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ABSTRACT
Support vector machines (SVMs) are a very popular method for
binary classification. Traditional training algorithms for SVMs,
such as chunking and SMO, scale superlinearly with the number
of examples, which quickly becomes infeasible for large training
sets. Since it has been commonly observed that dataset sizes have
been growing steadily larger over the past few years, this neces-
sitates the development of training algorithms that scale at worst
linearly with the number of examples. We survey work on SVM
training methods that target this large-scale learning regime. Most
of these algorithms use either (1) variants of primal stochastic gra-
dient descent (SGD), or (2) quadratic programming in the dual. For
(1), we discuss why SGD generalizes well even though it is poor
at optimization, and describe algorithms such as Pegasos and FO-
LOS that extend basic SGD to quickly solve the SVM problem.
For (2), we survey recent methods such as dual coordinate-descent
and BMRM, which have proven competitive with the SGD-based
solvers. We also discuss the recent work of [Shalev-Shwartz and
Srebro, 2008] that concludes that training time for SVMs should
actually decrease as the training set size increases, and explain why
SGD-based algorithms are able to satisfy this desideratum.

1. WHY LARGE-SCALE LEARNING?
Supervised learning involves analyzing a given set of labelled

observations (the training set) so as to predict the labels of unla-
belled future data (the test set). Specifically, the goal is to learn
some function that describes the relationship between observations
and their labels. Archetypal examples of supervised learning in-
clude recognizing handwritten digits and spam classification.

One parameter of interest for a supervised learning problem is
the size of the training set. We call a learning problem large-scale
if its training set cannot be stored in a modern computer’s memory
[Langford, 2008]. A deeper definition of large-scale learning is that
it consists of problems where the main computational constraint is
the amount of time available, rather than the number of examples
[Bottou and Bousquet, 2007]. A large training set poses a challenge
for the computational complexity of a learning algorithm: in order
for algorithms to be feasible on such datasets, they must scale at
worst linearly with the number of examples.

Most learning problems that have been studied thus far are medium-
scale, in that they assume that the training set can be stored in
memory and repeatedly scanned. However, with the growing vol-
ume of data in the last few years, we have started to see problems
that are large-scale. An example of this is ad-click data for search
engines. When most modern search engines produce results for
a query, they also display a number of (hopefully) relevant ads.
When the user clicks on an ad, the search engine receives some
commission from the ad sponsor. This means that to price the ad

reasonably, the search company needs to have a good estimate of
whether, for a given query, an ad is likely to be clicked or not.
One way to formulate this as a learning problem is to have training
examples consisting of an ad and its corresponding search query,
and a label denoting whether or not the ad was clicked. We wish
to learn a classifier that tells us whether a given ad is likely to be
clicked if it were generated for a given query. Given the volume of
queries search engines process (Google processes around 7.5 bil-
lion queries a month [Searchenginewatch.com, 2008]), the poten-
tial size of such a training set can far exceed the memory capacity
of a modern system. Conventional learning algorithms cannot han-
dle such problems, because we can no longer store and have ready
access to the data in memory. This necessitates the development of
new algorithms, and a careful study of the challenges posed by this
scale of problem. An extra motivation for studying such algorithms
is that they can also be applied to medium-scale problems, which
are still of immediate practical interest currently.

Our focus in this document is how a support vector machine
(SVM), a popular method for binary classification that is based
on strong theory and enjoys good practical performance, can be
scaled to work with large training sets. There have been two strands
of work in the literature on this topic. The first is a theoretical
analysis of the problem, in an attempt to understand how learn-
ing algorithms need to be changed to adapt to a large-scale setting.
The other is the design of training algorithms for SVMs that work
well for these large datasets, including the recent Pegasos solver
[Shalev-Shwartz et al., 2007], which leverages the theoretical re-
sults on large-scale learning to actually decrease its runtime when
given more examples. We discuss both strands, and attempt to iden-
tify the limitations of current solvers. First, let us define more pre-
cisely the large-scale setting that we are considering, and describe
some general approaches to solving such problems.

1.1 Batch and online algorithms
When we discuss supervised learning problems with a large train-

ing set, we are implicitly assuming that the learning is done in the
batch framework. We do not focus on the online learning scenario,
which consists of a potentially infinite stream of training examples
presented one at a time, although such a setting can certainly be
thought of as large-scale learning. However, it is possible for an
online algorithm to solve a batch problem, and in fact this might
be desirable in the large-scale setting, as we discuss below. More
generally, an intermediate between batch and online algorithms is
what we call an online-style algorithm. This is an algorithm that
assumes a batch setting, but only uses a sublinear amount of mem-
ory, and whose computational complexity scales only sublinearly
with the number of examples. This precludes batch algorithms that
repeatedly process the training set at each iteration. A standard
online algorithm can be converted into an online-style algorithm

1



easily: we simply stream in the training set one at a time to the
algorithm, and use some combination of the predictors for each
example as our predictor for the entire training set. It can be shown
that if an online algorithm achieves a regret of R(T ) on T rounds
of adversarial input, then it can achieve a generalization error of
O(R(T )/T ) when used as an online-style algorithm [Kakade and
Tewari, 2009].

1.2 Approaches to large-scale learning
As we discussed in the previous section, it is possible to use an

online algorithm to solve a large-scale task. In fact, there are three
obvious ways in which we can solve a large-scale batch learning
problem (c.f. [Langford et al., 2008]):

1. We can treat the training data as a stream, and apply an on-
line or online-style learning algorithm. Such algorithms have
space requirements that are only mildly (possibly not at all!)
dependent on the number of examples, and we do not need
to store the entire training set in memory.

2. We can parallelize a batch algorithm, which lets us split the
large learning problem into a number of smaller problems.
Given enough machines or processor cores, each sub-problem
becomes medium-scale, and hence tractable.

3. We can preprocess the training data and sample a small sub-
set of data to train on. This subset may be chosen randomly,
or using a more sophisticated approach that tries to pick only
informative examples. If we are particularly aggressive in
choosing this subset, we might be able to reduce the training
set enough to make our training algorithm tractable.

Although parallelization is a natural way to deal with large-scale
problems, most literature on large-scale SVM training focusses on
the online and online-style solutions. We are aware of only one
large-scale SVM solver, OCAS [Franc and Sonnenburg, 2008] (dis-
cussed in §4.5.1), that explicitly considers parallelization. Other
parallel SVMs, such as [Graf et al., 2005], have not been tested
on truly large datasets, and lack strong theoretical guarantees. The
idea of preprocessing the training set is plausible in the context of
SVMs because as we discuss in §3.3, the final SVM classifier is
only a function of a few training examples. While there have been
solutions based on this idea (e.g. [Yu, 2003, Schohn and Cohn,
2000]), they are not the main focus of the document, as most of
these approaches are heuristics with no theoretical guarantees.

1.3 Outline of paper
The outline of this document is as follows. Section 2 provides

some background on regularization, a foundational concept in SVMs,
and gradient methods, which are used in several of the training
methods we describe. Section 3 gives the necessary background
on SVMs. Section 4 is the main section of the document, describ-
ing several large-scale SVM training algorithms, and Section 5 an-
alyzes in more detail why algorithms based on stochastic gradient
descent perform well on the SVM task. The conclusion, Section 6,
identifies directions for further research.

2. OPTIMIZATION IN LEARNING
In this section, we give some background on the connection be-

tween optimization and learning, which is important in analyzing
training algorithms for SVMs. We define foundational concepts
such as generalization error and regularization, and then look at
gradient based optimization methods. The latter serve as the foun-
dation for several large-scale SVM training methods we study in
subsequent sections.

2.1 Estimating generalization error
A learning problem must have a measure that says how good an

algorithm performs on the task. A universal goal for any (batch)
supervised learning algorithm is generalization, which estimates
how well the algorithm will perform on future data. Suppose the
data points x ∈ X with true labels y ∈ Y have a joint distribution
D over X × Y . Usually, we want the number of misclassifications
to be low: a misclassification is where our prediction function f :
X → Y has f(x) 6= y. We can define the generalization error
of a classifier that produces a parameter vector θ to be g(θ) =
E(x,y)∼D[1[f(x) 6= y)]]. Here, 1[·] is the 0-1 indicator function,
also called the 0-1 loss function.

If we can write an analytic expression for g(θ), then the learning
problem amounts to finding the θ that minimizes this expression.
However, in practice the distribution D of points is unknown. So,
we try to minimize some function ĝ(θ) on the training set, T =
{(xi, yi)}ni=1, that acts as a surrogate for the generalization error.
A natural choice is to minimize the 0-1 loss on the training set,
but this problem is quite difficult as it is not convex. Therefore,
we instead introduce another convex (non-negative) loss function
`(x, y; θ) that approximates the 0-1 loss, and minimize this over
the training set. The training error is therefore

ĝ(θ) =
1

n

n∑
i=1

`(xi, yi; θ).

This expression is also known as the empirical risk (“risk” here is
used synonymously with “loss”).

It should be stressed that ĝ is only a surrogate for the true gen-
eralization error, and minimizing ĝ does not necessarily mean that
we minimize the generalization error. In fact, when we try to mini-
mize the loss over the training set, there is the danger of overfitting,
meaning that we find spurious patterns in the training set that are
not manifested in the distribution D. A common way to prevent
overfitting during training is regularization, which we describe be-
low.

2.2 Regularization
Regularization refers to augmenting the objective function g(θ)

with an extra term that penalizes “complex” θ vectors. Intuitively,
this can be seen as an application of Occam’s razor. Common mea-
sures of complexity include the `1 and `2 norms of θ. We incorpo-
rate regularization by representing our objective as the sum of the
empirical loss and regularization term. The general form becomes

ĝ(θ) =
1

n

n∑
i=1

`((xi, yi); θ) + r(θ)

= `emp(θ) + r(θ), (1)

where r is a regularization term, and `emp denotes the empirical
loss on the training set. This problem is known as regularized risk
minimization.

While the choice of a specific regularization term, such as the `2
norm, can seem arbitrary, in problems such as ridge-regression, one
can show that this minimizes the influence of spurious correlations
in the data. `2 regularization is also intimately connected to SVMs,
as we show in §3.1.

2.3 Gradient methods for learning
In the previous section, we showed how we can define a learning

problem as computing θ = argmin ĝ(θ), where ĝ(θ) is the sum of

empirical loss and regularization terms. We now look at methods
for finding this minimum based on computing the gradient of ĝ.
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2.3.1 Gradient descent
A classical mathematical technique for finding the minimum of

a function f(θ) is gradient descent (GD). This method uses the fact
that the gradient∇f of a function points in the direction of greatest
increase. This means that −∇f points in the direction of greatest
decrease, and so a natural iterative algorithm to find the minima of
f is to update an estimate θt using

θt+1 = θt − ηt∇f(θt).

Here, ηt is the learning rate, which determines how far we move
in the direction of the gradient. It is important to choose this value
carefully, because if it is too small then convergence is slow, and if
it is too large then we can overshoot and miss the minimum.

