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Abstract: We address the problem of fault diagnosis in discrete-event systems. Our
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1. INTRODUCTION

Monitoring large event-driven systems like communi-
cation networks, web services and business processes
is a complex activity that requires automated methods.
When a system operates, some critical events or faults
may occur and the system supervisor has to detect
them in order to make decisions to keep the sys-
tem working. Most of these systems are component-
based, i.e. each component communicates with other
components by exchanging messages. The problem,
known as fault diagnosis in discrete-event systems, is
to determine a method for monitoring large systems
and efficiently performing diagnosis given the flow of
observations.

The classical model-based approach for monitoring
discrete-event system is the diagnoser approach pro-
posed by Sampath et al. (1995). A diagnoser is a finite
state machine which is able to provide a diagnosis of
the system for any sequence of observations produced
by the system. The main advantage of this machine
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through the Australian National Research Council.

is that it is computed from a behavioural model of
the system and performs fault diagnosis efficiently.
Its main drawback is that its computation is based on
the global model of the system, so it is exponential to
the number of components of the system. This space
complexity makes this diagnoser infeasible for large
component-based systems that are more and more
common in real-world applications.

In this paper, we propose a new diagnoser approach
for component-based systems based on a set of spe-
cialised diagnosers whose computation is less com-
plex. As opposed to the classical diagnoser, our diag-
noser is devoted to the diagnosis of one type of fault
only (one diagnoser per fault). Secondly, instead of
taking into account the system as a whole, we propose
to analyse the system in order to detect a subsystem
that is sufficient for diagnosing this particular type
of fault. In practice, the purpose of this approach is
to drastically decrease the computation cost of any
monitoring agent for component-based systems.

The paper is organised as follows. First, we present the
background, i.e. component-based model and classical
diagnoser. The second section then informally char-
acterises specialised diagnosers and sufficient subsys-
tems. Next, we present an algorithm which detects, for



the diagnosis of a given fault, whether the observation
of a given subsystem is sufficient and if so computes a
specialised diagnoser for it.

2. BACKGROUND

2.1 Component-based Model

We study component-based and event-driven systems.
Their model is based on classical automata (see Fig-
ure 1): one automaton represents the behaviour (also
called the local model) of one component (Sampath
et al. (1995)). This formalism is aimed at modelling
any discrete event system with multiple and perma-
nent faults. A fault occurs in one component and its
consequences may propagate to other components.

Definition 1. (Local model). The local model Gi is an
automaton Gi = (Qi,Σi, Ei, q0i) where:

• Qi is a finite set of states; q0i is the initial state;
• Σi is the set of events and Ei ⊆ Qi×Σi×Qi is

the set of transitions.

The set of events is divided into four disjoint subsets
(Σi = Σobs

i ⊕ Σcom
i ⊕ Σnorm

i ⊕ Σflt
i ): Σobs

i the set
of observable events, Σcom

i the set of communication
events, Σnorm

i the set of normal events and Σflt
i the set

of fault events.

A subsystem g is a non-empty set {Gi1 . . . Gim} of
components of the system. The global model of g is
the automaton which results from the classical syn-
chronised composition of the automata contained in g
(see Sampath et al. (1995)). A state q of the subsys-
tem g is a m-tuple (qi1, . . . , qim) of m local states.
The global model of the system is the global model
of its biggest subsystem, a system state is a n-tuple
(q1, . . . , qn) with qi a state of Gi and n the number of
components in the system.
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Fig. 1. Component-based system.

2.2 Extended component-based model

For the sake of clarity throughout this paper, we intro-
duce an extended representation of the previous model

based on an extended automaton. The aim of this ex-
tended representation is to provide further definitions
in a unified way based only on a composition oper-
ation and a projection operation. The only difference
between an extended automaton and a classical one is
that it is composed of extended states. An extended
state x ∈ X is a couple (Bs,Label) ∈ Bs(X) ×
Label(X) where Bs represents a belief state (a set
of model states denoted Bs(x)) and Label represents
a property about the belief state (denoted Label(x)).
The extended local model Γi corresponding to the
local model Gi is defined as follows:

Definition 2. (Extended local model). The extended lo-
cal model Γi is an automaton

Γi = (Xi,Σi, Ti, x0i)

where:

• Xi is a finite set of extended states x such that
Bs(x) ∈ Qi and Label(x) ∈ 2Σflt

i ;
• x0i = (q0i, ∅) is the initial state;
• Σi is the set of events and
• Ti ⊆ Xi × Σi ×Xi is the set of transitions.

