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1. Introduction

FOLLOWING N. L. Biggs, G. R. Grimmett [2] defines a d-dimensional
lattice to be a locally finite graph on which Zd acts fixed-point freely and
with a finite number of orbits. (This action is assumed to be faithful.) He
conjectures that a graph cannot simultaneously be both a d-dimensional
and a (d + l)-dimensional lattice. (This is Conjecture 1 of [2].)

We extend the notion of dimension in such a way that it applies to a
wider class of graphs and becomes a graphical invariant. We are then able
to show that if X is a connected graph on which ld acts faithfully and
with a finite number of orbits, then X is d-dimensional in our sense.
Consequently Grimmett's conjecture is correct.

A geometric interpretation of our definition of dimension is also
provided.

Finally we provide a counterexample to Conjecture 2 of [2].

2. Preliminaries

Throughout this paper the word graph will mean a countable locally
finite simple graph. If X is a graph we denote by dx(i, j) the distance
between the vertices i and / in X. For fe 2*0, we define

Sk(i,X) = {i>eV(X)|dx(i,t>) = k},

Bk(i,X) = {t>eV(X)|dx(i,i>)=sfc}.

We set sk(i,X) = |S^(i,X)|, bk(i,X) = |Bk(i,X)|. The argument X in these
expressions will usually be omitted when it is clear from the context. The
distance generating function of X with respect to the vertex i is

D(i,X)=t sk(i,X)xk.
k-0

We use C to denote the two-way infinite path. The cartesian product
(see Definition 1.1 of [4]) of the graphs X and Y will be written as Xx Y
and the cartesian product of r copies of X will be written as X00. Thus
C*0 is the r-dimensional cubic lattice graph.

DEFINITION. 2.1. Let X be a connected graph and let p be a non-
negative real number. If, for some vertex i in X, there are positive real
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numbers Al and A2 such that

then we say that X has dimension p. Note that if i, / e V(X) and d(i, j) = A
then

Bk(i)cBk+AG")sBk+2A(i).

Consequently the dimension of X, if it exists, is independent of the vertex
used in defining it.

Not every graph will have a dimension. In particular one can construct
trees T with a vertex v such that ^(u, T) is an arbitrarily chosen strictly
increasing function taking only positive integer values.

3. The main results

THEOREM 3.1. If G=Zd acts faithfully and with a finite number of orbits
on the connected graph X then X has dimension d.

Proof. We proceed in a number of steps.
(a) G acts fixed-point freely on X.

Let illt..., il, be the orbits of G. Suppose g e G and that v e flj is a
vertex fixed by g. Then if h e G, gh = hg and so

vhg = vgh = vh.

Hence g fixes vh for each element h in G and this implies that g fixes
each vertex in ftt.

If g is non-trivial then it does not fix each vertex in X. By relabelling
the orbits of G if necessary, we may assume there is an integer s, Ks =s t,
such that the only vertices not fixed by g lie in orbits O,, s *£ i« t . Since X
is connected we can find adjacent vertices w, x in X such that g fixes w
but not x. Assume, without loss of generality, that xeft,.

Hence w is adjacent to each vertex in

As X is locally finite, 4> is a finite set. Therefore there is an integer n such
that gn fixes a vertex in <J> and so, arguing as before, g" fixes each vertex
in fl,.

Proceeding by induction on s, we conclude that there is an integer, v
say, such that gv fixes each vertex in each orbit of G i.e. each vertex in X.
Since G acts faithfully this implies that gv = e, the identity element of G.
Therefore g has finite order, which is impossible, because G s Z d . Conse-
quently G must act fixed-point freely on X

(b) There is a Cayley graph X of G such that the dimension of X, if it
exists, equals that of X.
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As before we denote the orbits of G by Clu ..., fi,. Since X is connected
it follows from the proof of the contraction lemma in [1] that there is a
connected graph W such that

|wnn , | = i (i = i, . . . ,»).

Thus |W\ = t Since G acts fixed-point freely on X we see that if ge G\e
then Wn Wg = 0 . We also have

V(X)= U VVg.

Contracting each translate Wg(g e G) of W to a point gives rise to a
locally finite graph X on which G acts regularly (the vertices in X
corresponding to disjoint translates Wg and Wh of W are adjacent in X if
some vertex in Wg is adjacent in X to some vertex in Wh). Since G acts
regularly on X, it is easy to show that X is a Cayley graph for G.

Assume now that X has dimension p. We show that in this case X too
has dimension p. Let A be the diameter of W. If i € V(X) then denote by i
the vertex in X onto which i is contracted. Then

Further, there are real numbers At and A2 such that

A1kp«bfc(i,X)=eA2kp.

Hence we have

( k V<
and since A ^ l + A)""" is constant, it follows that X has dimension p.

(c) X has dimension d.
Of course, we prove that X has dimension d, whence our conclusion
follows using (b). Since X is a locally finite Cayley graph for G = Zd, we
see by Lemma 1 of [3] that X has the same dimension as any other
(locally finite) Cayley graph for G. Consequently X and C(d) have the
same dimension. By Proposition 3.6 of [5] we see that ^( i , C(d)) is a
polynomial of degree d in k. Hence C**0, as might be expected has
dimension d and so X also has dimension d.

4. Imbedding d-dfanensioaal graphs in eudidean space

We use Ed to denote d-dimensional Euclidean space with norm ||-||. An
imbedding of the graph X in Ed is simply an injection of V(X) into Ed.
The image of i in V(X) under a given imbedding will be denoted by i.

We can always imbed X into Ed by choosing a vertex v in X, mapping
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it into a fixed point in Ed and then mapping vertices at distance r in X
from v arbitrarily onto points at distance r from 6 in Ed. It, for some
positive integer, d, X is d-dimensional then an imbedding of the type just
described has two properties:

(a) for each vertex u in X and sequence wlt w2,. • •, of distinct vertices
of X,

d(u, w,)
jj-; T-M-^l as ! -+oo

(b) there are positive real constants C and D such that, if (^(p) denotes
the number of points u(u e V(X)) lying in the ball of radius r about any
point p in Ed then

C «s -^— =s D (for all r large enough).

Conversely, if X is a graph with an imbedding into Ed satisfying (a) and
(b), then X is d-dimensional. The proofs of these claims are quite
straightforward and so are left for the reader.

5. On a second conjecture of G. R. Grimmett
Conjecture 2 of [2] asserts that if G^ and G2 are two copies of Zd

acting fixed-point freely and with a finite number of orbits on the
d-dimensional lattice X then there is a third group G with the same
properties containing G, and G2 as subgroups. (If true, this would imply
Conjecture 1.)

This conjecture is false. Let X be the graph C x K2. We identify V(X)
with Z x Z2. Then x has automorphisms g, a such that

Thus a2 = e. It is easily verified that g and ga have infinite order and act
fixed point freely with two orbits on X. However any subgroup of Aut (X)
which contains g and ga, contains a. Hence X is the required counterex-
ample.

It is easy to construct higher dimensional counterexamples of similar
type.
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