
The usual approach to learning classifiers is via the 

minimization of convex potential loss function over a class of 

linear functions (hinge loss for the SVM, logistic loss for logistic 

regression, exponential for boosting and so on…). This 

approach works well if the training samples are clean, but if 

they are corrupted by noise……..

(Long & Servedio, 2010): with a linear function class, any

convex potential minimiser resorts to random guessing under 

nonzero symmetric label noise! This leads to the folk theorem 

that for robustness to label noise, one needs a non-convex loss.

Q: Can we design a loss that is convex but robust to label noise?

A: Yes! Just unhinge the hinge loss from SVMs.
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Q: Is there an accurate classification rule that is robust to label noise?

A: Yes! Just use the mean classifier.
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Want: Samples from notional 

“clean” distribution 𝑫
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Q: Can we still learn a good classifier?

The Usual Approach – Convex Surrogates

None of the standard losses are robust to label noise, 

in fact (Long & Servedio, 2010) says that all convex 

potential losses share this property.

The devil is in the details: we can circumvent the 

result if we consider losses that are convex, but not 

convex potentials!

Linear Function Classes and the Mean Classifier

Robustness to Label Noise and the Unhinged Loss

To progress, we seek a loss function that is “unaltered” by the 

above correction, in the sense that,

 ℓ 𝑦, 𝑣 = 𝛼ℓ 𝑦, 𝑣 + 𝛽
for some constants 𝛼 and 𝛽. It turns out (see the paper for the 

details) that for this to occur ℓ 1, 𝑣 + ℓ −1, 𝑣 = 𝐶, for some 

constant 𝐶. None of the standard losses satisfy this 

property….however the following unhinged loss does!

ℓ 𝑦, 𝑣 = 1 − 𝑦𝑣

The unhinged loss is classification calibrated. That is, given a rich 

enough function class, minimizing this loss will yield the optimal 

classifier for 0-1 loss. Furthermore,

𝑟𝑒𝑔𝑟𝑒𝑡01 𝑓, 𝐷 ≤ 𝑟𝑒𝑔𝑟𝑒𝑡ℓ 𝑓, 𝐷 =
1

1 − 2𝜎
𝑟𝑒𝑔𝑟𝑒𝑡ℓ(𝑓,  𝐷)

so that minimizing the unhinged loss on corrupted samples is 

consistent means of learning classifiers.

Corruption-Corrected Losses

Example: for hinge loss, we get a 

series of negatively unbounded 

loss functions. Corrected hinge 

loss is non-convex, other losses 

remain convex. Ask for details .

One Line Summary

“While the truth is rarely pure, it can be simple”

Extra Goodies that are in the Paper/ Future

All this and more features as a chapter of Brendan’s PhD thesis. 

Ask for details on:

1) Characterizing linear loss’ importance when learning under 

symmetric label noise.

2) Simulating linear loss with high regularization.

3) Robustness properties of linear loss for more general noise 

processes.

4) Speeding up the evaluation of the mean classifier via kernel 

herding.

5) Corruption-corrected losses for more general noise, as well as 

losses that remain convex after being corrected.

6) More general statistical results for learning with corrupted 

data, featuring both upper and lower bounds.

(Natarajan et al., 2013): introduced a method to correct for 

symmetric label noise. For any loss ℓ, they associated a corrected 

loss, 

 ℓ 𝑦, 𝑣 =
1 − 𝜎 ℓ 𝑦, 𝑣 − 𝜎ℓ(−𝑦, 𝑣)

1 − 2𝜎
with the property that for all classifiers 𝑓, 𝑅ℓ 𝑓, 𝐷 = 𝑅 ℓ(𝑓,  𝐷). 
These losses give “bonus points” for correctly classifying a noisy 

label. Noise corrected losses allow one to learn from corrupted 

data, if you know 𝝈……

Linear approaches to learning classifiers, such as the SVM, 

minimize the regularized objective,

min
𝜔∈𝑯
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ℓ 𝑦, 𝜔, 𝜙 𝑥 +
𝜆

2
𝜔 2

where 𝜙:𝑋 → 𝑯 is a feature map. For the unhinged loss, 

performing this minimization is very easy! We have the following 

closed form expression for the optimal weight vector,

𝜔∗ =
1

𝜆|𝑆|
 

𝑥,𝑦 ∈𝑆

𝑦𝜙(𝑥)

Note that the regularization parameter only scales the weight 

vector, and therefore makes no difference to  the outputted 

classifier. The final classifier is expressed simply as a kernel 

mean.

𝑓 𝑥′ =
1

𝑆
 

𝑥,𝑦 ∈𝑆

𝑦𝑲(𝑥, 𝑥′)

Get: Samples from “corrupted”

distribution  𝑫, where labels are 

flipped with probability 𝜎


