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Motivation: the growth of data

Dataset sizes have been growing at a rapid rate the past few
years

In supervised learning, this growth affects the size of training sets

Benefit: More information, can make useful predictions

Concern: Can our methods of analysis scale to such datasets?
I A learning algorithm that scales superlinearly in the size of the

training set will be infeasible
I =⇒ Need methods that scale at worst linearly in the number

of examples
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Example: ad click data
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Defining large-scale learning

While large-scale can simply mean a large number of examples, a
more technical definition follows

In a learning problem, we want to minimize generalization error
subject to two constraints

I There is some maximum number of examples we can pick
I There is some maximum amount of time available

Active constraint defines scale of problem
I Number of examples =⇒ small- or medium-scale
I Time available =⇒ large-scale
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This talk

We focus on methods for large-scale support vector machines
(SVMs)

One of the most popular approaches for binary classification
tasks

I Strong theoretical underpinnings
I Good performance in practice

Interested in the training algorithms and some of the theory
behind them

I What are some techniques for large-scale SVMs?
I Why do they work? (specifically stochastic gradient descent)
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Support vector machines

A support vector machine (SVM) is a binary classifier that finds
a maximum margin separating hyperplane

Intuitively, we expect such a hyperplane to generalize the best

Aditya Menon (UCSD) Large-Scale Support Vector Machines: Algorithms and TheoryFebruary 27, 2009 8 / 73



Primal problem for SVMs

Suppose we have a training set T = {(xi, yi)}ni=1

How do we find the maximum margin separating hyperplane?

If we allow for misclassifications at the expense of some penalty,
the SVM problem is:

Primal SVM problem

minimize
λ

2
||w||2 +

1

n

n∑
i=1

[1− yi(w · xi)]+

where [·]+ denotes the hinge-loss:

[x]+ = max(0, x)

and w denotes the normal to the hyperplane
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Interpreting the primal problem

Can think of the primal problem as `2 regularized hinge-loss
minimization

Falls in the general class of functions ĝ(w) = `emp(w) + r(w)
I `emp measures loss on the training set
I r is a regularization term
I Both functions are convex, and hence the optimization is

tractable
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Dual formulation

The dual SVM problem is the following:

Dual SVM problem

maximize
∑
i

αi −
1

2

∑
i

∑
j

αiαjyiyj(xi · xj)

subject to 0 ≤ αi ≤
1

λn

According to the representer theorem, the optimal primal and
dual solutions w∗ and α∗ satisfy

w∗ =
∑
i

α∗i yixi
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Primal vs dual formulation

Historically, SVMs have been solved using the dual

Reasons?
I Naturally extend to kernels
I Precedent set by “hard margin” case: simple dual optimization

constraints

The primal problem that we stated renders both points largely
moot

I Can also handle kernels
I Unconstrained!

So, no a-priori reason to eschew the primal form
I Opens up some new techniques
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Kernelized dual formulation

Standard dual problem

maximize
∑
i

αi −
1
2

∑
i

∑
j

αiαjyiyj(xi · xj) subject to 0 ≤ αi ≤
1
λn

⇓

Kernelized dual problem

maximize
∑
i

αi −
1
2

∑
i

∑
j

αiαjyiyjK(xi, xj) subject to 0 ≤ αi ≤
1
λn

Can do the same for the primal form...
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Kernelized primal formulation
Standard primal problem

minimize
w

λ

2
||w||2 +

1
n

n∑
i=1

[1− yi(w · xi)]+

⇓

Kernelized primal problem

minimize
f∈H

λ

2
||f ||2H +

1
n

n∑
i=1

[1− yif(xi)]+

where H is a reproducing kernel Hilbert space (RKHS) with kernel K.

A Hilbert space is a complete inner product space, and an RKHS can
be written {f : f(x) =

∑
i βiK(x, xi)}

Aditya Menon (UCSD) Large-Scale Support Vector Machines: Algorithms and TheoryFebruary 27, 2009 14 / 73



Solving the SVM problem

Suppose we want to solve the SVM problem with a quadratic
programming (QP) solver

The dual problem requires access to the matrix Q, defined as

Qij = yiyjK(xi, xj)

Q’s size is n× n, which for even moderately large training sets is
too expensive to store in memory

I An off-the-shelf solver is insufficient
I We need to design more specialized QP solvers
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Classical SVM solvers: SVMlight and SMO

SVMlight: instead of solving the (large) QP problem, focus on a
subset of variables (the working set)

I Pick a subset of variables that are “likely” to change
I Now solve this reduced problem using a standard QP solver

SMO is a special case of SVMlight where we optimize only two
variables at once

I Advantage: this optimization can be done analytically; does not
require an external QP solver

I But we need heuristics for choosing the variables to optimize

Can implement caching of Q values to improve performance
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Problems with classical SVM solvers

Problem: These algorithms scale like n2 in the worst case
I Infeasible on large datasets

Question: Can we design algorithms that solve the problem
more efficiently?

