Modelling Go Positions with Planar CRFs

Dmitry Kamenetsky, Nicol N. Schraudolph, Simon Günter, S.V. N. Vishwanathan

NICTA, Australian National University, Australia

University of Alberta, December 2007

D. Kamenetsky, N. Schraudolph, S. Günter, S.V. N. Vishwanathan

Modelling Go Positions with Planar CRFs

- Go
- Learning in Go
- Ising model
- Dimer problem

Our work

- Algorithm
- Graph abstraction
- Features and parameters
- Results

3 Conclusion

* 3 * * 3

Go Learning in Go Ising model Dimer problem

What is Go?

- Two players alternate in placing stones on the intersections of a grid
- Neighbouring stones of the same colour form a contiguous *block*
- A block can be *captured* if all its empty neighbours are occupied by opponent stones

Go Learning in Go Ising model Dimer problem

What is Go?

- Two players alternate in placing stones on the intersections of a grid
- Neighbouring stones of the same colour form a contiguous *block*
- A block can be *captured* if all its empty neighbours are occupied by opponent stones

Go Learning in Go Ising model Dimer problem

What is Go?

- Two players alternate in placing stones on the intersections of a grid
- Neighbouring stones of the same colour form a contiguous *block*
- A block can be *captured* if all its empty neighbours are occupied by opponent stones

Go Learning in Go Ising model Dimer problem

What is Go?

- Two players alternate in placing stones on the intersections of a grid
- Neighbouring stones of the same colour form a contiguous *block*
- A block can be *captured* if all its empty neighbours are occupied by opponent stones

Go Learning in Go Ising model Dimer problem

What is Go?

- Two players alternate in placing stones on the intersections of a grid
- Neighbouring stones of the same colour form a contiguous *block*
- A block can be *captured* if all its empty neighbours are occupied by opponent stones

Go Learning in Go Ising model Dimer problem

What is Go?

- Two players alternate in placing stones on the intersections of a grid
- Neighbouring stones of the same colour form a contiguous *block*
- A block can be *captured* if all its empty neighbours are occupied by opponent stones

Go Learning in Go Ising model Dimer problem

What is Go?

- The game terminates once players agree on the life status of blocks
- The blocks and their surrounding area count towards *territory*
- **Territory prediction:** Given a board position predict the owner of each intersection
- Challenging problem for ML!

Go Learning in Go Ising model Dimer problem

Learning in Go

- Go is played on a grid graph *G*, so it is natural to model it with a graphical model such as CRF
- If we want to perform exact inference we can use the Junction Tree Algorithm (*G* is loopy)

イロト イポト イヨト イヨト

Go Learning in Go Ising model Dimer problem

Junction Tree Algorithm

- State-of-the-art exact method for computing partition function, marginals and MAP state
- Graph is a tree: complexity polynomial in graph size
- Graph is **not a tree**:
 - Convert the graph into a tree of cliques
 - Complexity exponential in the treewidth = size of the maximal clique

イロト イポト イヨト イヨト

• For $N \times N$ grid the treewidth is N

Go Learning in Go Ising model Dimer problem

イロト イヨト イヨト イヨト

What can we do?

- It turns out that physicists working on the Ising model have found an answer back in the 1960's!
- The method has been introduced to the Graphical Models community only last year...

Go Learning in Go Ising model Dimer problem

Ising model

- Particles modify their behaviour to conform with their neighbours
- What is the mean energy?
- Used in chemistry, physics, biology...
- More than 12,000 papers published!

・ロト ・ 日 ・ ・ ヨ ・

Go Learning in Go Ising model Dimer problem

Ising problem

- Graph G = (V, E)
- Binary variables: $x_i \in \{-1, +1\}$
- No potential for disagreement edges: $\phi_{ij} = 0$ if $x_i \neq x_j$
- Model distribution

$$P(x) = \frac{1}{Z(\phi)} e^{\sum_{ij \in E} [x_i = x_j]\phi_{ij}}$$
, where

$$Z(\phi) = \sum_{x} e^{\sum_{ij \in E} [x_i = x_j] \phi_{ij}}$$
 is the partition function

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

Go Learning in Go Ising model Dimer problem

Dimer problem

• How many perfect matchings does a graph have?

