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Abstract

We propose the use of random projections with a sparse ma-

trix to maintain a sketch of a collection of high-dimensional

data-streams that are updated asynchronously. This sketch

allows us to estimate L2 (Euclidean) distances and dot-

products with high accuracy. We verify the validity of this

sketch by applying it to an online clustering problem, where

we compare our results to the offline algorithm and an ex-

isting L2 sketch, and observe comparable results in terms of

accuracy, and a reduced runtime cost.

1 Introduction.

1.1 Data-streams. A data stream, as the metaphor
suggests, is the continuous flow of data generated at a
source (or multiple sources) and transmitted to various
destinations. Some examples of data streams are the
flow of data in the Internet, environmental data collec-
tion(through satellite and land-based stations), finan-
cial markets, telephony, etc. Since the number of appli-
cations that generate data streams are growing, there is
a need for computational methods that can efficiently,
and accurately, carry out sophisticated analysis on such
sources of data.

Data-stream mining (DSM) and data-stream man-
agement systems (DSMS) are active areas of research
which generalize and adapt existing techniques to
handle streaming data. For example, in traditional
database management systems (DBMS) the data is as-
sumed to be fixed and persistent, and the set of queries
on the database is assumed to be changing. But in con-
trast, the DSMS view is that the set of queries is fixed,
and data is continuously flowing through the queries
[4, 6]. In DSM, the focus has been on efficient and in-
cremental learning, i.e. a model is learnt on a batch of
data, and as new data arrives, the model has to be up-
dated to accommodate the new data without simply re-
learning from scratch (as this would be too expensive).
Further, the effect of “old” data has to be discounted
from the model in order for it to be an accurate reflec-
tion reality [2, 12].
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However, most data-stream frameworks for data-
mining assume that data arrives incrementally and
sequentially (in-order), and develop solutions for this
case. But in many situations, the data not only arrives
incrementally, but also asynchronously - that is, at any
point in time, we may be asked to update any arbitrary
component or attribute of the existing data. The
stream here cannot be mined with a one-pass algorithm,
since the update of components is not (necessarily)
sequential. Therefore, the challenge is to carry out our
data mining task without having to instantiate the data
vector - which may not be possible or computationally
feasible. We explain this situation with the help of an
example.

1.2 Prototype application. Consider a group of
stock traders who trade on several equities listed in
several stock markets. At a given moment in time, we
associate a stock vector s(t) = [v1, v2, . . . , vd] for each
trader s. Here, vi is the size of the holding for stock
i, and d is number of all the stocks we consider (size
of the universe of stocks). Now, the updates for each
trader s arrive as tuples (js, us), where js is the index
of the stock vector, and us is the value of the update.
For example, if the stock vector represents the monetary
value of stocks, then us can be positive or negative dollar
value depending upon whether the particular stock js

was bought or sold. The actual update is performed as

vi(t + 1) =

{
vi(t) + us if is = js

vi(t) otherwise

Note that the fact that us is negative makes this a
turnstile-model of data streams [20].

Now, at a given point in time we would like to
cluster the stock traders in real time, which will give us
information about traders who are behaving similarly,
or those who have moved from one cluster to another.
The challenge is to do this efficiently, given that the
stream is constantly being updated and that there is
limited space. Theoretically, the stock vector can be
very large, as large as the size of the union of all stocks
that are traded in the world. So, if we want to use
the standard k-means algorithm for clustering, then the
complexity of each iteration is O(nkd) where n, k and d
are the number of stock traders, number of clusters and



number of stocks respectively. As we will show below,
using special data stream sketches, we can reduce the
complexity to O(nkD) where D is typically O(log n 1

ε2 ),
and ε is the accuracy that we want to achieve.

1.3 Problem definition. Consider a collection of
objects {u1,u2, . . . ,un}, each with dimension d. A
natural representation of this data is as an n×d matrix

A =


u1

u2

...
un


Suppose further that this matrix is updated asyn-

chronously at various points in time, by updates of the
form

(i, j, c)

which instructs us to update row i, column j with
the value c (which may be negative). We can therefore
consider A as holding n streams that may be updated
at any time i.e. asynchronously, and denote the value
of A at time t by A(t). Therefore, A(t) represents the
state of each of our n streams at time t.

Now, in some problems, the value of d is very large
(e.g. study of internet routers, stocks, etc.), in fact so
large as to make instantiation of the matrix infeasible.
However, we would still like to be able to extract
some useful information about the data; for example,
we might want to estimate the L2 norm (Euclidean
distance) of the individual rows/streams of the data,
or perhaps the dot-product between streams.

To make such estimates, a sketch of the streams
is usually kept. A sketch is some approximation of a
stream (or a series of streams) that has two desirable
properties:

1. It occupies very little space

2. It allows us to give quick and accurate answers
to queries on some quantity associated with the
stream

A Euclidean distance-preserving sketch c for a
stream S, then, is some vector c(S) that occupies very
little space and allows us to estimate ||S||2 quickly and
accurately.