I We will see some algorithms that scale either linearly or are
independent of the number of examples!

I There is a catch, however...
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Linear or kernel SVM?

Most nascent large-scale solvers looked at the linear SVM case

Why?
I Simpler!
I Oft-cited argument is “In some applications, data appear in a

rich dimensional feature space,the performances are similar
with/without nonlinear mapping”, with the canonical example
being text classification [HCL+08]

I Most text classification tasks are linearly separable [Joa98]

Focus on linear SVMs alone is obviously fundamentally limiting:
a major weakness of several of these techniques

I Those that do consider kernels do so in passing; for many,
viability for arbitrary kernels is an open question
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Approximate SVM solution

Newer solvers find approximate solutions to the SVM problem

If the objective function is f(w), then instead of finding
w∗ = argmin f(w), they find w̃ such that

f(w∗) ≤ f(w̃) ≤ f(w∗) + ρ

The constant ρ is the (user-controllable) optimization tolerance
I Runtime is explicitly analyzed in terms of this
I We call w̃ a ρ-optimal solution

Approximate solutions are meaningful for the SVM problem
because the optimization is a surrogate anyway

I Important point that we discuss later
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Stochastic gradient for SVMs

Stochastic gradient descent (SGD) underlies at least three SVM
training methods: SVM-SGD, NORMA, and Zhang’s algorithm

Idea is simply to apply SGD on the primal SVM problem
I Advantage: Runtime is independent of number of examples

Seems obvious, so why was it not tried earlier?
I Historical favouring of the dual over the primal; dual SGA tried

in the kernel adatron
I Association of SGD with backpropagation in multi-layer

perceptrons (non-convex problem)
I Slow convergence rate
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Review: stochastic gradient descent (SGD)

SGD uses a randomized gradient estimate to minimize a
function f(w)

I Instead of ∇f , use ∇̃f where E[∇̃f ] = ∇f
For empirical loss `emp(w) = 1

n

∑
i `(xi, yi;w):

wt+1 ← wt − η∇`(xi(t), yi(t);wt)

where η is the learning rate and i(t) ∈ {1, . . . , n} uniformly at
random

Pros Cons
Fast: “instantaneous” gradient Have to tune learning rate

Slow convergence
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SGD update for SVMs

Recall the primal problem

min
λ

2
||w||2 +

1

n

n∑
i=1

[1− yi(w · xi)]+

The SGD update is:

wt ← (1− ηtλ)wt−1 −
{
ηtyi(t)xi(t) if yi(t)(wt−1 · xi(t)) < 1

0 otherwise

where i(t) ∈ {1, 2, . . . , n} uniformly at random
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SVM-SGD: the algorithm

for t = 1 . . . T

Pick a random example (xi, yi)
ηt ← 1

λ(t+t0)

wt ← (1− ηtλ)wt−1 // weight decay
// not correctly classified with confidence
if yi(w · xi) < 1

wt ← wt − ηtyixi

return wT

Note 1: t0 is a heuristically chosen constant

Note 2: Learning rate of ηt = 1
λ(t+t0)

initially mysterious...
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Efficient sparse implementation

We can represent the weight vector w by a tuple (v, s), where v
is a vector and s a scalar

Then the w update is

s← (1− ηtλ)s

v ← v − ηtyixi
Runtime per iteration is proportional to number of non-zero
feature values
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SVM-SGD results

SVM-SGD can be orders of magnitude faster than methods like
SVMlight, SVMperf

Results on ccat data (781,265 examples with 47,152 features):

Algorithm Training Time Primal cost Test Error
SVMlight 23642 secs 0.2275 6.02%
SVMperf 66 secs 0.2278 6.03%

SVM-SGD 1.4 secs 0.2275 6.01%

Table: Results as reported in [Bot07].
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Handling kernels: NORMA

To apply SGD with a kernel SVM, we notice that, similar to the
representer theorem, our learned weight is always of the form

w =
∑

αiyiΦ(xi)

I =⇒ We can implicitly represent w by storing the (non-zero)
αi’s

Now the update for each example (xi(t), yi(t)) becomes

(∀1 ≤ j ≤ n)αj ← (1− ηtλ)αj

αi(t) ← αi(t) −
{
ηt if yi(t)(wt−1 · xi(t)) < 1

0 otherwise
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Drawbacks of SGD based methods?