• **Perfect Matching**: A set of non-overlaping edges (dimers) that cover all vertices

イロト イポト イヨト イヨ

Background Our work Conclusion Go Learning in Go Ising model Dimer problem

Counting Matchings

• Every planar graph has a **Pfaffian orientation**: each face (except possibly outer) has an odd number of edges oriented clockwise

• Define a skew-symmetric matrix *K* such that:

$$K_{ij} = \begin{cases} 1 & \text{if } i \to j \\ -1 & \text{if } i \leftarrow j \\ 0 & \text{otherwise} \end{cases}$$

Go Learning in Go Ising model Dimer problem

Kasteleyn Theorem

Kasteleyn Theorem: Number of perfect matchings is $Pf(K) = \sqrt{|K|}$

イロト イヨト イヨト イヨト

-2

Ising model Dimer problem

The connection

- Let G_{\wedge} be G plane triangulated: each face becomes a triangle
- Let G^* be the dual of graph G_{\wedge} : each face in G_{\wedge} is a vertex in G^*
- Let G_{ρ}^* be the expanded version of G^* : each vertex is replaced with 3 vertices in triangle
- **Connection**: There is a 1:1 correspondence between agreement edge sets in G and perfect matchings in G_a^*

Go Learning in Go Ising model Dimer problem

From physics to ML

- Globerson & Jaakkola 2006 use previous results (Ising model) to compute the partition function exactly
- Restrictions:
 - Graph is planar: can be drawn without crossing edges
 - Binary-valued labels
 - Only edge potentials, no node potentials
- Complexity **polynomial** in graph size!

Conclusion	Results	
Background Our work	Algorithm Graph abstraction Features and parameters	

- Faster and simpler version of Globerson and Jaakkola algorithm
- No need to compute the dual G^* and expanded version G_e^*
- Showed how to compute gradients and thus perform parameter estimation
- Applied to territory prediction in Go

Algorithm Graph abstraction Features and parameters Results

Algorithm

• Original graph G = (V, E)

ヘロト 人間 とくほ とくほ とう

Algorithm Graph abstraction Features and parameters Results

Algorithm: Step 1

- Obtain a planar embedding
- Using Boyer-Myrvold algorithm the complexity is O(n), where n = |E|

イロト イヨト イヨト イヨト

Algorithm Graph abstraction Features and parameters Results

Algorithm: Step 2

- Add edges to plane triangulate the graph
- Using simple ear-clipping the complexity is *O*(*n*)

イロト イヨト イヨト イヨト

Algorithm Graph abstraction Features and parameters Results

Algorithm: Step 3

- Orient the edges such that each vertex has odd in-degree
- Equivalent to having a Pfaffian orientation in the dual graph
- Complexity is O(n)

< E

Algorithm Graph abstraction Features and parameters Results

Algorithm: Step 4 (intuition)

- Add nodes to each face
- Orient edges towards those nodes
- Equivalent to expansion in the dual graph

- Construct a skew-symmetric $2|E| \times 2|E|$ matrix K (for dual edges):
 - $K_{ij} = \pm e^{\phi_{ij}}$ if *ij* crosses **original**

•
$$K_{ij} = \pm 1$$
 if *ij* crosses added

• Complexity is O(n)

<ロ> <同> <同> <同> < 同> < 同

Algorithm Graph abstraction Features and parameters Results

Algorithm: Step 4 (implementation)

- Number each edge
- Number the sides of each edge k
 - LHS = 2k
 - RHS = 2k 1

Pseudo Code

For each vertex *v*:

- For each edge *k* incident on *v* (clockwise):
 - if k points away from v:

•
$$K_{2k,p} = 1 \ (2 \to 8)$$

• $p = 2k - 1$

• else

• $K_{2k-1,p} = 1 \ (7 \to 1)$ • $K_{2k-1,2k} = e^{\phi_k} \ (7 \to 8)$ • p = 2k

イロト イヨト イヨト イヨト

Return $K - K^T$

Algorithm Graph abstraction Features and parameters Results

ヘロン 人間 とくほ とくほ とう

Algorithm: Parameter estimation

- Compute partition function: $Z(\phi) = 2\sqrt{|K|}$
- Compute gradients: $\frac{\partial \ln Z(\phi)}{\partial \phi_k} = -[K^{-1} \odot K]_{2k-1,2k}$
- Computing inverse and determinant takes at most $O(n^3)$ time

Algorithm Graph abstraction Features and parameters Results

Graph abstraction: common fate graph

- Blocks always live or die as a unit; Grid graph *G* does not capture this
- *Common fate graph* G_f (Graepel et al., 2001) merges all stones in a block into a single node

D. Kamenetsky, N. Schraudolph, S. Günter, S.V. N. Vishwanathan

Algorithm Graph abstraction Features and parameters Results

Graph abstraction: block graph

- Use Manhattan distance to classify empty regions into 3 types: *black surround* (■), *neutral*(◊) and *white surround*(□)
- Collapse empty regions to form the *block graph* G_b