1.4 Our contribution. There have been several ap-
proaches already proposed to estimate the Lp norm for
a range of values of p, and in particular, for the case
p = 2 which gives us an estimate for the L2 norm. One
such approach is that of Indyk [14], which requires the
generation of variables from a Gaussian distribution to

estimate the L2 norm of a stream. We explicitly show
that this sketch can be viewed in the context of random
projections [21], and that by doing so we can access the
theory of random projections to improve the efficiency
of the sketch.

Specifically, we propose the use of random projec-
tions with a sparse matrix, defined by Achlioptas [1],
whose entries can be generated from a uniform dis-
tribution to maintain a sketch of a collection of high-
dimensional streams that are updated asynchronously.
This sketch allows us to estimate L2 (Euclidean) dis-
tances and dot-products with high accuracy. The ad-
vantage of this approach is simplicity, and efficiency -
since our projections are with a sparse matrix, and also
since we do not have to generate Gaussian variables, our
approach is faster.

Further, we show how the results on L2 preservation
allow us to estimate dot-products as well, and derive
bounds on the maximal error of our estimate. We derive
a similar result for Indyk’s L2 sketch, which, to our
knowledge, has not been made before.

We verify the validity of our projection-based sketch
by applying it to an online clustering problem, where
we have to cluster high-dimensional data streams that
are updated incrementally at some given points in time.
We compare our results to the offline algorithm Indyk’s
L2 sketch, and observe comparable results in terms of
accuracy, and an improved runtime.

1.5 Related work.

1.5.1 L2-approximating sketches. In [3], it was
shown how to estimate frequency-moments Fk of a
stream, where Fk(a) :=

∑
ak

i . In particular, for the
case F2, an efficient one-pass algorithm was proposed,
using O

(
1
ε2

)
space and giving a 1 ± ε approximation.

However, this does not allow for asynchronous updates
- if we think of the pass as a series of sequential updates
to the components of the stream, then once we have
updated the value of a particular component, we cannot
go back and change it later.

An important sketch for preserving L2 distance is
the work of Indyk [14], who proposed the use of a p-
stable distribution in order to estimate the Lp norm for
arbitrary p ∈ (0, 2],

||x||p :=

(∑
i

|xi|p
)1/p

For p = 2, this requires the use of Gaussian random
variables to maintain a sketch. The method used
is essentially a random projection, though there are
some minor differences regarding the way estimates are



made; we look at the connection in more depth in §4.
Surprisingly, while it has been noted that this sketch is
inspired by random projection style embeddings, to our
knowledge there has not been any work done using a
sparse random matrix for the projection.

Since our work explicitly uses random projections
as defined in the literature, we are able to access the
theory of these projections. So, for instance, our bounds
on the reduced dimension follow immediately from the
Johnson-Lindenstrauss lemma [15], and our analysis
does not have to deal with the accuracy of projection-
based sketches. More importantly, we are able to justify
the use of a sparse projection matrix with no loss in
accuracy, and improved efficiency.

Of course, the Lp sketch offers us the ability to
estimate Lp distances for general p ∈ (0, 2], which
makes it fairly versatile. An example of an interesting
application of this sketch that our projection-based
sketch cannot be used for is the estimation of the
Hamming norm of streams [7].

1.5.2 Stream clustering. An important paper in
the field of clustering of data streams is the work of
[13], which provides an algorithm for doing clustering
of a stream of data using only O(nk) time, where k is
the number of clusters. This however does not focus
on a stream with asynchronous updates, and instead
provides a one-pass algorithm for a stream where we
get new points that we have to cluster, but not updates
to existing points.

In [10], random projections were used to cluster
data using the EM algorithm. It was found that the
results from the use of a single projection were unsat-
isfactory, and it was recommended that an ensemble of
projections be used to try and overcome stability issues
related to projections. Our concern is not so much with
the accuracy of clustering, but rather with the accu-
racy of our sketch as compared the “true” value of the
underlying stream. Whether the projections produce a
bad clustering or not is dependent on the nature of the
clustering algorithm e.g. if it is extremely sensitive to
perturbations in the data/distances between points. An
ensemble-based approach might be a natural extension
to the sketch we propose here.