Both methods converge to ρ-optimal solution in O(1/ρ2)
iterations

I Slow: usually expect optimizers to converge in e.g. O(log 1/ρ)
iterations

Learning rate tuning
I Common complaint about gradient methods!

Question: Fundamental limit to what we can do with SGD?

Answer: No, simple extensions make it powerful
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Pegasos: extending SGD

The Pegasos solver extends SGD in two ways:
I Aggressively decrease the learning rate: use ηt = 1

λt , no
parameter sweep required

I Project the weight vector onto {x : ||x|| ≤ 1/
√
λ} (stochastic

gradient projection)

Can prove that these changes allow for convergence in Õ
(
d
λρ

)
time

I Inverse dependence on λ accounts for problem difficulty

Can also work with kernels, similar to NORMA
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Pegasos: the algorithm

for t = 1 . . . T

Pick random At ⊆ T such that |At| = k
// not correctly classified with confidence
M := {(x, y) ∈ At : y(w · x) < 1}
∇t := λwt − 1

|M|
∑

(x,y)∈M yx

Update wt+ 1
2
← wt − 1

λt · ∇t // SGD update

Let wt+1 ← min
(

1, 1√
λ||w

t+1
2
||

)
wt+ 1

2
// Projection step

return wT+1

Note: k does not appear in runtime, and so effectively can be
chosen to be 1!

Aditya Menon (UCSD) Large-Scale Support Vector Machines: Algorithms and TheoryFebruary 27, 2009 30 / 73



Pegasos’ convergence

The projection step makes the learning rate ∝ 1
t

feasible

The reason the projection makes sense is the following theorem:

Theorem
The optimal SVM solution w∗ satisfies ||w∗|| ≤ 1√

λ
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Proof of theorem

By the strong duality theorem, the values of the optimal primal and
dual solutions are equal

Rescaling dual problem so that αi ∈ [0, 1], we get:

λ

2
||w∗||2 +

1
n

n∑
i=1

`(xi, yi;w∗) =
1
n

n∑
i=1

α∗i −
1

2λn2

∑
i,j

α∗iα
∗
jyiyj(xi · xj).

But by the representer theorem, w∗ =
∑
α∗i yixi:

λ

2
||w∗||2 +

1
n

n∑
i=1

`(xi, yi;w∗) =
||α∗||1
n
− λ

2
||w∗||2.

Rearranging,

λ||w∗||2 =
||α∗||1 −

∑n
i=1 `(xi, yi;w

∗)
n

≤ 1
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Pegasos results

Runtime comparison of Pegasos (in seconds):

Algorithm Dataset
ccat covertype astro-ph

SVMlight 20,075 25,514 80
SVMperf 77 85 5
Pegasos 2 6 2

Table: Results as reported in [SSSS07].

ccat: 804414 × 47236, 0.16% dense
covertype: 581012 × 54, 22% dense
astro-ph: 62369 × 99757, 0.08% dense
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Stochastic gradient descent: verdict?

Observed performance of various methods is good
I In no small part because individual updates are fast

But even with Pegasos, convergence rate is only 1/ρ
I Not competitive in terms of optimization

So why is SGD useful for learning?

Answer: Poor optimization does not necessarily mean poor
generalization

I If SGD can optimize “enough”, then we can process more
examples and get a good generalization

I Will discuss this more later

We now quickly look at a couple of recent SGD-based methods

Aditya Menon (UCSD) Large-Scale Support Vector Machines: Algorithms and TheoryFebruary 27, 2009 34 / 73



Recent work: FOLOS

FOLOS is a general solver of convex regularized risk minimization
problems i.e. `emp(w) + r(w)

Idea is to do SGD, and an analytic minimization (c.f. projection):

wt+ 1
2

= wt − ηt∇̃`emp(wt)

wt+1 = argmin
w

(
1
2
||w − wt+ 1

2
||2 + ηt+ 1

2
r(w)

)
Can be shown that the update is “forward looking”, and implicitly
imposes the correct regularization term:

wt+1 = wt − ηt∇̃`emp(wt)− ηt+ 1
2
∇r(wt+1)

Similar update to Pegasos for `2 regularization, discovers sparsity for
`1 regularization
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Recent work: SGD-QN