The extended version of the model is equivalent to
the previous one (see Figure 2): an extended state
x = (q,F) of Γi simply means that the component
Gi is in state Bs(x) = q and there exists a transition
path from q0i to q in Gi in which the set of faults that
occur is exactly Label(x) = F .
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Fig. 2. Extented model Γ2 of component G2.

We also define the extended model of any subsystem
g = {Gi1, . . . , Gim} (denoted γ = {Γi1, . . . ,Γim}).

Definition 3. (Extended global model). The extended
global model ‖γ‖ is the extended automaton defined
by:

‖γ‖ = Γi1‖ . . . ‖Γim .

The operator ‖ is the composition operation synchro-
nised on the communicating events E =

⋃n
i=1 Σcom

i

(see Appendix A). By definition, an extended state x
of γ is such that

x = (xi1 , . . . , xim) ≡

(Bs(xi1), . . . ,Bs(xim),Label(xi1), . . . ,Label(xim)).

So, by extension, we denote

Bs(x) = (Bs(xi1), . . . ,Bs(xim
)) ∈

m∏
j=1

Qij



and

Label(x) = (Label(xi1), ..,Label(xim
)) ∈

m∏
j=1

2
Σflt

ij .

In the rest of this paper, we will only use the notations
of the extended representation to denote any part of
the system (component, subsystem...).

2.3 Classical Diagnoser

In this paper, we address the problem of detecting the
occurrence of fault events in a monitoring context:
given a flow of observable events emitted by the
system, the problem is to provide diagnosis updates
after each observation of the flow. For that purpose,
Sampath et al. (1995) defines a determinitic finite-state
machine, called diagnoser, that diagnoses the set of
faults Σflt =

⋃n
i=1 Σflt

i given an observation flow
from the system. Generally, the diagnoser is defined
relying on the global model of the system. In the
following, we define the same machine based on the
extended global model. Let us consider the extended
global model ‖Γ‖ = (X, Σ, T, x0) such that X ⊆ Q×
2Σflt

where Q is the set of system states. Before
defining the diagnoser based on ‖Γ‖, we define the
diagnoser function f∆ which gathers the diagnosis
information from the extended states of ‖Γ‖:

f∆ : 2X → 2Q×2Σflt

f∆(x1, . . . , xm) =
m⋃

i=1

(Bs(xi),Label(xi))

The classical diagnoser is then defined by projecting
the extended global model on the observable events
Σobs =

⋃n
i=1 Σobs

i (see Appendix B).

Definition 4. The classical diagnoser ∆(Γ) of the sys-
tem Γ is the extended automaton:

∆(Γ) = PΣobs,f∆(‖Γ‖).
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Fig. 3. Part of the classical diagnoser of the model
from Fig.1.

The diagnoser is a deterministic extended automaton
whose transitions are labelled with observable events
only and that is able to efficiently provide a diagno-
sis after each observation (see Figure 3). The pro-
vided diagnoses are contained in the diagnoser states.

The diagnosis of a diagnoser state z is contained in
Label(z). This diagnosis is composed of a set of belief
states (i.e. Label(z) =

⋃
i(Bs(xi),Label(xi))), each

belief state (i.e. Bs(xi) ∈ Q) being associated with a
set of possible faults that could have occurred before
reaching this belief state (i.e. Label(xi) ∈ 2Σflt

).

If we consider the monitoring of a component-based
system, the main problem is about the algorithmic cost
of the diagnoser computation. If n is the number of
components in the system, then the number of states
in the classical diagnoser is in the worst case in 22n ×
2|Σ

flt|. Clearly, the computation of such a machine is
unrealistic because of limited computing resources.

3. FAULT DIAGNOSIS SPECIALISATION

Diagnosing a particular fault given a flow of obser-
vations can be an independent process where the di-
agnosis of the other faults is not involved. Instead of
having one machine that diagnoses every type of fault,
we can set up a set of |Σflt| specialised machines
where each machine is in charge of diagnosing one
type of fault only. Adopting this point of view has two
advantages. Firstly, if the diagnosis task is to only de-
tect the occurrence of faults, then the set of specialised
diagnosers provides the same diagnosis information
as the classical diagnoser. 2 Secondly, the size of a
diagnoser does not depend on the number of possible
faults but only on the number of components in the
system.

3.1 Definition

Definition 5. Let γ be a subsystem and F a fault that
could occur in γ, an F -diagnoser for γ is a finite-state
machine that, given any flow of observations from γ,
can decide at any time if γ is:

• safe (F has not occurred),
• faulty (F has occurred),
• ambiguous (F may have occurred).

