph + other enhancements 1.54 2.20 2.09 7.90

* GnuGo - - - 1.32
* van der Werf et al., 2005 0.19 ≤ 1.00 0.50 1.10

*: employs Go-specific features and was used to label data

D. Kamenetsky, N. Schraudolph, S. Günter, S.V. N. Vishwanathan Modelling Go Positions with Planar CRFs

Background
Our work

Conclusion

Conclusion

Algorithm improvements:
No need to compute the dual nor the expanded graph
Compute gradients and hence perform parameter estimation

Model novelty:
2-stage graph reduction of the Go positions. The first used for
learning, the later for prediction
Generic node and edge features. Parameter sharing between
equivalent node and edge types

D. Kamenetsky, N. Schraudolph, S. Günter, S.V. N. Vishwanathan Modelling Go Positions with Planar CRFs

Background
Our work

Conclusion

Future work

Find better ways to classify empty regions

Add more domain-specific knowledge

Extend to 19 × 19 games

Compute MAP state using min-weight perfect matching

D. Kamenetsky, N. Schraudolph, S. Günter, S.V. N. Vishwanathan Modelling Go Positions with Planar CRFs

Background
Our work

Conclusion

Extensions

Middle-game positions, move prediction

Incorporate into a Monte-Carlo based program:
Goanna (with Joel Veness)

UCT-based, 2250 on 9 × 9 CGOS, 5th

Can be used for random playouts and prior knowledge

D. Kamenetsky, N. Schraudolph, S. Günter, S.V. N. Vishwanathan Modelling Go Positions with Planar CRFs

Background
Our work

Conclusion

Questions?

”The more you let yourself GO, the less others let you GO” -
Friedrich Nietzsche

D. Kamenetsky, N. Schraudolph, S. Günter, S.V. N. Vishwanathan Modelling Go Positions with Planar CRFs

	Background
	Go
	Learning in Go
	Ising model
	Dimer problem

	Our work
	Algorithm
	Graph abstraction
	Features and parameters
	Results

	Conclusion