For a learning problem, we are interested in∇ĝ, which is

∇ĝ(θt) =
1

n

n∑
i=1

∇`(xi, yi; θt) +∇r(θt).

2.3.2 Stochastic gradient descent
In gradient descent, we compute the gradient using the entire

training set. A superficially simple (but in fact far-reaching) alter-
ation of this is to find the gradient with respect to a single randomly
chosen example. This technique is called stochastic gradient de-
scent (SGD). The update rule is then

θt+1 = θt − ηt∇`(xi(t), yi(t); θt)− ηt · ∇r(θt),

where i(t) is an index drawn randomly from {1, 2, . . . , n}. In
expectation, this update is the same as gradient descent, because
Ei(t)[`(xi(t), yi(t); θt)] = 1

n

∑
i `(xi, yi; θt).

By using only a single example we are only getting an approxi-
mation to the true gradient; therefore, we are no longer guaranteed
to move in the direction of greatest descent. Nonetheless, there are
at least two important reasons why stochastic gradient descent is
useful for learning problems: (1) it is significantly quicker than gra-
dient descent when n is large, and (2) it can be shown that stochas-
tic gradient descent minimizes the generalization error quicker than
gradient descent. We discuss the latter in more detail in §5.2.

2.3.3 Second-order gradient methods
Gradient methods only use information about the gradient ∇.

However, the Hessian H of second order partial derivatives can
provide valuable information about the curvature of a function.
Methods that use the Hessian are known as second-order or New-
ton methods. We define second-order gradient descent (2GD) with
the update rule

θn+1 = θn − γ[Hf (θn)]−1∇f(θn),

where Hf is the Hessian of f , and γ > 0 is the step size. In the
classic formulation of Newton’s method, we have γ = 1. When γ
is chosen differently (e.g. using a line search), the method is some-
times called the damped Newton method [Boyd and Vandenberghe,
2004].

As with standard GD, we can use second-order stochastic gradi-
ent descent (2SGD) by using a stochastic approximation ∇̃f to the
true gradient. The drawback of a second-order method is that the
Hessian for a training set with d features is a d × d matrix. When
d is large, computing this matrix can be infeasible. Even if Hf can
be computed efficiently, storing it can be infeasible (as it is typi-
cally a dense matrix). This motivates quasi-Newton methods, such
as LBFGS [Liu et al., 1989].

2.3.4 Subgradient descent and projection

Gradient and stochastic gradient descent assume that f(θ) is a
differentiable function of θ, so that∇f is always well defined. But
if we wish to minimize f(θ) = ĝ(θ), this assumes that `((x, y); θ)
and the regularization term r(θ) are differentiable in θ, which does
not always hold. For example, `1 regularization, where r(θ) =
|θ|1, is not differentiable at θ = 0. Fortunately, if `emp and r are
both convex functions, then even if they are not differentiable, they
can be lower bounded at any point by a subgradient. The sub-
gradient ∂f(θ) consists of all vectors that are lower bounds to the
function at θ:

∂f(θ) = {v ∈ Rd : (∀θ′)f(θ′) ≥ f(θ) + v · (θ′ − θ)}.

The update for subgradient descent is almost identical to gradient
descent:

θt+1 = θt − ηt∇(s)f(θt).

Here, we use∇(s)f(θt) to denote any vector v ∈ ∂f(θt).
Now, suppose that we wish to do the optimization over a con-

strained set Ω of θ values. An extension to subgradient descent that
allows us to solve this problem is subgradient projection, where af-
ter performing a subgradient descent step, we project the resulting
vector into Ω, giving the following update:

θt+1 = ΠΩ(θt − ηt∇(s)f(θt)),

where ΠΩ denotes Euclidean projection1 onto the set Ω.

3. SUPPORT VECTOR MACHINES
Support vector machines (SVMs) are a popular method for bi-

nary classification. SVMs can be seen as an extension of the per-
ceptron, which tries to find a hyperplane that separates the data.
The perceptron simply tries to find any separating hyperplane, with-
out considering how clearly the hyperplane separates the data. But
intuitively, a hyperplane that is as far away as possible from either
class is preferable, because we expect this to generalize better to
unseen data (an example is shown in Figure 1). A technical mea-
sure of how clearly a hyperplane separates data is its margin. This
is the distance of the hyperplane to the closest point in the dataset;
a large margin means that the hyperplane very clearly separates the
data.

Figure 1: There can be several hyperplanes (shown as dashed
lines) that separate a dataset, but intuitively the one with the
largest margin (the red line) has the best generalization.

1If Ω is the space spanned by basis vectors u1, . . . , uk, and if A =
[u1 u2 . . . uk], then the Euclidean projection of x onto Ω is
A(ATA)−1ATx.
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Given the definition of margin, we can define the goal of an
SVM: for a training set {(xi, yi)}ni=1, where xi are the observed
data and yi the labels, an SVM finds a maximum margin separat-
ing hyperplane. In the standard setting, we have real valued data
xi ∈ Rd, and binary labels yi ∈ {±1}. We now formally define
SVMs as an optimization problem.

3.1 The primal SVM formulation
In formal terms, the parameter θ that SVMs learn consists solely

of a vector w, representing the normal to the separating hyperplane
with maximum margin. In the rest of this document, we will use w
in place of θ whenever we refer to a problem for which θ = 〈w〉.
There are two ways of treating the SVM problem. The classical
method is the hard margin SVM [Vapnik and Lerner, 1963], which
assumes that the dataset is linearly separable: hence, every point
must be correctly classified by the maximum margin hyperplane.
The soft margin SVM [Bennett and Mangasarian, 1992, Cortes and
Vapnik, 1995] allows for some points to be misclassified, but penal-
izes these points appropriately. The latter is more useful in practical
settings where data is unlikely to be perfectly separable (e.g. due to
noise), and so we focus on this version. It can be represented with
the following optimization problem.

THEOREM 1. Given a training set {(xi, yi)}ni=1 of training ex-
amples where yi ∈ {±1}, the hyperplane parameterized by normal
vector w that balances the goal of separating the data and maxi-
mizing margin can be found by solving the following optimization
problem:

minimize
w

λ

2
||w||2 +

1

n

n∑
i=1

max(0, 1− y(w · x)), (2)

where λ ≥ 0 is called the regularization parameter.

As a note on terminology: instead of using a regularization pa-
rameter λ that scales ||w||2, we can use a misclassification param-
eter C that scales the empirical loss term. The two are related by
λ = 1

nC
.

We can think of the problem as requiring the minimization of
empirical loss, plus a regularization term that limits the complexity
of our solution [Shalev-Shwartz et al., 2007], like the form of §2.2.
In fact, in the inseparable case, this is a more convincing motivation
for the SVM problem than maximizing the margin (whose defini-
tion is not as clear when we allow for misclassifications) [Poggio
and Smale, 2005]. We discuss the choice of loss function in §3.4.

3.2 The dual formulation and kernels
The above analysis assumed that we were seeking a hyperplane

in the same space as the dataset, that is, a linear classifier. SVMs
can be used as nonlinear classifiers using the classic kernel trick.
The idea is to embed the data points xi into some higher dimen-
sional space F using some mapping Φ : X → F , and to seek a
linear classifier in F . This will of course be nonlinear in the origi-
nal space X . The kernel trick allows us to make the mapping Φ im-
plicit, by defining the kernel matrixK, whereKij = Φ(xi)·Φ(xj).
If in the original space we only employ dot-products xi · xj to
solve the learning problem, we can seamlessly transfer to a high
dimensional space by simply replacing these dot-products by Kij .
This suggests that we can use any kernel matrix K that defines a
valid dot-product in a high dimensional space, without knowing
precisely what the high dimensional mapping Φ is! Mercer’s theo-
rem [Cristianini and Shawe-Taylor, 2000, pp. 35–41] tells us that
any positive semi-definite matrix is a valid kernel matrix.

For SVMs, the primal problem we described in the previous sec-
tion is its most natural form, because it captures exactly the quan-
tity we wish to minimize. When moving to kernels with SVMs,
however, it is standard to work with the dual optimization problem.
The reason is that the dual version uses explicit dot-products, as we
show below.

THEOREM 2. The dual formulation of the SVM optimization
problem in Equation 2 is

maximize
α

n∑
i=1

αi−
1

2

∑
i,j

αiαjyiyj(xi·xj) subject to 0 ≤ αi ≤
1

λn
.

(3)

Since we have an explicit dot-product, using a kernel is simple:
we replace xi · xj by Kij , giving the dual problem

maximize
α

n∑
i=1

αi−
1

2

∑
i,j

αiαjyiyjK(xi, xj) subject to 0 ≤ αi ≤
1

λn
.

In §4.1, we show how we can incorporate kernels into the primal
problem.

Several practical applications of SVMs use nonlinear kernels,
such as the polynomial and RBF kernel. However, in applications
like text classification, linear SVMs are still used, because it has
been observed that many text classification problems are linearly
separable [Joachims, 1998]. Most literature on large-scale SVM
training, starting with SVMperf , have targetted the linear SVM
problem, citing this fact. Perhaps a more pragmatic reason for this
is that linear SVMs make a lot of analysis simpler. Commonly used
datasets to test these methods include the Reuters CCAT data, and
the astro-ph data consisting of abstracts from arXiV’s Astro-
physics section2.

3.3 What are support vectors?
The dual SVM problem lets us define the important concept of

support vectors that give SVMs their name. These vectors are the
training points which are not classified with confidence; that is,
they are either misclassified, or are correctly classified but fall in-
side the margin region (see §3.1). Equivalently, they are the ex-
amples whose corresponding αi values are non-zero. Recalling the
representer theorem from the previous section, this tells us that the
optimal weight vector w∗ is a linear combination of the support
vectors. Therefore, the support vectors are the “essential” training
points, and the goal of training is to discover them.

The number nSV of support vectors also characterizes the com-
plexity of the learning task: if nSV is small, then that suggests
that only a few examples are important, and that we can disre-
gard many examples without any loss in accuracy. However, if
nSV is large, then nearly every example is important for accuracy.
[Steinwart, 2004] showed that under general assumptions about the
loss function and underlying distribution D of the training data,
nSV = Ω(n). This suggests that asymptotically, all points are
critical for training! While this seemingly gives an Ω(n) bound
on training time, we note that this is only to solve the SVM prob-
lem exactly. As we discuss in §5.2, it is of greater practical in-
terest to look approximate solutions to the SVM problem, where
this bound no longer applies. Further, datasets that arise in prac-
tice need not necessarily have Θ(n) support vectors: it has been
observed that the usps dataset has nSV = O(

√
n), for example

[Chapelle, 2007].