An F -diagnoser is devoted to the diagnosis of one
particular fault F . Moreover, it must be able to provide
a diagnosis at any time, which means that this machine
must be able to follow the observation flow from
γ and to efficiently provide a diagnosis after each
new observation. The F -diagnoser is not unique, F -
diagnosers are a family of machines which is denoted
Dγ(F ).

2 Only information about fault correlations is lost by the specialised
diagnosers.



3.2 Classical diagnoser as an F-diagnoser

By definition, ∆(Γ) is an F -diagnoser of Γ and is
actually an F -diagnoser for every type of fault F that
could occur in the system Γ.

Proposition 6.

∀F ∈ Σflt ,∆(Γ) ∈ DΓ(F )

Indeed, a diagnoser state z contains the diagnosis
Label(z) = {(q1,F1), . . . , (qp,Fp)}whereFi is a set
of possible faults that could have occurred before the
system reaches the state qi. Therefore, from that state
z, we can easily decide if the system is faulty (∀i, F ∈
Fi), safe (∀i, F 6∈ Fi) or ambiguous (∃i, j, F ∈ Fi ∧
F 6∈ Fj).

3.3 Towards a small F -diagnoser

A fault F that occurs in a component produces some
consequences in this component and also in its neigh-
bourhood, and among these consequences, some of
them are observable. We can argue that it is sufficient
to look at a given subsystem (a neighbourhood) in or-
der to observe these consequences and then diagnose
this fault. In other words, a sufficient F -diagnoser
does not need to take into account all the observations
from the system, but only part of it to diagnose this
fault. The challenge is to find a subsystem that is suf-
ficient to observe in order to perform fault diagnosis
with accuracy and efficiency. Diagnosis accuracy is
defined as follows:

Definition 7. An F -diagnoser is accurate iff for every
observation sequence σ of the system ending with
an event observed by the F -diagnoser, the diagnosis
of the F -diagnoser is the diagnosis of the classical
diagnoser with respect to F .

In other words, an accurate F -diagnoser only observes
a part of the observation flow but is able to provide the
same diagnosis as the classical diagnoser each time the
last observation of the flow is seen by both machines.

4. COMPUTATION OF AN ACCURATE
F -DIAGNOSER

This section presents an algorithm that computes an
accurate F -diagnoser. Before explaining how to com-
pute it, we present a way to compute an F -diagnoser
∆γ for the subsystem γ.

4.1 F -diagnoser computation

The computation of the F -diagnoser ∆γ is the same
as the computation of a classical diagnoser except that:

(1) it is defined on any subsystem γ where F occurs;
(2) it uses a specialised diagnoser identification

function fγ
F instead of the classical diagnoser

function f∆.

Given ‖γ‖ = (X, Σ, T, x0) the extended global model
of γ, the identification function fγ

F : 2X → {safe,
faulty , ambiguous} is defined as follows:

fγ
F ({x1, .., xm}) =

safe iff ∀i, F 6∈ Label(xi)
faulty iff ∀i, F ∈ Label(xi)
ambiguous otherwise.

Like the classical diagnoser, ∆γ is then defined as
a projection of the extended global model ‖γ‖. The
projection is performed on the observable events Σγ

obs

of γ (see Figure 4 on the right).

Definition 8. The F -diagnoser ∆γ of γ is the ex-
tended automaton:

∆γ = PΣγ
obs

,fγ
F
(‖γ‖).

A state x of ∆γ has the form

x = (Bs(x),Label(x))

= ({Bs(x1), . . . ,Bs(xm)}, fγ
F (x1, . . . , xm))

where xi = (Bs(xi),Label(xi)) is a state of ‖γ‖.
Informally, a state x is the association of a belief state
(Bs(x) =

⋃m
i=1 Bs(xi)) and a diagnosis property

about the occurrence of the fault.

By construction of ∆γ , the following property holds:
let σ be an observation sequence of the system ending
with an observation from γ, σγ be the subpart of
σ observed from γ, and d(σ) (resp. d(σγ)) be the
diagnosis of ∆(Γ) (resp. ∆γ) after the observation of
σ (resp. σγ),

Proposition 9. The following assertions hold:

(1) d(σ) = safe ⇒ d(σγ) ∈ {safe, ambiguous}
(2) d(σ) = faulty ⇒ d(σγ) ∈ {faulty , ambiguous}
(3) d(σ) = ambiguous ⇒ d(σγ) = ambiguous

In other words, after the observation of σ, if the last
observation of σ is from γ, ∆γ provides a diagnosis
that is never incorrect but is generally more ambiguous
since the diagnosis is based on fewer observations. If
the diagnoser is accurate then the provided diagnosis
is exactly the same which means that an accurate
diagnoser observes a flow of events that is sufficient
to provide the same diagnosis.