SGD-QN combines stochastic gradient descent and
quasi-Newton methods

Instead of using the inverse Hessian H−1, use a diagonal scaling
matrix D to approximate it

wt+1 ← wt − ηtD · ∇̃(`emp + r)(wt)

No theoretical bound or formal experiments
I Only briefly described as part of an ICML workshop (where it

was the winning method!)
I Unclear whether projection can be replaced (or augmented)

with diagonal scaling
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Dual coordinate descent

We can use coordinate descent to solve the optimization
problem in the dual (DCD)

I Algorithm underlying LibLinear

Idea is to simply solve the problem using a univariate
minimization

I Pick some αi, and hold α1, . . . , αi−1, αi+1, . . . constant
I Find the optimal value of αi given the other values

Fortunately, it turns out that the second step is easy to do for
SVMs
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Dual coordinate descent

If we let f(α) be the dual objective function, then we want to
find

min f(α + dei) subject to 0 ≤ αi + d ≤ C

where C = 1/nλ. This can be solved with the following:

Solution of the minimization
Let ∇i := (∇f(α))i. Then, the solution to the univariate
minimization is either αi or

αi ← min(max(αi −∇i/||xi||2, 0), C)

Further, by the representer theorem, if we explicitly store w,

∇i = yi(w · xi)− 1
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DCD algorithm

while α is not optimal

Pick an index i ∈ {1, . . . , n} // potentially stochastic
αold
i ← αi
∇i ← yi(w · xi)− 1

∇P ←


min(∇i, 0) if αi = 0
max(∇i, 0) if αi = C

∇i otherwise

if ∇P 6= 0 // check for non-trivial minimizer
αi ← min(max(αi −∇i/||xi||2, 0), C)
w ← w + (αi − αold

i )yixi
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Analyzing DCD

We can interpret the update solely in terms of w

wt = wt−1 − (α− αold)yixi

If i is chosen randomly, we can think of the algorithm as a form
of stochastic gradient descent!

I Learning rate is chosen via analytic minimization; “optimal” in
some sense

I Superior in general to updates for Pegasos? SGD-QN?

Convergence in batch case in O(log 1/ρ) passes over training set
I Stochastic case is not clear
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DCD results
Paper’s results indicate it is faster than Pegasos; but some issues
about choice of C

(a) Results on astro-ph (b) Results on rcv1

Figure: Results from [HCL+08].

astroph: 622369 × 99757, 0.08% dense
rcv: 677399 × 47236, 0.1% dense
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Bundle method
General optimization technique for convex functions: bundle
methods

I Idea is to lower bound a function by an envelope of hyperplanes
I Regularize solution for stability

Can apply this idea to SVMs with BMRM (bundle method for
risk minimization)

I Aside: misnomer? Bundle method vs cutting plane

ĝ(w)

f (w)
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BMRM update

Suppose ĝ(w) = `emp(w) + r(w)

f(w) = bt +∇(s)`emp(wt) · w defines a hyperplane tangential to
ĝ(w) at w = wt, where ∇(s) denotes a subgradient

Update the offset bt with

bt+1 = `emp(wt)−∇(s)`emp(wt) · wt

The iterates of w are simply taken to be the minimizers of the
current approximation:

wt+1 = argmin
w

{
r(w) + max

t′≤t+1

[
bt′ + (∇(s)`emp(wt′)) · w

] }

I Upper envelope
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BMRM optimization

Fortunately, the update admits a simple dual formulation

Dual bundle problem
The optimization problem for the bundle update is

max
α
− 1

2λ
αTQα + α · b such that ||α||1 = 1, αi ≥ 0,

where Qij = ∇(s)`emp(wi) · ∇(s)`emp(wj).

This is a problem whose size at iteration t is t× t
I Worst case, t = O(1/ρ); and for smooth `emp, t = O(log 1/ρ)
I Conjecture that an average of piecewise linear functions (e.g.

SVMs) also has roughly t = O(log 1/ρ)!

Can be solved with a QP solver, or with a line search
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BMRM results
Results only presented for reducing objective value; not as informative
as test error

(a) Results on astro-ph (b) Results on ccat

Figure: Objective value vs time results from [SVL07].
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BMRM and SVMperf

Do the results comparing BMRM and Pegasos contradict those
in the Pegasos paper?

I Authors claim SVMperf can be seen as a special case of BMRM

So is SVMperf superior to Pegasos?
I Should compare their generalization ability rather than

optimization
I But ccat results are surprising; Pegasos greatly outperformed

till ∼ 50 seconds? Hard to imagine Pegasos has comparable
generalization!