2 Background.

Random projections are a powerful method of dimen-
sionality reduction that have been applied in numer-
ous practical problems [5, 17, 11], and have also served
as a useful tool in algorithmic design [21]. The basis
of projections is the remarkable Johnson-Lindenstrauss
lemma [15], which say that for any data set of n points
in d dimensions, and some error parameter ε, it is pos-

sible to find a mapping f : Rn×d → Rn×k such that

• k = O
(

log n
ε2

)
• All pairwise distances between points are preserved

within a factor of ε

The original statement of the lemma was non-
constructive, and did not mention how one would find
such an f in general. There has been subsequent
work on finding such an f in O

(
dn2(log n + 1

ε )O(1)
)

time [9], but in practise, most work on projections in-
volves finding an f that gives us approximate Johnson-
Lindenstrauss guarantees, that is, where pairwise dis-
tances are preserved with high probability.

We can think of projections as a multiplication by
a suitably chosen random matrix (possibly with some
appropriate scaling):

A 7→ E = A.R

where R is a matrix whose entries follow some
random distribution.

The “classic” form of random projections used a
matrix whose entries were i.i.d. N (0, 1), which yields
fairly tight tail bounds [8]. Achlioptas [1] however
showed that a much simpler distribution would suffice,
and derived strong bounds for a matrix where each entry
has distribution

rij =


+
√

3 p = 1/6
0 p = 2/3
−
√

3 p = 1/6

We henceforth call this matrix the Achlioptas ma-
trix. This matrix has an expected sparsity of 2

3 rds,
making it quite desirable to use in practise. In fact,
this result was recently generalized in [16], where the
sparsity of the projection matrix was increased to being
potentially 1− 1√

d
.

3 Random projections and streams.

3.1 Projection-based sketch. Suppose we have a
data matrix A(t) ∈ Rn×d. Now, suppose that updates
happen to this matrix in the following way. At time t,
we get a tuple d(t) = (it, jt, ct). When this happens,

aitjt(t) = aitjt(t− 1) + ct

That is, the entry in cell (it, jt) gets incremented by
the quantity ct. We can express this as

A(t) = A(t− 1) + C(t)

where C(t) = {Cmn}, such that Cmn = ctδitmδjtn

(where δ denotes the Kronecker delta function).



If d is large, it might be infeasible instantiate the
matrix A in memory. But we still want to keep the
information associated with it, and we can try to do
this with the help of a projection. Suppose we keep
the projected matrix E(t) ∈ Rn×k, where k is a more
manageable number. If we generate E(t) via a random
projection, then we have

E(t) =
1√
k

A(t)R

where R is, say, the Achlioptas matrix.
But of course, R ∈ Rd×k, which is also comparable

with A in terms of size. So, we can’t really store a single
random matrix R and use it for each of our projections.
What can we do? An immediate idea is to try and do the
generation on the fly. We show that such an approach is
not likely to work, and show instead a different method
to get around the space restriction of R.

3.2 On-the-fly random matrix generation. One
option is to generate the matrix at every time step; of
course, we don’t generate the whole matrix due to space
constraints, but only go one component at a time for the
matrix multiplication. Still, for analysis’ sake, let us
assume we can remember the whole matrix for a time-
step at least. Therefore, we have

E(t) = A(t)R(t)

Suppose that initially, A(0) ≡ 0 - we have no
information about any component at all. It is clear then
that, based on the nature of the updates, we must have

A(t) =
t∑

n=1

C(n)

The projection of this matrix at time t will therefore
be

E(t) =
t∑

n=1

C(n)R(t)

What happens the next time we get a tuple?
Ideally, we would like to use the existing E(t) matrix,
and update it rather than doing a full recomputation.
We can see that the expression for the new projected

matrix is:

E(t + 1) =
t+1∑
n=1

C(n)R(t + 1)

= C(t + 1)R(t + 1) +
t∑

n=1

C(n)R(t + 1)

= C(t + 1)R(t + 1) + E(t)

+
t∑

n=1

C(n)(R(t + 1)−R(t))

= E(t) + C(t + 1)R(t + 1)

+
t∑

n=1

C(n)S(t + 1) , S(t) := R(t)−R(t− 1)

3.3 Naive approximation. Certainly one simple
approximation for E(t + 1), based on the previous sec-
tion, is

E(t + 1) ≈ E(t) + C(t + 1)R(t + 1)

This is easy to compute, but how bad is this as an
approximation? The error at time t + 1 will be

δ(t + 1) =
t∑

n=1

C(n)S(t + 1)

To get a sense of the behaviour of this variable,
suppose X = rij−sij , where r, s are from the Achlioptas
distribution. Clearly, the quantity S(t) must follow this
distribution. By independence and linearity, it must
follow that

E(X) = 0
V ar(X) = 2

Therefore, we get

E(δ(t)ij) = 0

V ar(δ(t)ij) = 2
(∑

C(n)
)2

So, while the expected error is zero, there is poten-
tially quite a large variance, which only gets worse as t
gets larger!

3.4 Repeatable generation. We have seen that we
really do need to generate the same random matrix at
every time-step, because otherwise the errors obtained
get far too large. Before we suggest how to solve this
problem, we observe that the matrix multiplication in-
volved in the update step simplifies to the manipulation
of a single vector alone.