D. Kamenetsky, N. Schraudolph, S. Günter, S.V. N. Vishwanathan

Algorithm Graph abstraction Features and parameters Results

Graph abstraction: block graph

- Surrounds encode the possibility for obtaining territory
- *G_b* is more concise than *G_f*, but preserves the kind of information required for predicting territory

D. Kamenetsky, N. Schraudolph, S. Günter, S.V. N. Vishwanathan

Algorithm Graph abstraction Features and parameters Results

Graph abstraction: group graph

- *Group*: set of blocks of the same colour that share at least one surround
- Construct the group graph G_g by collapsing groups of G_b

Algorithm Graph abstraction Features and parameters Results

Feature engineering: nodes

- Given a node v ∈ G_b, for each point i ∈ v compute the number of adjacent points A_i that are also in v
- Node's feature is a vector F, where $F_k = |\{i : A_i = k\}|$
- Provides a powerful summary of the region's shape

Algorithm Graph abstraction Features and parameters Results

Feature engineering: edges

- For two nodes v₁, v₂ ∈ G_b, A¹_i is the number of points in v₂ that are adjacent to i ∈ v₁ and vice-versa for A²_i
- Edge's features are two vectors F^1 and F^2 that are constructed using A^1 and A^2 respectively
- Provide information of node's liberties and boundary shape

 $F^1 = \{3, 3, 1\}, F^2 = \{6, 3, 0\} \square (A = A = A)$

Algorithm Graph abstraction Features and parameters Results

Parameter sharing

Parameter sharing takes into account all relevant symmetries

	Current Edge		Neighbour Edges		
	Param.	Feat.	Param.	Feat.	
Nodes	$ec{ heta}_{ m O}$	•	$ec{ heta}^n_\diamond$	\$	
	$\vec{\theta}_{\Box}$		$ec{ heta}_{\bigcirc}^n$	0	
			$\vec{\theta}_{\Box}^{n}$		
Edges	$\vec{\theta}_{\mathrm{O}\square}$	$\bullet \to \blacksquare$	$\vec{\theta}^n_{\diamond \bigcirc}$	$\diamond \to \bullet$	
	$\vec{\theta}_{\Box \bigcirc}$	$\blacksquare \to \blacklozenge$	$ec{ heta}_{\bigcirc\diamond}^n$	$\bullet \to \diamond$	
			dn	$\bigcirc \rightarrow ullet$	
			000	$\bullet \to \bigcirc$	
			dn	$\Box \to \blacksquare$	
				$\blacksquare \to \square$	

イロト イヨト イヨト イヨト

Algorithm Graph abstraction Features and parameters Results

イロト イポト イヨト イヨト

Experiments: Learning

- 9×9 endgame positions of van der Werf et al., 2005
- 1000-2000 games
- Use the block graph G_b
- Optimization with LBFGS

Algorithm Graph abstraction Features and parameters Results

イロト イポト イヨト イヨト

Experiments: Prediction

- 906 games
- Currently compute MAP state using variable elimination (exponential)
- Can be done in **polynomial time** with min-weight perfect matching!
- Can also use marginals from each node
- Problem: Computed labeling is for edges, not nodes
- Use the group graph G_g

Algorithm Graph abstraction Features and parameters Results

Results

	Error (%)			
Algorithm	Vertex	Block	Winner	Game
Naive	6.79	17.57	30.79	75.70
Stern et al., 2004	4.77	7.36	13.80	38.30
Block graph	2.36	3.56	4.53	13.02
Block graph + neighbour features	1.87	2.76	3.42	9.60
Block graph + other enhancements	1.54	2.20	2.09	7.90
* GnuGo	-	-	-	1.32
* van der Werf et al., 2005	0.19	≤ 1.00	0.50	1.10

*: employs Go-specific features and was used to label data

イロト イヨト イヨト イヨト

-2

Conclusion

- Algorithm improvements:
 - No need to compute the dual nor the expanded graph
 - Compute gradients and hence perform parameter estimation
- Model novelty:
 - 2-stage graph reduction of the Go positions. The first used for learning, the later for prediction
 - Generic node and edge features. Parameter sharing between equivalent node and edge types

Future work

- Find better ways to classify empty regions
- Add more domain-specific knowledge
- Extend to 19×19 games
- Compute MAP state using min-weight perfect matching

イロト イポト イヨト イヨト

Extensions

- Middle-game positions, move prediction
- Incorporate into a Monte-Carlo based program:
 - Goanna (with Joel Veness)
 - UCT-based, 2250 on 9×9 CGOS, 5th
 - Can be used for random playouts and prior knowledge

Questions?

*"The more you let yourself GO, the less others let you GO" -*Friedrich Nietzsche

-2