2http://arxiv.org/archive/astro-ph
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3.4 Loss functions
We make a brief comment about the choice of loss function

in SVMs. The standard definition of SVMs uses `(x, y;w) =
max(0, 1 − y(w · x)), as we have done; this is known as the
hinge-loss. This penalizes errors linearly, but has the disadvan-
tage that it is not differentiable everywhere. A common variant
of the classical SVM definition is to instead use the square-loss,
`(x, y;w) = max(0, 1− y(w ·x))2, which is differentiable every-
where. An intermediate solution is the Huber loss, which is linear
for y(w · x) < 0, but quadratic for 0 ≤ y(w · x) ≤ 1, and hence
also differentiable everywhere. All these loss functions are convex,
which means that it is easy to optimize with them, and they also
upper-bound the 0-1 loss function (see §2.1). This means that min-
imizing these losses also makes bounds the misclassification error
of our classifier.

In practice, the differentiability of the square and Huber loss
is appealing, and indeed these losses are sometimes used for this
reason. Theoretically however, it has been shown that using the
hinge-loss, SVMs approach the optimal classifier (also called the
Bayes classifier), whereas the square and higher order losses ap-
proach only a distribution whose sign gives the optimal classifier
[Lin, 2002]. Having said this, it is not clear whether there is a dis-
cernible practical difference in accuracy when one does not use the
hinge-loss.

It is straightforward to incorporate different losses into the pri-
mal version of the SVM problem (Equation 2): treating max(0, 1−
yi(w ·xi)) as a special case of a loss function `(xi, yi;wi), we can
plug in the square or Huber loss and get a similar optimization prob-
lem. It is not as obvious how the change in loss function affects the
dual problem. The dual problem for the hinge- and square-loss can
be expressed as as

maximize
∑
i

αi −
1

2
αTQα subject to 0 ≤ αi ≤ U, (4)

where Qij = yiyj(xi · xj) + Dij for some diagonal matrix D,
and U is some constant. The values of D,U depend on the loss
function: for hinge-loss, Dii = 0 and U = 1

λn
. For square-loss,

Dii = λn
2

, U =∞.

4. LARGE-SCALE SVM SOLVERS
We look at a range of large-scale SVM solvers, starting with a

brief discussion of traditional optimization methods whose ideas
have been considerably extended. A summary of these solvers and
some of their properties is given in Table 1. We can see that most
solvers fall into two categories: (1) primal gradient based methods,
and (2) dual quadratic programming based methods. The two ex-
ceptions, Core Vector Machines and OCAS, are very interesting di-
rections, and there is evidence that both are competitive with most
other methods. We begin with a discussion of the traditional di-
chotomy between primal and dual methods, and why primal meth-
ods have received renewed interest of late.

4.1 Primal vs dual form
In §3.2, we showed how the dual SVM problem can naturally be

extended to handle kernels. As pointed out in [Chapelle, 2007], the
same can be done for the primal formulation when we have hinge-
or square-loss. In the case of hinge-loss for example, we write the
primal optimization problem as

minimize
f∈H

λ

2
||f ||2H +

1

n

n∑
i=1

max(0, 1− yif(xi)),

whereH is a reproducing kernel Hilbert space (RKHS)3 with asso-
ciated kernelK. This can now be solved using standard techniques
such as gradient descent; see §4.3.1 for details. As with the lin-
ear SVM case, we can view the problem as regularized risk mini-
mization. The `2 regularizer ||f ||2H is essential here, as the Hilbert
space implicitly defined by the kernel K may be infinite dimen-
sional! Without some form of regularization, we run the risk of
easily overfitting on the training data.

The reason this is a natural extension of the linear primal prob-
lem is that the classic representer theorem [Kimeldorf and Wahba,
1971] tells us that the optimal solution w∗ of the primal problem
can be represented as a linear combination of the training exam-
ples in the high-dimensional space: w∗ =

∑
i α
∗
i yiΦ(xi), where

Φ is the high-dimensional mapping implicitly defined by K. In
fact, these α∗i ’s are precisely the optimal values of the dual prob-
lem. Now comparing the above formulation to the original primal
problem, we see that we have replaced ||w|| with a Hilbert norm,
and w · x with an evaluation in the Hilbert space (which is equiva-
lent to a dot-product). If we choose K(xi, xj) = xi · xj , then we
recover the linear primal problem.

Given the fact that the primal SVM problem can handle kernels,
it is instructive to ask why the dual version was traditionally pre-
ferred as the de facto space to work in. One historic reason for
working in the dual is that it more obviously lends itself to non-
linear SVMs, as it makes explicit use of dot-products. The idea
of invoking the representer theorem to incorporate kernels into the
primal problem, while obvious in hindsight, does not seem to have
been considered until [Chapelle, 2007]. Another potential historic
reason for the use of the dual, suggested by [Chapelle, 2007], is
that the original hard margin formulation of SVMs has a series of
constraints of the form 1 − yi(w · xi) ≤ 0. By contrast, the dual
constraints are of the form 0 ≤ αi ≤ 1/λn, which are significantly
simpler as they merely requiring the variables being optimized to
lie in a bounded interval (these are known as box constraints in op-
timization theory). However, as we showed in Equation 2, the soft
margin primal SVM can be represented as an unconstrained min-
imization, hence avoiding this issue. This unconstrained formula-
tion has only been recently considered with the advent of gradient-
based SVM solvers (which we discuss in §4.3).

One convenience of the primal formulation is that it is simpler to
deal with approximate solutions [Chapelle, 2007]. A ρ-approximate4

solution w̃ to the SVM problem satisfies ĝ(w) ≤ ĝ(w∗)+ρ, where
w∗ is the true minimizer of the training error. If we work with the
primal problem, then it is simple to stop our algorithm at an appro-
priate point to get an approximate solution. But with a dual solver,
we have the problem that a ρ-approximate dual solution does not
necessarily correspond to a ρ-approximate primal solution. Hence,
we need to devise more sophisticated stopping conditions, such as
ones based on the KKT criteria. This is a big conceptual simpli-
fication of the SVM training process. Naturally, this is only in-
teresting if approximate solutions to the SVM problem are viable
in practice. It turns out that such approximations are theoretically
well-motivated, and allow us to view large-scale learning in a very
different light. We look at this issue more in §5. Interestingly, clas-
sical solvers were interested in exact solutions to the SVM problem;
we discuss a couple of them below.

4.2 Traditional methods
Early SVM solvers focussed on quadratic-programming approaches

3Recall that a Hilbert space is a complete inner product space, and
a RKHS with kernelK is the space {f : f(x) =

∑
i αiK(x, xi)}.

4We will use ρ henceforth to refer to the optimization tolerance
parameter.
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Algorithm Citation SVM type Optimization type Style Runtime
SMO [Platt, 1999] Kernel Dual QP Batch Ω(n2d)

SVMlight [Joachims, 1999] Kernel Dual QP Batch Ω(n2d)

Core Vector Machine [Tsang et al., 2005, 2007] SL Kernel Dual geometry Batch O(s/ρ4)

SVMperf [Joachims, 2006] Linear Dual QP Batch O(ns/λρ2)

NORMA [Kivinen et al., 2004] Kernel Primal SGD Online(-style) Õ(s/ρ2)

SVM-SGD [Bottou, 2007] Linear Primal SGD Online-style Unknown
Pegasos [Shalev-Shwartz et al., 2007] Kernel Primal SGD/SGP Online-style Õ(s/λρ)

LibLinear [Hsieh et al., 2008] Linear Dual coordinate descent Batch O(nd · log(1/ρ))

SGD-QN [Bordes and Bottou, 2008] Linear Primal 2SGD Online-style Unknown
FOLOS [Duchi and Singer, 2008] Linear Primal SGP Online-style Õ(s/λρ)

BMRM [Smola et al., 2007] Linear Dual QP Batch O(d/λρ)

OCAS [Franc and Sonnenburg, 2008] Linear Primal QP Batch O(nd)

Table 1: A comparison of various SVM solvers discussed in this document. “QP” refers to a quadratic programming technique,
“SGD” to stochastic (sub)gradient descent, and “SGP” to stochastic (sub)gradient projection. “SL” means the method only works
with square-loss. The runtime is for a problem with n training examples and d features, with an average of s non-zero features per
example. λ is the SVM regularization parameter, and ρ the optimization tolerance. “Unknown” means there is no known formal
bound on the runtime.

to directly solve the dual optimization problem (Equation 3), for
reasons discussed above. These solvers have the disadvantage of
being computationally expensive, with superlinear dependence on
the number of examples n (for some solvers, the worst case run-
time is at least quadratic in n). All the algorithms we discuss subse-
quently dramatically improve this runtime. Here, we briefly discuss
two traditionally important training methods: Sequential Minimal
Optimization [Platt, 1999] and SVMlight [Joachims, 1999]. Both al-
gorithms have served as the inspiration for modern, faster training
algorithms (LaRank and SVMperf / BMRM).

The Sequential Minimal Optimization (SMO) technique [Platt,
1999] is a historically important SVM training method. It attempts
to break up the SVM optimization problem into a number of smaller
subproblems, which can be efficiently solved and pieced together.
To be precise, at each iteration SMO tries to optimize a pair of La-
grange multipliers αi, αj . This is contrast to the original QP solver
for SVMs (the “chunking” approach [Vapnik, 1982]), which tries to
solve a problem involving all non-zero Lagrange multipliers. This
made SMO quite attractive at the time, since it was faster than sev-
eral competing methods. Its runtime is superlinear in the number of
training examples, in the worst case being Ω(n2d): this is a big im-
provement over older methods that scale like n3, but is obviously
infeasible on large datasets.

SVMlight is a dual-decomposition method, meaning that it de-
composes the standard dual problem into a series of subproblems.
Then, by working with only a small subset of these problems at
a time, it has a space requirement that is linear in the number of
examples n. This was one of the first linear-space SVM training
algorithms, and its software package of the same name has been
regularly updated. Like most dual methods, it handles nonlinear
SVMs. Based on empirical analysis, its runtime is known to be
Ω(n2d), which like SMO is infeasible for large data sets. It is still
a versatile approach, however, and can be applied to transductive
SVMs, regression and ranking problems, and so on. Hence, it is
still a popular package in some application domains.

4.3 Primal gradient-based methods
Most large-scale primal methods use some variant of SGD to

quickly solve the SVM problem. As mentioned in §2.3.2, SGD
has the advantage of being significantly quicker than methods that
use the true gradient at each iteration. In practice, this is the rea-

son why SGD is sometimes favoured even though it is known to
be slow at convergence. It seems then that these methods cannot
hope to compete with approaches that solve the SVM optimization
problem more strenuously. In §5, we show why this intuition is not
necessarily true. We start by looking at some simple SGD based
methods.

4.3.1 Stochastic gradient descent solvers
NORMA [Kivinen et al., 2004] is an online learning algorithm

for solving nonlinear SVMs. It is essentially an application of SGD
to the primal SVM objective function (to be precise, for the case of
hinge-loss, we apply stochastic subgradient descent). Recall from
§3.2 that in the nonlinear SVM problem, we seek to find some f in
a RKHS H such that

λ

2
||f ||2H +

1

n

n∑
i=1

max(0, 1− yif(xi))

is minimized. It can be shown that the corresponding SGD update
is

ft+1 = (1− ηλ)ft − η`′(ft(xt), yt)k(xt, ·),

where `′(x, y) = ∂
∂x
`(x, y). Since f resides in a Hilbert space,

this is an update of a function, not a vector. To move to the simpler
case of a vector update, we invoke the representer theorem (see
§3.2), which tells us that ft(x) =

∑t−1
i=1 αik(xi, x). Therefore,

the update can alternately be expressed in terms of the αi variables,
yielding

αt = −ηt`′(ft(xt), yt)

αt′ = (1− ηtλ)αt′ for t′ < t.