I Disappointingly, authors do not discuss this issue at all

Issue is potentially moot...results in OCAS contradict the ones
here!
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Extension: OCAS

OCAS is an extension of the BMRM approach

Recall that we try to minimize the regularized risk ĝ(w) with a
lower envelope f(w)

The BMRM iterates are guaranteed to satisfy

f(wt+1) < f(wt) but not ĝ(wt+1) < ĝ(wt)

I Some iterates are undesirable

OCAS ensures monotonicity of ĝ(wt) by a line search
I Keeps track of best solution, and combines this with current

iterate
I Aside: truer bundle method, but calls itself cutting plane!

Discusses potential for parallelization
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Why is SGD successful?

We’ve seen SVM training algorithms based on SGD

Advantage: faster processing of each example

Disadvantage: slower convergence in general

Question: Doesn’t the slow convergence rate seriously hamper
its viability?

(Surprising) Answer: Not if we look at the optimization
process more closely
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Learning and optimization

We have studied SVMs through their optimization problem
I In particular, we looked at runtime as a function of ρ

But recall that optimization is only a surrogate for generalization

We hope that minimizing the training error will minimize the
generalization error

Question: Is it necessary to perform strenuous optimization?
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The three components of error

[BB07] explicitly considers the role of optimization error

Suppose that we obtain a weight w̃ using an optimization
algorithm run to some finite tolerance

They decompose the generalization error ε(w̃) = E[`(x, y; w̃)]
into three components

I Approximation error εapp: minimum error due to hypothesis
class

I Estimation error εest: minimum error due to training set
I Optimization error εopt: minimum error due to optimization
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Minimizing generalization error

If n→∞, then εest → 0

Implication: For a fixed generalization error ε, as n increases
we can increase the optimization tolerance ρ

ε

n

εopt

εest

εapp

Generalization error
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The role of estimation error

We look at the behaviour of estimation error as n gets large

This lets us connect the behaviour of n and ρ to the
generalization error ε

Estimation error bound
Let ε∗ denote the minimum possible generalization error. Then,

0 ≤ ε− ε∗ ≤ c ·
(
εapp +

d

n
log

n

d
+ ρ

)
Intuition: Estimation error behaves like log n/n
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The role of estimation error

Now let’s bound the individual terms by E , the excess error
w.r.t. the approximation error:

ρ = Θ(E)

n = Θ(d log(1/E)/E)

That implies
ε− ε∗ ≤ c · (εapp + E)

So, we have a way to compare convergence to the generalization
optimum
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Estimation error and SGD

How quickly do GD and SGD get a bound of c · (εapp + E)?

Algorithm Optimization time Generalization time

GD O
(
nd log 1

ρ

)
O
(
d2

E log2 1
E

)
SGD O

(
d
ρ

)
O
(
d
E

)
2GD O

(
(d2 + nd) log log 1

ρ

)
O(d

2

E log 1
E log log 1

E )

2SGD O
(
d2

ρ

)
O
(
d2

E

)
Conclusion: SGD generalizes asymptotically faster than GD!

Key point: SGD’s runtime does not depend on the number of
examples
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Applying to SVMs

What implications does this have for SVMs?
I Note: minimizing a regularized loss term

SGD-based solvers (e.g. Pegasos) should be able to leverage
decreased estimation error

I But can we more accurately characterize this?

(Very surprising) Implication: The training time should
decrease as the number of examples increases
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SVM generalization

Given more examples, SVM training time should ideally not
increase if we want the same generalization error

I Suppose in time t, we achieve 5% generalization error with
10,000 examples

I With 100,000 examples, we can sample to get the same error

But [SSS08] goes a step further
I Argues that as number of examples increases, runtime should

decrease as a result of decreased estimation error
I That is, it takes us < t time to get 5% generalization error with

100,000 examples
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SVM generalization bound

Foundation of the analysis is the following theorem

Theorem
Let w be the learned weight vector when SVM optimization is done
up to tolerance ρ, and let w0 be any other weight vector. Then,

g(w) ≤ g(w0) + 2ρ+
λ

2
||w0||2 + Õ(1/λn),

where g(w) is the generalization error with weight vector w,

g(w) = E(x,y)∼P (X ,Y)[`(x, y;w)]
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Proof of generalization bound

Let f(w) := g(w) + λ
2
||w||2 denote the regularized

generalization error

Now decompose g(w) as

g(w) = f(w)− λ

2
||w||2

= f(w)− λ

2
||w||2 −

(
f(w0)− g(w0)−

λ

2
||w0||2

)
= g(w0) + (f(w)− f(w0)) +

λ

2
||w0||2 −

λ

2
||w||2

= g(w0) + (f(w)− f(w∗)) + (f(w∗)− f(w0))

+
λ

2
||w0||2 −

λ

2
||w||2.

where w∗ = argmin f(w).
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Proof of generalization bound contd.