4.2 Detection of an accurate diagnoser

Checking whether monitoring γ is sufficient for diag-
nosing the fault F is performed by checking a property
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on an extention of ∆γ called the interactive diagnoser
of γ and denoted ∆int

γ . The only difference between
∆int

γ and ∆γ is that the communication events from γ

are supposed to be observable in ∆int
γ .

Definition 10. The interactive F -diagnoser ∆int
γ of γ

is the extended automaton:

∆int
γ = PΣobs

γ ∪Σcom
γ ,fγ

F
(‖γ‖).

The detection of an accurate diagnoser is based on
Proposition 11. Let σγ be an observable sequence
from γ and P(σγ) be the set of paths from the initial
state in ∆int

γ whose observable part is exactly σγ and
the last event of the path is an event of σγ .

Proposition 11. ∆γ is accurate if the following cri-
terium holds: ∀σγ , ∀x, x′ ∈ ∆int

γ target states of paths
from P(σγ), Label(x) = Label(x′).

PROOF. Let σ be an observation sequence ending
with an observable event from γ and σγ be the subpart
of σ emitted by γ. Let d(σ) be the diagnosis provided
by the classical diagnoser after the observation of σ.
Every transition path p from ‖Γ‖ that emits σ has a
representative pγ ∈ P(σγ) (by removing from p any
event that does not belong to Σcom

γ ∪ Σobs
γ ). If the

criterium holds in ∆int
γ then the target states of the

paths in P(σγ) provide only one kind of diagnosis
denoted d(σγ). By construction, d(σγ) is also the di-
agnosis provided by ∆γ after the observation of σγ . If
d(σγ) = safe (resp. faulty), every path pγ represents
a set of paths from ‖γ‖ that do not contain (resp.
contains) F so d(σ) = safe (resp. d(σ) = faulty).
If d(σγ) = ambiguous then every path pγ represents
at least two paths from ‖γ‖, the first one contains F
but not the second one, so d(σ) = ambiguous .

To summarise, the detection and the computation of
an accurate F -diagnoser is depicted below:

1: Input: F ∈ Σflt,Γ = {Γ1, . . . ,Γn}
2: γ ← {Γ1}; Compute ∆int

Γ1

3: while ¬criterium(∆int
γ ) do

4: Select Γj a neighbour of γ; γ ← γ ∪ {Γj}
5: Compute ∆int

γ

6: end while
7: Output: ∆γ = PΣobs

γ ,fγ
F
(∆int

γ )

The basic idea is to select the smallest subsystem
where the fault F occurs (in the algorithm, we sup-

pose F occurs in Γ1). If the criterium for accuracy in
the current subsystem holds, we compute the corre-
sponding F -diagnoser. If not, we select a component
Γj that communicates with the current subsystem γ
(the neighbour selection requires a merging strategy
that is similar to the strategy presented in Pencolé
and Cordier (2005)) and we do the checking again.
The algorithm terminates in the worst case with an F -
diagnoser on the whole system but still smaller than
the diagnoser. This case only occurs if the observable
consequences of a given fault depend on all the com-
ponents which is unlikely in large component-based
systems.

4.3 Example

In the running example of Figure 1, the classical di-
agnoser ∆(Γ) (see Figure 3) contains 35 states and 68
transitions. Figure 4 presents an accurate f1-diagnoser
(right side). In the interactive diagnoser ∆int

Γ1
(left

side), every path emitting the sequences o2? is safe
and every path emitting o1o2? is ambiguous. There
is no way to disambiguise this diagnosis relying on
the observations of other components. As far as the
fault f2 is concerned (see Figure 1), the observation
of the subsystem {G2, G3} is sufficient to diagnose
f2 with the same accuracy than the diagnoser. The
corresponding f2-diagnoser contains 10 states and 16
transitions.