For the case of SVMs with hinge-loss, the update for αt is

αt = ηtyt1[ytft(xt)− 1 ≤ 0].

Importantly, it is shown that one can truncate the expansion of
ft(x) with only exponentially small loss in accuracy: this lets one
keep a constant number τ of terms at any given time, which means
that the space requirements of the algorithm are not prohibitive.
Further, both a regret and training error bound are provided for the
algorithm: it can be shown that in either case, the algorithm re-
quires O(1/ρ2) iterations to converge to an ρ-optimal solution.
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NORMA is the first application of SGD to the SVM problem
that we are aware of, and the idea seems to have been rediscov-
ered at least twice for the linear SVM case. Bottou proposed es-
sentially the same algorithm with SVM-SGD5 [Bottou, 2007] for
linear SVMs, and showed that SVM-SGD achieves comparable
test set performance to other more complicated methods, such as
SVMlight and SVMperf , in dramatically less time (it is 20 times
faster than SVMlight ). [Zhang, 2004] also proposed essentially the
same method, albeit in the more general framework of linear pre-
diction, and was more interested in the theoretical performance of
SGD.

It is initially surprising that SGD based methods can achieve
such good performance in much less time. Since the gradient es-
timates are based on one example at a time, they do a factor of n
less work than standard batch methods per example. Of course, the
bound on the number of iterations, which isO(1/ρ2) for NORMA,
is much higher than logarithmic convergence rates usually enjoyed
by batch methods. There is also the issue of tuning the learning
rate, a common complaint about gradient methods. However, we
will see that the iteration bound can be sharpened to O(1/ρ) in the
process of solving the learning rate issue. Further, a detailed com-
parison of runtimes in §5 will show why the independence on n has
very strong implications. We first look at the Pegasos solver, which
is an important extension of plain SGD.

4.3.2 Pegasos
Pegasos [Shalev-Shwartz et al., 2007] is a SVM optimization al-

gorithm whose runtime is independent of the number of training
examples. (In §5.3, we will study Pegasos’ runtime more closely.)
The algorithm operates on mini-batches of the training data, with
the batch size specified by a user-supplied parameter k. This allows
the solver to vary between stochastic gradient descent and subgra-
dient projection: when k = 1, Pegasos is nothing but SGD aug-
mented with a projection step, and when k = n, the number of
training examples, it is simply subgradient projection. However,
despite the superficial similarity to SGD, an important property
about Pegasos is that it converges to the ρ-approximate solution
in Õ

(
d
λρ

)
iterations, where d is the maximum number of non-

zero features in each example. This is in contrast to the O(1/ρ2)
convergence of methods based on plain SGD, such as NORMA.

The algorithm proceeds as follows: at each iteration, a random
subset of k training examples is chosen. The weight vector is up-
dated by the subgradient of the objective function evaluated with
these k examples. Then, the vector is projected onto a ball of ra-
dius 1/

√
λ, because it can be shown that the optimal solution lies

inside this ball (see Lemma 1). The formal description of the al-
gorithm is given in Algorithm 2. In the case k = 1, there are a
couple of important distinctions from plain SGD that allow Pega-
sos to converge to the optimal solution quickly. First, the learning
rate is decayed by ηt = 1

λt
, where λ is the regularization param-

eter. Second, we always project w so that ||w|| ≤ 1/
√
λ. The

projection step ensures that the sharp decrease in learning rate is
feasible, in that it is still possible to bound the number of iterations
by O(1/ρ).

Since Pegasos’ runtime is parameterized by k, like the SGD
methods of the previous section, its runtime is independent of the
number of examples. Naturally, this would not be useful if it caused
the algorithm to converge very slowly. In fact, Pegasos converges to
the ρ-approximate solution in only Õ

(
d
λρ

)
iterations. This guar-

5Note that there is no formal publication of the work, although all
code is freely available.

for t = 1 . . . T do
Pick random At ⊆ T such that |At| = k
M := {(x, y) ∈ At : 1− y(w · x) > 0}
∇t := λwt − 1

|M|
∑

(x,y)∈M yx

Update wt+ 1
2
← wt − 1

λt
· ∇t

Let wt+1 ← min

(
1, 1√

λ||w
t+ 1

2
||

)
wt+ 1

2

end for
return wT+1

Algorithm 2: The Pegasos algorithm.

antee relies on the following simple (but non-obvious) fact about
the optimal SVM solution, which says the projection step always
brings us closer to the SVM solution.

LEMMA 1. The optimal weight vector w∗ that minimizes the
primal SVM problem satisfies ||w∗|| ≤ 1√

λ
.

PROOF. The strong duality theorem says that when we try to
minimize a convex function subject to a set of linear constraints,
the values of the optimal primal and dual solutions are equal; in
other words, the so called duality gap is zero. Since the optimiza-
tion problems for SVMs satisfy these conditions, if we consider
the optimal solutions w∗ and α∗ to the primal and dual problems
respectively, we must have6

λ

2
||w∗||2 +

1

n

n∑
i=1

`(xi, yi;w
∗) =

1

n

n∑
i=1

α∗i −
1

2λn2
·∑

i,j

α∗iα
∗
jyiyj(xi · xj).

But using the fact that w∗ =
∑
α∗i yixi and α∗i ≥ 0, the right hand

side can be rewritten:

λ

2
||w∗||2 +

1

n

n∑
i=1

`(xi, yi;w
∗) =

||α∗||1
n
− λ

2
||w∗||2.

Rearranging,

λ||w∗||2 =
||α∗||1 −

∑n
i=1 `(xi, yi;w

∗)

n
.

The claim follows from the fact that ||α∗||1 ≤ n and that loss
functions are positive.

An interesting observation about Pegasos is that the parameter
k does not appear as an assumption or runtime parameter for the
proof of convergence. This suggests that for any value of k, Pe-
gasos will converge to an approximately optimal solution. Since
k = 1 is the least expensive choice of k, we can take this to be the
default value. So, Pegasos can effectively be thought of as SGP,
and demonstrates that SGD can be used to design very efficient and
competitive learning algorithms.

We make a brief note on the importance of Pegasos’ learning
rate. Aside from the favourable convergence guarantees, by fixing
the learning rate to be ηt = 1/λt, we eliminate the need to discover
a sensible value for this rate. This parameter tuning is commonly
cited as a drawback of SGD, and so by setting it to be a fixed an-
alytic expression, we avoid the issue altogether. Of course, we are
still required to find a sensible value for λ, but this is true for any
6The α variables in the dual formulation has been scaled by nλ:
this accounts for the fact that we scaled the primal problem by λ.
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SVM training method. Choosing a good regularization parameter
λ (or equivalently, the loss factorC) is entirely problem dependent,
not algorithm dependent. Small values of λ (or large values of C)
mean that we severely penalize misclassified points; if a small λ is
required for a good solution, this indicates that the problem is dif-
ficult. The fact that Pegasos explicitly depends on 1/λ means that
it accounts for the difficulty of the problem!

Pegasos can also be extended to use nonlinear kernels using the
representer theorem. Recall from §3.2 that this theorem let us ex-
press w as a linear combination of the training examples, w =∑
i αiyiΦ(xi). It was observed in §3.3 that only some αi 6= 0,

and that these training examples are called the support vectors. If
we let I be the indices of examples for which αi 6= 0, then we
can represent w implicitly using I and the corresponding αi val-
ues. This is because we only perform two operations on w: scaling
by a constant, and finding the dot-product. Both can be done only
knowing I and αi; the latter is because the dot-product can be writ-
ten using the kernel:

w · Φ(xj) =
∑
i∈I

αiyiK(xi, xj).

So, by keeping track of I and the αi values, we can easily handle
kernels in Pegasos, with the same convergence guarantee. The only
caveat is that the runtime per iteration now becomes O(|I|), which
is min(n, Õ(d/λρ)) in the worst case.

4.3.3 SGD-QN
SGD-QN [Bordes and Bottou, 2008] is a recent method that

topped the wild track of the ICML ’08 Pascal Challenge [Pascal,
2008]. This algorithm combines SVM-SGD with a quasi-Newton
(QN) method. Recall that a quasi-Newton method approximates
the inverse Hessian, and uses this to scale the gradient at each iter-
ation. Quasi-Newton methods are by nature batch methods, and so
have been typically eschewed for large-scale problems. However,
a recent paper [Schraudolph et al., 2007] developed an online ver-
sion of LBFGS called oLBFGS, eliminating all steps that assume
that there is batch access to the training data at every step. This
nearly lets LBFGS be used as-is for training a large-scale SVM, but
for the fact that LBFGS assumes that the function being minimized
is smooth, which is not the case for the hinge-loss formulation of
SVMs. Recent work has lifted this assumption as well [Yu et al.,
2008], which would make LBFGS a viable approach for the SVM
problem if combined with the oLBFGS framework. We discuss this
further in §6.

SGD-QN is essentially a simplification of oLBFGS where, in-
stead of keeping an accurate estimate of the inverse Hessian, a di-
agonal scaling matrix D is used instead. With this diagonal matrix,
the update for the weight vector becomes

wt+1 ← wt −
1

t
D · ∇(s)ĝ(wt).

Here, 1/t represents the learning rate, inspired by the success of
Pegasos. At iteration t+ 1, the estimate D is updated using

D ←
(

1− 2

t+ 1

)
D +

2

t+ 1
· wt+1 − wt
∇(s)
t ĝ(wt+1)−∇(s)

t ĝ(wt)
,

where the 2/(t + 1) term is a dampening factor, ∇(s)
t is the sub-

gradient evaluated at the training example (xt, yt), and (wt+1 −
wt)/(∇(s)

t ĝ(wt+1)−∇(s)
t ĝ(wt)) is an estimate of the inverse sec-

ond derivative7.

7This is because f ′(x) ≈ f(x+h)−f(x)
h

for h small

The use of a diagonal scaling matrix to approximate second-
order gradient methods has been studied previously in the context
of neural networks [Becker and LeCun, 1989]. An important point,
which is also addressed in oLBFGS, is that this requires an ex-
tra gradient computation compared to SGD: in SGD, we only find
∇tĝ(wt), and the next iteration finds ∇t+1ĝ(wt+1), which is dis-
tinct from the∇tĝ(wt+1) term required here.