Recall that ĝ(w) is the SVM training error

Second term is a difference of expected losses, can be bounded
using the corresponding empirical losses:

f(w)− f(w∗) ≤ 2 max(0, ĝ(w)− ĝ(w∗)) +O

(
log 1/δ

λn

)
= 2ρ+O

(
log 1/δ

λn

)
by definition of w

f(w∗)− f(w0) ≤ 0 by the optimality of w∗

Combining these facts,

g(w) ≤ g(w0) + 2ρ+
λ

2
||w0||2 + Õ(1/λn)
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Applying the bound

We can use this bound to find T (n, E), the time needed for
training with n examples to get excess error E
Rewrite ρ in terms of T, λ: e.g. for Pegasos,

g(w) ≤ g(w0) + Õ(d/λT ) +
λ

2
||w0||2 + Õ(1/λn)

Choosing λ to minimize this,

g(w) ≤ g(w0) + Õ(||w0||
√
d/T ) +O(||w0||/

√
n)

= g(w0) + E

Now express T as a function of n and E ...
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Pegasos and SVMperf

Easy to get runtime bounds for Pegasos and SVMperf

Pegasos:

T (n, E) = Õ

(
d

(E/||w0|| −O(1/
√
n))

2

)

SVMperf:

T (n, E) = O

(
nd

(E/||w0|| −O(1/
√
n))

2

)

Implications?
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Pegasos and SVMperf

Pegasos’ runtime monotonically decreases as a function of n!

SVMperf has a turning point, but after that the runtime increases
I Turning point where decrease in estimation is offset by increase

in iteration cost

n

T (n; E)

||w0||2
E2

n

T (n; E)

||w0||2
E2

4||w0||2
E2

Pegasos SVMperf
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Verifying Pegasos’ runtime

Results on covertype:
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Summary

We have seen several solvers for SVMs targetting large training
sets

I Primal methods based on SGD
I Dual solvers based on optimization “tricks”

Saw why SGD is poor at optimization but good at generalization
I Runtime agnostic about number of examples
I Still manages to leverage decreased estimation error

Runtime for Pegasos decreases with increase in training set size
I Fundamental limit to dual QP methods?
I SGD for dual c.f. DCD?
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Comparison of methods?

Experimental comparisons by no means comprehensive
I Pegasos’ results directly contradict those in BMRM and OCAS!
I Insufficient detail on parameter choices

Motivation for ICML workshop
I SGD-QN performed well, but so did some batch algorithms
I Optimized interior point method did extremely well!

Role of loading time
I If method stores training set in memory, loading time is usually

the bottleneck!
I Online algorithms mix parsing and learning (e.g. Vowpal

Wabbit)
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Comment on plausibility

Question: Is supervised learning realistic when the training set
is very large?

I In some domains like bioinformatics, labelling examples is
expensive; impossible to completely label a large training set

I A more realistic setting is semi-supervised learning

Answer: Not always, but there are domains where large training
sets are completely labelled

I Labelling may be a natural byproduct of user actions e.g.
Google ad clicks

I Large user-bases can be leveraged/“tricked” into doing the
labelling e.g. reCAPTCHA

Nonetheless, (large-scale) semi-supervised SVMs is an important
future direction
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Other research directions

Other approaches to large-scale SVMs (and learning)
I Parallelization e.g. Cascade SVM, OCAS
I Training set reduction, e.g. active learning, clustering

Stochastic gradient for kernels?
I NORMA was more interested in moving target setting; no

comparison to other methods
I Caching? Storing truncated kernel in memory?

SVMs when data does not fit in memory
I Completely precludes batch algorithms; incremental SVMs?

Multi-class SVMs
I In domains where we might expect large-scale data to arise

naturally, classification is usually more complex than binary
I Need efficient multi-class SVMs
I Some nascent work e.g. LaRank
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Questions?
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[BB07] Léon Bottou and Olivier Bousquet. The tradeoffs of large scale
learning. In Advances in Neural Information Processing
Systems, volume 20, 2007.
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