5. RELATED WORK

Fault diagnosis on discrete event systems have been
studying for several years in both AI and Control
communities (see Sampath et al. (1995), Lamperti
and Zanella (2003), Fabre et al. (2005), Pencolé and
Cordier (2005) for instance). The approach we pro-
pose is for fault identification and mainly follows the
framework of Sampath et al. (1995). This approach
is original in the sense that the method is centralised
(the diagnoser is self-dependent, no communication is
required with other diagnosers to perform the diagno-
sis) but does not require in practice the computation
of the global model like the classical technique. This
approach is related to the notion of clustering (see
Lamperti and Zanella (2003)) which consists in de-
tecting offline clusters of components (or subsystems)
whose properties make the monitoring task (online di-
agnosis) easier. This approach can be easily extended
to perform a decentralised diagnosis: if the subsystem
contains different observation sites, the specialised di-
agnoser can be split into a set of local diagnosers (one
per site) that communicate by using a communication
protocol (Debouk et al. (2002)). Finally, the notion of
accuracy is closely related to the notion of local diag-
nosability (see Sengupta (1998) and Pencolé (2004)):
if F is locally diagnosable on a set of subsystems
γ1, . . . , γl, then any accurate F -diagnoser ∆γ is such
that ∃i ∈ {1, . . . , l}, γi ⊆ γ.



6. CONCLUSION

We presented a new type of generic machines for di-
agnosing faults in a component-based discrete event
system. The originality of these machines is that they
are devoted to the identification of a type of fault
only, which makes their computation more tractable
than the computation of the classical diagnoser and
allows to diagnose larger component-based systems.
Each specialised diagnoser is based on a subsystem
that guarantees the diagnoser is accurate and provides
a correct diagnosis. The detection of an accurate diag-
noser is based on a sufficient condition which char-
acterises the fact that a subsystem contains enough
observable information to diagnose the given fault.

The next challenge is to find a necessary and sufficient
condition so that we are able to characterise optimal
accurate diagnosers. The main idea consists then in
finding an optimal merging strategy which guarantees
the computation of the smaller accurate diagnoser. An-
other interesting topic is the study of the relationship
between the notions of diagnosability and accuracy in
order to take into account the fact that a system is
diagnosable when computing an accurate diagnoser.
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Appendix A. COMPOSITION OPERATION

Let {Ai}i∈{1,...,m} be m automata, let Ei be the
set of events of Ai and let E be one subset of

⋃m
i=1 Ei. The composition ‖ is such that the automa-

ton A = A1‖ . . . ‖Am is defined as an automaton
(X,

⋃m
i=1 Ei, T, q0) where X ⊆

∏m
i=1 Xi such that for

all q ∈ X, q = (q1, . . . , qm). The set of transitions
is the subpart of the cartesian product of the Ai’s
containing the synchronised transitions according to
a set of events E . A transition t = (q1, . . . , qm) e−→
(q′1, . . . , q

′
m) is synchronised according to E iff

(e 6∈ E ⇒ (∃j ∈ {1, . . . ,m}, qj
e−→ q′j ∈ Aj

∧∀i ∈ {1, . . . ,m} \ {j}, qi = q′i))
∧(e ∈ E ⇒ (∀i ∈ {1, . . . ,m},

e ∈ Ei ⇒ qi
e−→ q′i ∈ Ai ∧ e 6∈ Ei ⇒ qi = q′i))

A represents the behaviour of {Ai}i∈{1,...,m} where
only the events of E are synchronised.

Appendix B. PROJECTION OPERATION

Let A = (X, Σ, T, x0) be an extended automaton
based on the set of events Σ and Σ′ be another set
of events and let f : 2X → Label be a state-
property function on A, the projection PΣ′,f (A) of A
on Σ′ and f is the deterministic extended automaton
(X ′,Σ′, T ′, x′0) such that:

• X ′ ⊆ 2Bs(X ) × Label is the set of states
• T ′ ⊆ X ′ × Σ′ ×X ′ is the set of transitions
• x′0 is the initial state

This machine is built as follows:

(1) x′0 = ({Bs(x0)}, f({x0}))
(2) for a given x′ = ({Bs(xi1), . . . ,Bs(xim)},

f({xi1 , . . . , xim})) ∈ X ′, we consider all the
transition paths p from A such that p = xij

σ1−→
. . .

σm−→ x′j
σ′

−→ x′′j where σl 6∈ Σ′,∀l and
σ′ ∈ Σ′. We denote by x′′(σ′) the set of target
states x′′j for a given event σ′, then we have

x′′ = (Bs(x′′(σ′)), f(x′′(σ′)) ∈ X ′ and x′
σ′

−→
x′′ ∈ T ′.

The result of the projection is an extended automaton
whose events are in Σ′ only. Any state is defined as a
set of belief states of A (i.e. a new belief state) and a
label resulting from the application of the function f
on that belief state.