The only results on SGD-QN are those from the Pascal Chal-
lenge, though these are promising: the other entries in the wild
track included algorithms such as LibLinear and SVM-SGD. A
formal publication is required to study it more carefully, though.
In particular, it is not clear if the diagonal scaling matrix improves
the convergence rate of SVM-SGD. While it uses the 1/t learning
rate of Pegasos, it does not use a projection step: is it the case that
the diagonal scaling allows such a learning rate to be feasible? And
would adding a projection step improve performance? Finally, up-
dating D at every iteration would require O(n) work, and so the
authors prescribe doing this only once in a while. It is not clear
how often is enough to ensure good performance. These questions
are important, because a heuristic, while potentially useful, is not
theoretically convincing.

4.3.4 FOLOS
While we have studied solvers specifically for SVMs thus far, as

we discussed in §3.1, SVMs fall under the general class of methods
having an objective function of the form ĝ(w) = `emp(w) + r(w),
where `emp(w) is a convex measure of empirical loss, and r(w) is
a convex regularization term. Therefore, a convex optimizer that
solves a general problem of this form is trivially also an SVM
solver.

FOLOS [Duchi and Singer, 2008] is such a solver for the loss-
plus-regularization class of convex optimization problems. The al-
gorithm is a simple extension to the subgradient projection method
for solving convex problems, where instead of doing a projection
on the result of a gradient step, FOLOS does an analytic minimiza-
tion. The intuition is that to minimize a function `emp(w) + r(w),
we want to be close to whateverwt minimizes `emp(w), but we also
want r(w) to be small as well. So, FOLOS uses the following pair
of updates:

wt+ 1
2

= wt − ηt∇(s)`emp(wt)

wt+1 = argmin
w

(
1

2
||w − wt+ 1

2
||2 + ηt+ 1

2
r(w)

)
.

The wt+1 update tries to find a weight vector that is close wt+ 1
2

(which in turn is close to the minimum of `emp(w)), but is also
close to the minimum of r(w).

Now, since 0 ∈ ∂f(w) ⇐⇒ (∀v)f(v) ≥ f(w), w is the
minimum of the function `emp iff 0 belongs in the subgradient of
`emp evaluated at w. So, since wt+1 is defined to be a minimizer, it
can be shown that this property implies

wt+1 = wt − ηt∇(s)`emp(wt)− ηt+ 1
2
∇(s)r(wt+1).

This equation gives an alternate expression for the wt+1 vector that
we end up with after performing the projection step given earlier.
The critical point of this equation is that wt+1 involves not only
the subgradient ∇(s)`emp(wt), but also ∇(s)r(wt+1), which is the
gradient of r(w) at wt+1; that is, wt+1 implicitly influences our
update even before we have evaluated it! This is the reason for the
name FOLOS, as the gradient is forward looking. The algorithmic
implication of this is that our computation of wt+1 implicitly in-
cludes a regularization term on wt+1, which can lead to sparse so-
lutions if we choose `1 regularization. Note that we could not have
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done this update directly, since we can’t directly compute r(wt+1)
from wt. If we instead used r(wt) in the update, we would not get
a truly sparse solution; this is because r(wt) would only penalize
the previous weight vector, rather than the current one.

While intuitively sensible, an important question is whether these
updates converge to the right solution. The authors show that this is
the case both in the batch and online cases. For the batch case, the
FOLOS algorithm has O(1/

√
T ) convergence to the optimal solu-

tion, where T is the number of iterations of the algorithm. More
precisely, with a learning rate ηt ∝ 1√

t
,

min
t∈{1...T}

ĝ(wt)− ĝ(w∗) = O

(
GD

log T√
T

)
,

where w∗ is the optimal solution, ||w∗|| < D and G is a bound on
the norm of any subgradient in ∂f and ∂r.

For the online case, assuming that one of `emp, r is H-strongly
convex8 for some constant H , one can show that with a learning
rate of ηt = 1/t, the regret after T iterations is

R(T ) = O

(
G2 log T

H

)
.

Combined with the online-to-batch generalization result of [Kakade
and Tewari, 2009], this tells us that FOLOS converges in Õ( 1

Hε
) it-

erations. This is comparable to the Pegasos iteration bound when
FOLOS is applied to the SVM problem.

As the above follows from the classical subgradient projection
technique, the gradients used are the true gradients over the entire
training set, not the stochastic gradients evaluated at each exam-
ple. If this assumption were required in FOLOS, it would restrict
its applicability in the batch learning framework. Fortunately, the
authors state if we replace ∇(s)`emp with a stochastic approxima-
tion ∇̃(s)`emp (e.g. the subgradient evaluated only at a single exam-
ple, as with SGD), the above guarantees still hold in expectation.
Therefore, FOLOS can be operate as an online-style algorithm.

The FOLOS framework is quite general, encompassing a recent
truncated gradient approach of [Langford et al., 2008] when we use
r(w) = ||w||1. When we use r(w) = λ

2
||w||22, as with SVMs, then

the update rule is

wt+1 =
wt − ηt∇(s)`emp

1 + ηtλ
.

This means that the update is a stochastic subgradient step that then
shrinks the result towards 0, with the aim of reducing the norm.
This is similar in intent to the projection step of Pegasos.

An important direction for further study of FOLOS is comparing
it to other methods on realistic data. The experiments in the pa-
per are, by the authors’ own admission, preliminary, and reflect a
medium- scale learning task (the training set consists of 1000 nor-
mally distributed examples (plus noise) in R400). The results on
this synthetic dataset are promising: FOLOS is competitive with
Pegasos, and learns a sparse weight vector when `1 regularization
is used.

4.4 Dual quadratic programming methods
As we discussed in §3.2, arguably the main historic reason for

favouring the dual SVM problem is that it can handle kernels eas-
ily. With the focus on linear SVMs in the large-scale setting, we
8A function f isH-strongly convex if for any x, y, f(y) ≥ f(x)+
∇f(x) · (y − x) + H

2
||y − x||2. It can be shown that f is H-

strongly convex iff f − || · ||2/2 is convex. The SVM problem
is strongly-convex, because the `2 regularizer r(w) = λ

2
||w||2 is

strongly-convex.

have seen several methods that shifted back to the primal. But even
in the linear case, the dual is amenable to certain optimization tech-
niques (such as coordinate descent) that have been well-studied in
optimization literature, and have proven to converge quickly. The
dual solvers that we study use one or more of these special tech-
niques to quickly achieve a good solution.

4.4.1 SVMperf

SVMperf [Joachims, 2006] is a popular solver linear SVMs, and
was one of the first SVM training algorithms to have linear de-
pendence on both the number of examples and average number of
non-zero feature values. This fact, combined with a free implemen-
tation, has made it a standard solver that is used as a baseline for
all modern training algorithms.

SVMperf solves the standard SVM problem by viewing it as a
special case of structural SVMs, which are used to predict struc-
tured output. The primal problem for a structural SVM is

minimize
λ

2
||w||2 + ζ subject to ∀c ∈ {0, 1}n,

n∑
i=1

ciyi(w · xi) ≥
n∑
i=1

ci − ζn.

Notice that there are exponentially many constraints to the problem,
which is to be expected for structural prediction. What is desirable
however is that there is only a single slack variable, ζ, shared across
each of these constraints. This affords some flexibility in solving
the problem. The paper shows how to solve the structural problem
with a cutting plane method, where instead of solving a difficult
convex problem, we solve an approximation of it consisting of a
number of hyperplanes (these are the cutting planes); this is simi-
lar to the idea behind bundle methods, which we analyze in §4.4.3,
where it turns out that SVMperf can be viewed as a special case of
a bundle method. We can solve the structural SVM problem it-
eratively by keeping a working set W of constraint indices, and
solving the problem restricted to the constraints in W . Each ele-
ment of W is a vector w ∈ {0, 1}n, and so can be thought of as
some combination of training point indices; when W = {0, 1}n,
then we solve the exact structural problem. This working set is up-
dated at each iteration to include the indices for the points that are
currently misclassified: we add a new binary vector w toW , where
wi denotes if the ith training example is misclassified or not.

The algorithm terminates when it is within ρ of the optimal pri-
mal solution, and this is shown to happen in at most O(1/λρ2)
iterations, and so SVMperf , like Pegasos, depends on the difficulty
of the task (λ → 0 the training time increases). Unlike Pegasos,
the dependence on 1/ρ is quadratic, meaning that it takes longer to
reach an approximate solution.

The benefits of studying the structural SVM problem are also
seen in the performance of the LaRank algorithm [Bordes et al.,
2007]. LaRank was originally designed for dealing with very large
multi-class prediction problems, such as those encountered when
doing structured prediction, but has been shown to be competitive
for binary classification problems as well.

4.4.2 LibLinear
LibLinear is a popular linear classification package that is related

to LibSVM, a library for general (not necessarily linear) SVMs.
The algorithm behind LibLinear is described in [Hsieh et al., 2008],
which uses coordinate descent on the dual SVM formulation. The
idea of coordinate descent is to perform a series of univariate opti-
mizations, one for each coordinate of the variable of interest. Roughly,
to optimize a function f(x1, . . . , xn), for each coordinate i, we fix
all other coordinates and try to find the optimal value of xi. In other
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words, we assume that the values {x1, . . . , xi−1, xi+1, xn} are all
correct, and that only xi is suboptimal.

The algorithm applies this idea to the dual SVM problem; recall
that this is (Equation 4)

minimize
α

f(α) =
∑

αi −
1

2
αTQα subject to 0 ≤ αi ≤ U,

where the values of Q,U depend on the choice of loss function
(hinge- or square-loss). Suppose we have some current (subopti-
mal) solution vector α, and want to find the optimal value for the
ith coordinate given all other coordinates. This can obviously be
solved using

minimize
d

f(α+ dei) subject to 0 ≤ αi + d ≤ U, (5)

where ei is the ith standard basis vector. When d = 0, this means
that the value of αi is optimal. It is easy to check that this function
is a quadratic, and its Taylor expansion is:

f(α+ dei) = K + d · ∇if(α) +
d2

2
Qii,

where K is some constant. Clearly d = 0 is the minimizer of
Equation 5 iff max(0,∇if(α)) = 0. Otherwise, the unconstrained
optimal d value is

d = −∇if(α)

Qii
.

To compute ∇if(α) efficiently, it is useful to also store the primal
weight vectorw in addition to α. Using the representer theorem for
w,∇if(α) can be shown to be

∇if(α) = yi(w · x)− 1 +Diiαi,

from which we deduce the update for α is

αi ← min(max(αi −∇/Qii, 0), U).

Of course, one also needs to update w in order to use it to compute
∇if . The update for w has the simple form

w ← w + (αi − αold
i )yixi.

The algorithm is presented in Algorithm 3. The fact that we
store both α and w means that, while the algorithm is derived us-
ing the dual SVM formulation, we can analyze it in terms of how
it updates w. To compare the update of w to that of SGD, note
that the step of picking a coordinate can be done in several ways:
one can simply cycle through all points in presented order, one
can shuffle the points and cycle through them, or one can pick a
point at random. The latter is similar to an SGD approach. In
fact, the update of w is reminiscent of the SGD update, but for two
differences: (1) there is no learning rate, but instead the scaling
factor (αi − αold

i ) is used, (2) instead of using the (sub)gradient
∇fprimal = λw − yixi · 1[yi(w · xi) < 1], we use the direction
yixi. Loosely, point (1) can be viewed in a similar light to the
quasi-Newton update, where scaling is taken care of by the Hes-
sian matrix rather than a manually tuned learning rate. Notice also
that we need to project the αi’s to ensure that the box constraints
are met. This means that the algorithm can be thought of as a gen-
eralized SGP method, with the learning rate found using analytic
minimization.

It is shown that this algorithm converges in only O(log 1/ρ) it-
erations, which makes it very attractive in practice. Experiments
in the paper show that the algorithm achieves a low generalization
error solution quicker than Pegasos, likely because the latter needs
Õ(d/λρ) iterations. However, in §5.3 we point out that Pegasos’
runtime decreases on larger training sets, and it is not clear that the
same is true of this method.

Let α← zero vector in Rn
Let w ← zero vector in Rd

while α is not optimal do
Pick an index i ∈ {1, . . . , n}
αold
i ← αi
∇ ← yi(w · xi)− 1 +Diiαi
∇P ← min(max(∇, 0), U)

if∇P 6= 0 then
αi ← min(max(αi −∇/Qii, 0), U)
w ← w + (αi − αold

i )yixi
end if

end while
Algorithm 3: The dual coordinate descent algorithm of Hsieh et al.
[2008].

4.4.3 Bundle method for risk minimization (BMRM)
Recall our characterization of the SVM problem as regularized

risk minimization, where risk is measured using hinge-loss. The
BMRM approach [Smola et al., 2007] is a solver of general risk
minimization problems that uses bundle methods. A bundle method
refers to any technique that minimizes a non-smooth (but convex)
objective function by approximating it using an envelope of sub-
gradients (Figure 2). One can then try to minimize this envelope,
which is a simpler problem as it constitutes a set of linear func-
tions. Further, it has been observed that the number of subgradients
required for a good fit of the true objective is independent of the
number of training examples that constitute the risk. This is sim-
ilar to SVMperf ’s idea of keeping a small set of linear constraints,
and indeed it turns out that BMRM is an extension of SVMperf to a
more general framework. The advantage of this is that it allows us
to prove much sharper convergence bounds.

Figure 2: An example of approximating a convex function using
a lower envelope of tangential hyperplanes.

In the BMRM approach, we minimize regularized risk ĝ(w) =
`emp(w) + r(w), as in Equation 1, by keeping an envelope of sub-
gradients for ĝ(w) at iterates {w1, w2, . . .}. At each iteration, this
envelope is updated to include the subgradient at the current point
wt. We do this by keeping an offset bt, which is computed using

bt+1 = `emp(wt)−∇(s)`emp(wt) · wt.

With this offset, the function f(w) = bt+∇(s)`emp(wt) ·w defines
a hyperplane tangential to ĝ(w) at the point w = wt. By keeping a
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lower envelope of these hyperplanes, we get an increasingly refined
approximation to ĝ(w). The iterates ofw are simply taken to be the
minimizers of the current approximation of the objective function:

wt+1 = argmin
w

{
r(w) + max

t′≤t+1

[
bt′ + (∇(s)`emp(wt′)) · w

]}
.

Of course, this minimization is not trivial as-is; to solve it, the au-
thors move into the dual-space, and show that the minimization
problem is equivalent to

max
α
− 1

2λ
αTQα+ α · b such that ||α||1 = 1, αi ≥ 0,

where Qij = ∇(s)`emp(wi) · ∇(s)`emp(wj). The size of this pro-
gram is t × t at the tth iteration, which means it can be quickly
solved when t is small. The authors show that the bundle method
converges inO(1/ρ) iterations, which means that in the worst case,
we solve a problem of size O(1/ρ) × O(1/ρ). In fact, for contin-
uously differentiable objective functions, this bound is drastically
improved to O(log 1/ρ) iterations.

The paper’s experimental comparison with Pegasos show that
BMRM is a better optimizer, as it approaches the optimal solution
faster. However, as we discuss in §5.2, this does not necessarily
translate into significantly better generalization. Another question
is the relation of SVMperf and BMRM. According to the paper,
SVMperf is essentially equivalent to BMRM when it is applied to
the SVM problem. But the results for SVMperf reported in [Shalev-
Shwartz et al., 2007] are markedly different than the ones in this
paper; in [Shalev-Shwartz et al., 2007], SVMperf is sometimes a
factor of 10 slower than Pegasos. It is not clear why there is a sub-
stantial difference between the two sets of results (a similar issue of
conflicting results was cited as a motivation for the ICML’08 Pas-
cal Challenge [Pascal, 2008]). Interestingly, Pegasos was similarly
reported to be worse than SVMperf in the results published in [Franc
and Sonnenburg, 2008], which we discuss in §4.5.1.

4.5 Other solvers
While most large-scale SVM solvers have been based on pri-

mal gradient descent or dual quadratic-programming, this does not
represent the complete spectrum of solvers. Here, we discuss two
promising approaches, one working with the primal and the other
with the dual.

4.5.1 OCAS
OCAS [Franc and Sonnenburg, 2008] is an SVM solver that

uses an improved cutting plane technique, building on the work
of SVMperf and BMRM. It is based on the simple observation that
when we minimize the lower envelope in a bundle method, we do
not necessarily minimize the true objective function. That is, if
we let f(w) denote the approximation to the regularized risk term
ĝ(w), then the iterates {wt} of a bundle method are guaranteed
to satisfy f(wt+1) < f(wt), but g(wt+1) > g(wt) is possible.
While the bundle method eventually converges to the optimal solu-
tion, such iterates are not helpful and slow convergence. The idea
of OCAS is to force the true objective function to also decrease
monotonically across iterates. To do this, we do a line-search to
minimize the true objective function. This initially seems like it
might be as complicated as the original problem; minimizing the
true objective via a line search is not obviously easier than mini-
mizing it globally. However, the authors show how this line search
can be done in O(n logn) time, using a simple sort-based algo-
rithm.

Theoretically, OCAS shares the same convergence bound as SVMperf ;
this is not surprising, as each step of OCAS can be no worse than

that of SVMperf . As a result, its runtime is simply stated as O(nd),
which is the same as SVMperf . In the reported experimental re-
sults, however, OCAS is significantly faster than SVMperf , usually
by a factor of 5, indicating that OCAS has a smaller constant in
its big-O bound. Surprisingly, OCAS is also reported to be faster
than Pegasos, by virtue of Pegasos being slower than SVMperf on
some datasets. This is completely at odds with the results from
the Pegasos paper, which are on the same datasets! Interestingly,
as we noted earlier, the results of the BMRM paper also show
SVMperf outperforming Pegasos. Consequently, Pegasos’ true be-
haviour is by no means firmly established, and requires close study.

4.5.2 Core vector machines
The margin-based motivation for SVMs suggests there is some

geometry involved in the method. A geometric formulation of
SVMs has been established [Bennett and Bredensteiner, 2000], which
allows for SVMs to be solved using results from computational ge-
ometry. One of the most interesting geometrically inspired SVM
solvers is the Core Vector Machine (CVM) algorithm [Tsang et al.,
2005], which has theoretically appealing scalability results. The
CVM is the first work we are aware of where the training time is
linear in the number of examples (it precedes SVMperf by a year):
to achieve an accuracy of ρ, the CVM runs in time O(d · (n/ρ2 +
1/ρ4)). (In fact, the paper proposes a speedup through randomiza-
tion that makes its runtime independent of the number of examples,
preceding Pegasos by two years.) It is also one of the first solvers
to look explicitly for an approximate solution to the SVM problem,
motivated by the success of approximation algorithms in theoreti-
cal computer science. As we will see in §5, [Bottou and Bousquet,
2007] shows that the SVM problem does not need to be solved ex-
actly to achieve good generalization. Therefore, CVMs can be seen
as an application of this major principle of [Bottou and Bousquet,
2007], although they were designed before that paper (and are not
cited).

The idea of the CVM algorithm is to connect SVMs to a prob-
lem from computational geometry known as the minimum enclos-
ing ball (MEB). This simply asks for the ball of smallest radius that
encloses a given set of points. Similar to the optimization problem
for SVMs, an exact solution to this problem is expensive in terms
of time and space. However, if one looks at the ρ-approximate
minimum enclosing ball, then one can find a solution in time linear
in the number of points. The authors show how certain types of
nonlinear SVMs can be solved by repeated computation of MEBs,
provided we use the square-loss.

The authors show how the runtime can be made independent
of the number of examples, but in this case the runtime becomes
O(d/ρ8), which is likely infeasible for small ρ. Subsequent op-
timizations by the authors [Tsang et al., 2007] have reduced this
to O(d/ρ4), which is still expensive. However, in light of [Bot-
tou and Bousquet, 2007], we only need ρ to be “small enough”, as
strenuous optimization does not necessarily correspond to greatly
reduced generalization error. In this case, an O(d/ρ4) algorithm
could be faster than one that has superlinear dependence on the
number of examples n, even if the ρ dependence of the latter is
better.

One limit on the scope of the CVM algorithm is that it assumes
the use of normalized kernels. This means thatK(x, x) is assumed
to be a constant for any x: the examples are taken to be mapped
onto a hypersphere by the implicit kernel mapping Φ. The authors
claim that many real-world kernels satisfy this property, but this
is in fact a fairly strong assumption about how the data is scaled,
even in the case of a linear kernel; [Joachims, 2006] for example
disagrees with the authors’ assertion.
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Interest in CVMs may have been dampened by claims that their
experiments were not comprehensive enough [Loosli and Canu,
2007], and that its behaviour with respect to the SVM parame-
ter C 9 was erratic. However, in [Tsang and Kwok, 2007], it is
pointed out that one reason for these apparent anomalies is a buggy
implementation of random in Linux. ([Sonnenburg et al., 2007]
cites this as a good example of why code for machine learning al-
gorithms needs to be published as open source, which we agree
with.) But it is worth noting that even in the authors’ updated
results, CVMs do not achieve good test set error on a separable
dataset (checkers), where SVMs should be able to achieve zero
test error. As with all SVM training methods, a detailed compari-
son to subsequent solvers is required to assess the current viability
of CVMs.

5. WHY SGD WORKS ON LARGE TRAIN-
ING SETS

In §4.3, we presented a number of SVM solvers based on some
version of SGD, with their gradient computations based on a single
example. We noted that while such methods can complete itera-
tions much quicker than those that use the true gradient, it is well
known that SGD is a poor optimization algorithm; hence, one might
expect that these training methods sacrifice accuracy for speed. In
this section, we show why this is not the case, presenting results
that show that SGD is poor at optimization but good at generaliza-
tion. The latter is the true goal of learning; optimization is only
a means toward this end. We then present a very surprising result
(§5.3) due to [Shalev-Shwartz and Srebro, 2008] that shows why
SVM training time should decrease as the number of examples in-
creases! The paper shows that Pegasos satisfies this desideratum,
proving the important place that SGD has for SVM training. To un-
derstand this analysis, we first need to make explicit the distinction
between an empirical and learning optimum.

5.1 Empirical optimum vs. learning optimum
[Bottou and Le Cun, 2004, 2005] show how an online-style, gen-

eralized second order 10 stochastic gradient algorithm can be a bet-
ter choice than a batch second order gradient algorithm for large-
scale problems. Here, “better” means that a stochastic algorithm
can achieve lower generalization error than a batch algorithm in a
fixed amount of time. This is initially surprising: while it has been
observed that (2)SGD achieves low test-set error in specific prac-
tical applications despite being a poor optimization algorithm, this
paper shows why 2SGD will always outperform 2GD on very large
datasets. The key fact, one which the subsequent papers we discuss
also exploit, is that the optimization problem in learning is only a
surrogate for our true goal, which is achieving good generalization.
While 2GD can solve the training optimization much quicker than
2SGD, it minimizes the generalization error at a slower rate.

The paper specifically compares 2SGD and 2GD in minimizing
unregularized generalization error. This means that the result does
not directly apply to SVMs, but later sections show how this ex-
tension can be done. We first notice that when we have infinitely
many examples, 2SGD directly minimizes this error, since it ran-
domly chooses a training example at each iteration; when n→∞,
these examples follow the asymptotic distribution of the data. To
compare its performance to 2GD, one needs to study how fast 2GD
converges to the generalization optimum. To do this, we need to
find how large n needs to be for the 2GD solution to be as close
9Recall that we set λ = 1/nC.

10A generalized second order method is simply one that uses a scal-
ing matrix that converges to the inverse Hessian.

to the generalization optimum as 2SGD. Clearly, if we could pro-
cess infinitely many examples, minimizing the training error would
be equivalent to minimizing the generalization error. In practice,
we can only process a finite subset of these examples, and so we
need to see how large this subset has to be. We solve this problem
as follows. Let θ∗n denote the optimal batch solution obtainable n
examples, which is the result of 2GD with infinitely many epochs.
We want to know how fast this empirical optimum θ∗n converges to
θ∗ = θ∗∞, the optimal parameter vector when we have access to
infinitely many examples. (As argued earlier, θ∗ = argmin g(θ).)

Once we find this rate of convergence, we can find how fast θn(t)
converges to θ∗, and thus how large n needs to be. The authors
show that, surprisingly,

θ∗n = θ∗n−1 −
Ψn

n

∂`

∂θ
(xn, yn, θ

∗
n−1) +O(1/n2),

where Ψn is a matrix that converges to H−1. This is surprising
because it is almost identical to a 2SGD update, indicating that the
behaviour of the empirical optimums and the solutions for 2SGD
have the same general form. The difference between the two recur-
rences is the nature of the scaling matrices, and the precise nature
of the lower order terms. It is plausible that these might affect the
two rates of convergence; however, the authors show that assum-
ing only the convergence of the scaling matrices toH−1, neither of
these differences has an influence on convergence, and so the em-
pirical optimums of 2GD converge as slowly to the generalization
optimum as 2SGD, despite doing a factor of O(n) extra work!

Now suppose that we want 2GD to achieve the same generaliza-
tion error as 2SGD. Given the above result, it can be shown that
2SGD will be a factor of O(log logn) faster in reaching the same
solution as 2GD. Of course, log log n is a small constant in prac-
tice, the point of the paper is that 2SGD is at least as good at 2GD
for learning. This was observed empirically at the time, but the
paper was the first work to theoretically prove why this is the case.

Note that the paper’s result only works when we are using a
second-order SGD method, or a method that is asymptotically second-
order (i.e. it uses a scaling matrix that converges to the Hessian).
We cannot claim that plain SGD is similarly better than a batch
algorithm. The authors point out that an important theoretical di-
rection is to analyze what happens when we use a low-rank approx-
imation to the Hessian. Also, it is unclear whether a different batch
algorithm might be able to converge to the global optimum faster
than 2GD, and hence faster than 2SGD.

This work raises the distinction between the empirical and learn-
ing optimum. 2SGD is able to give better generalization perfor-
mance than 2GD when both are run for the same amount of time,
despite 2SGD being worse at finding the empirical optimum to the
training optimization problem. It reminds us that the optimization
formulation of a learning problem is only a surrogate for finding
the solution with best generalization. To further investigate the per-
formance of SGD based algorithms, the next paper explicitly incor-
porates approximation into the sources of error for learning.

5.2 Stochastic gradient and estimation error
[Bottou and Bousquet, 2007] build on the previous paper to show

concretely why a learning algorithm can be poor at optimization,
but excellent at generalization for a large-scale learning task. They
develop a framework that explicitly incorporates the effect of op-
timization error in generalization, and analyze the asymptotic be-
haviour of this error when the number of examples is large. This is
done by looking at the behaviour of the estimation error, which is
intuitively a measure of how representative the training set is of the
underlying distribution. By analyzing the interplay of these errors,
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their conclusion is that stochastic gradient algorithms (SGD and
2SGD) are able to leverage a decrease in estimation error in large
datasets to achieve a low generalization error quicker than batch
gradient algorithms (GD and 2GD). This shows that in addition to
2SGD being superior to 2GD, as evinced in the previous section,
plain SGD is quantifiably better than plain GD.

One of the motivations of the paper is the question of how use-
ful approximate solutions to learning problems are: how much do
we pay if we only approximately solve the optimization problem
that models our learning goal? The authors answer this question
by showing that one need not focus on very accurate solutions for
large scale problems, as it is still possible to achieve a good gen-
eralization error with only approximate solutions. This is in itself
interesting, because usually (e.g. in theoretical CS) the optimiza-
tion problem is precisely the mathematical encoding of the problem
of interest. However, in learning the true quantity of interest is the
generalization error; the optimization formulation of the problem is
simply a compensation for the fact that we don’t know the underly-
ing distribution of test data. Explicitly noting this fact is one of the
paper’s most important contributions.

Formally, suppose we have an unregularized learning problem,
and wish to minimize empirical loss `emp on the training set. Sup-
pose that θ̂ = argmin `emp(θ) is the empirical minimizer. A learn-
ing algorithm tries to find this vector using an optimization algo-
rithm, which in practice can only produce a solution θ̃ such that
`emp(θ̃) ≤ `emp(θ̂) + ρ, for some positive constant ρ. For this
θ̃, the authors decompose the generalization error ε = g(θ̃) as
ε = εapp + εest + εopt, where:

1. εapp is the approximation error, which measures how good
the hypothesis class is. This is min g(θ), the minimum error
that any model in this hypothesis class must incur. When our
objective function is regularized, εapp can be controlled by
changing the regularization parameter λ.

2. εest is the estimation error, which measures how good the
training set is. It is defined as εest = g(θ̂)−min g(θ), where
θ̂ = argmin `emp(θ), the expected difference between the
minima of the training and true (i.e. expected) loss. When
the training set is large and representative of the underlying
distribution of the data, then this difference will be small.
So, εest can be controlled by training on a larger number of
examples.

3. εopt is the optimization error, which measures how accurate
the optimization solver is. This is controlled by the optimiza-
tion tolerance εtol, which we denote by ρ to avoid confusion
from the generalization error components. ρ is controlled by
stopping our optimization algorithm at the appropriate point.
With ρ, the optimization error is defined as g(θ̃)− g(θ̂). We
will use ρ to denote the tolerance in the rest of this document;
however, it is important to note that most literature on SVM
training uses ε instead, because they do not focus explicitly
on generalization.

The goal of a learning algorithm is to minimize ε, subject to two
constraints: the number of examples n we process, and the time T
available are both bounded by some constants. If we let n → ∞,
we can make εest small by looking at as many training examples
as possible. In this case, we can choose ρ to be some moderate
positive constant, sacrificing exact optimization due to the bene-
fit from looking at more training examples. To make the tradeoff
more concrete, we need a way to connect ρ and ε. The authors
use estimation bounds, which study the rate of decrease of εest as

the training set size n increases. In a large-scale learning setting,
these bounds are of immediate interest, because they let us quan-
tify the tradeoff between looking at more examples (i.e. effectively
working with a larger training set) versus optimizing the empirical
objective function. The authors’ bound is

0 ≤ ε− ε∗ ≤ c ·
(
εapp +

d

n
log

n

d
+ ρ

)
, (6)

for some positive constant c, where ε∗ denotes the minimum gen-
eralization error over all hypothesis spaces. This tells us that we
should optimally choose ρ = O

(
d
n

log n
d

)
.11 Further optimization

is unnecessary, as the generalization error ε would be asymptot-
ically unaffected. We can use this to compare first- and second-
order gradient and stochastic gradient descent by finding the time
the algorithms take to reach a generalization error that is at most
c · (εapp + E) as a function of the additive term E . To do this, we
simply set ρ = O(E), which implies that n = O(d log(1/E)/E)
examples are sufficient; while the training set is taken to be practi-
cally infinite, further training examples are unnecessary for asymp-
totic improvement in the generalization bound. The results of this
analysis are shown in Table 2. We see that SGD, although poor
at optimization, is significantly faster at minimizing generalization
error than both GD and 2SGD. This explains the common empir-
ical observation that SGD performs very well on practical learn-
ing problems, even though it is a relatively poor optimization al-
gorithm. While GD can find the empirical optimum much quicker
than 2SGD when ρ is small, it pays the price of scaling linearly
with the number of training examples n. SGD on the other hand
remains agnostic about the number of examples for its runtime, but
still enjoys the decrease in estimation error as n increases.

By extending the analysis of [Bottou and Le Cun, 2004], this pa-
per shows concretely why finding a solution with low optimization
error is not the same as finding one with low generalization error.
On very large datasets, the estimation error can be shown to de-
cay like roughly O(logn/n), and so the optimization accuracy ρ
can be increased. Since stochastic gradient algorithms do not ex-
plicitly depend on the number of examples, they can take use of
the increase in ρ without spending more time on the larger dataset.
While the result is still for unregularized learning, the next paper
builds on this idea, and applies it to the SVM problem.

5.3 Decreasing SVM training time on larger
training sets

The previous paper showed why, for unregularized problems, we
can expect SGD to generalize better than GD on a large training
set. The key fact was that an increase in n decreases the estima-
tion error, and yet does not increase the runtime of SGD. Building
on this analysis for the SVM problem, Shalev-Shwartz and Srebro
[Shalev-Shwartz and Srebro, 2008] argue that when presented with
more training data, the runtime of an SVM solver should actually
decrease. This is in contrast to most SVM solvers, whose run-
time increases with more data, usually superlinearly! The authors
point out that traditional runtime analyses of SVM solvers study
them from the point of view of how well they solve the optimiza-
tion problem. But of course, their real goal is to find a solution
with good generalization. Using the decomposition of [Bottou and
Bousquet, 2007], the authors shows why an SVM solver ought to
use the decreased estimation error that more examples afford, and
consequently run faster on this larger dataset. Further, they show
that Pegasos meets this requirement, being the first solver to do so.

11The authors’ analysis is a little more specific than this, and in-
cludes a so-called estimation rate α; our summary is for the case
α = 1.
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Algorithm Time to reach optimization accuracy ρ Time to reach generalization error ≤ c · (εapp + E)

GD O
(
nd log 1

ρ

)
O
(
d2

E log2 1
E

)
SGD O

(
d
ρ

)
O
(
d
E

)
2GD O

(
(d2 + nd) log log 1

ρ

)
O( d

2

E log 1
E log log 1

E )

2SGD O
(
d2

ρ

)
O
(
d2

E

)
Table 2: Bounds on the time for gradient based algorithms to reach a specific optimization and generalization error. The latter is for
the case where we have an infinite training set.

The first point the authors make is that the runtime should never
increase with data set size if the generalization error is fixed: they
give the example of a predictor that achieves accuracy of 5% with
a thousand examples, and point out that if we are given ten thou-
sand examples, just ignoring nine thousand of them gives us the
same accuracy and runtime.12 The question is whether we can get
5% accuracy with less time, given these extra examples. The ra-
tionale for why this is possible is the following. When we increase
the training set size, the estimation error decreases; therefore, with
a very large training set, εest will be small. So, to get some fixed
generalization error ε, one can increase the optimization tolerance
ρ. Optimizing to a higher tolerance will reduce the runtime com-
pared to a small training set, provided it takes us less time to look
through the new examples than it would to spend optimizing. That
is, we now have a battle between the potential increase in runtime
when we have more training examples, and the decrease in runtime
due to the requirement of a lower optimization tolerance. A crucial
fact about SGD is that its runtime does not depend on the number
of examples; therefore, the authors characterize the scenario of in-
creasing the number of examples with SGD as a “pure win”. In
contrast, methods such as SVMperf have an increased runtime in
each step when the number of examples increases. This leads to
a critical number of samples, before which the runtime decreases,
but after which the cost of processing the new examples dominates
and the runtime increases.

At first glance, our earlier claim that Pegasos’ runtime decreases
with more examples seems to contradict the bound on its number of
iterations, which was stated as Õ(1/δλρ). However, we can show
that λ, ρ depend on the estimation error, and so can be changed
based on n. This lets us derive a bound on the time required to
reach a generalization of ε. Therefore, to properly study the be-
haviour of SVM solvers on large-scale problems, we need to de-
scribe the effect of estimation error, and connect this to the various
SVM parameters. For the case of unlimited data (n → ∞), the
authors prove the following theorem that bounds the generalization
error for an SVM.

THEOREM 3. Let w be the learned weight vector when SVM
optimization is done up to tolerance ρ, and let w0 be any other
weight vector. Then,

g(w) ≤ g(w0) + 2ρ+
λ

2
||w0||2 + Õ(1/λn),

where g(w) is the generalization error with weight vector w.

We can view this similarly to Equation 6. Suppose that w0 is
the optimal weight vector, so that g(w0) = εapp. Essentially, this

12Of course, this assumes that the data is presented in random order,
because otherwise we have the problem of choosing which exam-
ples to ignore. If we ignore the informative examples, we cannot
hope to achieve the same generalization error as with fewer exam-
ples.

bound decomposes the generalization error in terms of εapp, the op-
timization tolerance ρ, and a decaying term Õ(1/λn) that takes the
place of the estimation error. This rate is much stronger than the
logn/n bound in Equation 6. The proof of the theorem is simple
(and instructive), and we summarize it below.

PROOF. First, let f(w) := g(w) + λ
2
||w||2 denote the regular-

ized generalization error, and f̂(w) := ĝ(w)+ λ
2
||w||2 the training

error (with regularization). Now decompose g(w) as

g(w) = f(w)− λ

2
||w||2

= f(w)− λ

2
||w||2 −

(
f(w0)− g(w0)− λ

2
||w0||2

)
= g(w0) + (f(w)− f(w0)) +

λ

2
||w0||2 −

λ

2
||w||2

= g(w0) + (f(w)− f(w∗)) + (f(w∗)− f(w0))

+
λ

2
||w0||2 −

λ

2
||w||2.

wherew∗ is the minimizer of the generalization error, argmin g(w).

The second term in this expression is a difference of expected
losses, and can be bounded using the corresponding empirical losses
[Sridharan et al., 2008]:

f(w)− f(w∗) ≤ 2 max(0, f̂(w)− f̂(w∗)) +O

(
log 1/δ

λn

)
= 2ρ+O

(
log 1/δ

λn

)
by definition of w

Finally, by the optimality ofw∗, we must have f(w∗)−f(w0) ≤ 0.
Combining these facts,

g(w) ≤ g(w0) + 2ρ+
λ

2
||w0||2 + Õ(1/λn).

This tells us that if we want a generalization error of g(w) =
g(w0) + E , we can precisely bound ρ, λ and n asymptotically in
terms of E , w0:

ρ = O(E)

λ = O(E/||w0||2)

n = Ω(||w0||2/E2).

The bound on n is of particular interest, as it tells us roughly how
many examples need to be looked at to allow for sufficient esti-
mation error. Even if an algorithm’s runtime scales linearly with
n, in the infinite data case it can work on a subset of roughly
||w0||2/E2 examples in order to achieve an excess generalization
error of E . This is beneficial because it lets us compare the run-
times of various SVM solvers for the case of practically infinite
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data (we cannot just set n = ∞!). For Pegasos, the earlier run-
time of Õ(d/λρ) becomes Õ(d||w0||2/E2). In contrast, SVMperf’s
runtime of O(nd log(1/ρ)/λ) becomes roughly O(d||w0||4/E3).
Therefore, Pegasos is able to achieve a generalization error of ε
much faster than SVMperf on infinitely large datasets.

With this limiting case analyzed, we can now focus on the prac-
tical case of finite (but potentially large) data. Does Pegasos only
beat SVMperf in the limit, while the latter is superior on all practical
datasets? The authors show that the finite data behaviour of Pegasos
matches the desideratum of the runtime decreasing as the training
set gets larger. In contrast, SVMperf does not display this behaviour
because its runtime scales linearly with the number of examples.
To carry out this analysis, the authors revisit the statement of The-
orem 3, replacing the optimization accuracy ρ with the number of
iterations T it takes to achieve such an accuracy. For the case of
Pegasos, we know that the number of iterations is T = Õ(d/λρ);
substituting this,

g(w) ≤ g(w0) + Õ(d/λT ) +
λ

2
||w0||2 + Õ(1/λn).

We can now minimize the right hand side as a function of λ: this

happens when λ = Θ̃

(√
nd/(T+1)

||w0||

)
. If we plug in this value, and

make T the subject of the equation, we find that the time T (n, E)
to reach a solution with excess generalization error E using n ex-
amples is

T (n, E) = Õ

(
d

(E/||w0|| −O(1/
√
n))

2

)
.

Notice that this has a vertical asymptote as n → ||w0||2/E , but,
more interestingly, that T is a monotone decreasing function of
n! As hoped, Pegasos’ runtime decreases as it is presented more
examples. In contrast, the same contrast for SVMperf reveals its
runtime behaves like

T (n, E) = O

(
nd

(E/||w0|| −O(1/
√
n))

2

)
.

Since there is now an extra n on the numerator, we actually have a
critical point n0 = 4||w0||2/E2; before this value, the runtime T
decreases a function of n, but after this point, the runtime steadily
increases. Intuitively, this is the point where the cost of doingO(n)
work per iteration outweighs the benefits of the decreased estima-
tion error. A rough display of the behaviour of the two methods is
given in Figure 3.

6. SUMMARY AND FUTURE DIRECTIONS
The current trend of growth of information means that it is in-

evitable that large-scale learning problems become the norm. There
is consequently a need to develop algorithms that deal with them ef-
ficiently. In this document, we have looked at large-scale training
algorithms for support vector machines (SVMs), one of the most
popular binary classifiers. We now look at some open directions
for further research in the area.

The work of [Bottou and Bousquet, 2007] introduced formally
the idea of approximate solutions to the SVM problem, and why
such solutions might be preferable in that they obviously take less
time to compute, but also do not affect generalization error signifi-
cantly. Of course, as pointed out in [Franc and Sonnenburg, 2008],
when one looks for approximate solutions to the SVM problem,
then one is potentially comparing methods that have very differ-
ent purposes. So, one has to choose whether to assess SVM solver
based on its ability to generalize, or on its ability to solve the SVM

problem exactly. The latter raises precisely the issue of [Bottou and
Bousquet, 2007], namely that it treats optimization as the goal of
learning. The former raises the issue of whether we should com-
pare these SVM solvers against other classification methods; for
example, there has been work on applying the kernel perceptron
efficiently in an online setting [Dekel et al., 2008].

The last point is of independent interest: while the SVM has
been very popular as a binary classification method, these do not
capture all practically relevant large-scale learning problems. One
very natural extension is to SVM for regression, which we have
not discussed in this document; SVMperf has support for this. An-
other example is multivariate performance measures such as the
F1 score [Joachims, 2005]. While the literature on training large-
scale binary SVMs is potentially relevant - especially the distinc-
tion between optimization and generalization error - it by no means
represents the boundaries of what is to be studied in the field of
large-scale learning.

An issue that we have not considered is that in many real-world
instances of large-scale learning, such as bioinformatics, we can-
not assume that the training data is completely labelled. This ne-
cessitates the development of large-scale semi-supervised SVMs,
or SVMs based on active learning. There has been some nascent
work in this field [Sindhwani and Keerthi, 2006, Schohn and Cohn,
2000]. As argued earlier, the refinement of methods for the fully
supervised case will likely be beneficial for the semi-supervised
setting, but the opposite may also be true: the results of the ac-
tive learning SVM approach [Schohn and Cohn, 2000] raises some
interesting questions about its use in the standard labelled setting.
Might it be the case that active learning plays a similar role to SGD,
that sees only a fraction of the training set and gets equivalent gen-
eralization error?

In terms of SVM solvers, there are a few directions of further
research. In §4.3.3, we briefly mentioned recent work that has ex-
tended the LBFGS technique to both the online and non-smooth
cases. If these strands are connected, then that allows LBFGS to
be applied to the SVM problem. Given its prominence in the field
of general nonlinear optimization, it is plausible that it will perform
very well on the SVM task, and will be competitive at least with the
approaches that seek high-accuracy solutions to the SVM problem.

The surprising conclusion of [Shalev-Shwartz and Srebro, 2008]
that SVM training time should decrease with larger training sets
casts new light on how we assess a training algorithm, and sug-
gests that if done correctly, large-scale learning can in some sense
be easier! The result seems to strongly advocate the use of stochas-
tic gradient based techniques, although it is by no means the only
method that can satisfy this desideratum. The essential requirement
of a solver is simply that the time to process more examples does
not exceed the reduced time afforded due to the reduction of esti-
mation error.
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