3.4.1 Observation on multiplication by C. The
fact that there are many zeros in the C matrix naturally
suggests that we are saved a lot of work, and this is
precisely the case. The situation we have is merely the
following:

C(t).R(t) =



0
0
...
ct

0
...


[r1(t) r2(t) . . . rk(t)]

= ct



0 0 . . . 0
0 0 . . . 0
...

... . . .
...

rjt1(t) rjt2(t) . . . rjtk(t)
...

... . . .
...

0 0 . . . 0


where

ct = [0 0 . . . ct 0 . . . 0]

So, from the point of view of one update, we only
need to compute k random numbers rjti(t). That is,
every update only requires the generation of a single
random row. From the point of view of this single
update, it does not matter what the other elements of
R(t) are, since they are all cancelled by the zeros!

3.4.2 Pseudo-random generator. We can see that
for a single update, we just need to generate Θ(k)
random numbers - this is very much possible. The
problem is that we want to generate the same random
numbers each time we refer to the same row.

To get repeatable generation of the random rows, we
use a pseudo-random number generator for generating
the row values. Suppose that row i is generated using a
seed s(i) - then certainly if we fix s(i) to be constant at
all times, we can be guaranteed to get the same random
row each time. However, since there are d rows, if we
wanted to store d seeds we would d log M bits of space,
where M is the maximal seed value. In many cases, this
might be comparable to simply storing the original data
matrix.

But we can get around this in a very simple way,
because the seed can be set to be the original column
index, or the random row index, jt [14]. With this seed,
the pseudo-random number generator generates for us
k values corresponding to the random row jt. Since at
times t1 and t2 where we refer to the same row, jt1 ≡ jt2

trivially, we will generate the same random row.

With this method of generating R, the result of the
earlier section reduces to the exact equation

E(t + 1) = E(t) + C(t + 1)R

This means that the update to the projected matrix
is very simple - we just have to project the matrix
C(t + 1) down (which is easy), and add this to our
existing sketch.

Here, R only exists conceptually - to generate it one
row at a time, we just use the above pseudo-random
number generator with seed jt. The above section on
matrix multiplication shows that we really just need to
generate a random row at each iteration, and further
that this can be done on-the-fly, requiring Θ(1) space.

3.5 Complexity and comments. Recall that our
sketch-update is

E(t + 1) = E(t) + C(t + 1)R

From the result of §3.4.1, we see that the matrix
multiplication takes Θ(k) time. Hence, using random
projections, we can keep a matrix E(t) with space Θ(nk)
that serves as an approximation to the original matrix
A(t), where updates take Θ(k) time (assuming that the
matrix-row addition can be done in Θ(k) time as well
- note that we don’t have to update every row of E(t),
just row it).

Further, at any time t, the matrix E(t) corresponds
exactly with the matrix A(t).R, for some suitably chosen
random-projection matrix R (that is, E(t), which is
incrementally updated, is the same as if we had done
the expensive projection of the matrix A(t) offline).

By projecting using a suitable k for the reduced
dimension, we get the usual pairwise-distance preser-
vation properties. The Johnson-Lindenstrauss lemma
asserts that we only need space nk = O

(
n log n

ε2

)
if we

want to achieve at most ε distortion in our L2 estima-
tion.

3.6 The preservation of dot-product.

3.6.1 Dot-product behaviour under projec-
tions. While distances have been the primary property
of interest in the theory of random projections, the dot-
product has also received some attention, since it is a
useful quantity that arises quite commonly in practise.
It was shown in [16] that

E(v1.v2) = u1.u2

V ar(v1.v2) =
||u1||2||u2||2 + (u1.u2)2

k



where vi is the projection of ui, and k is the reduced
dimension.

This says that while on average projections are
expected to preserve the dot-product, there is a large
variance in the approximation, which means that the
dot-product estimate is not a tight one. The reason for
this is the fact that as the dot-product in the original
space tends to zero, the dot-product in the new space
does not correspondingly tend to zero. To see this,
notice that

V ar

(
v1.v2

u1.u2

)
=

sec2 θ + 1
k

using the fact that u1.u2 = ||u1||||u2|| cos θ. This
says that as θ → π

2 , that is, as u1.u2 → 0, the
variance of the ratio of the two dot-products becomes
unbounded; this means that the projected dot-product
does not tend to zero along with the original dot-
product.

As a result, the dot-product is not “well-behaved”
under random projections, because we cannot uniformly
guarantee its preservation. We can verify this fact by
plotting the mean error in the projected dot-product
versus the original value of the dot-product. We ran a
simple simulation in Matlab for a 1000× 1000 matrix,
and we obtained the result shown in Figure 1. We can
see that when the original dot-product tends to zero, the
error in our projection-based estimate starts to increase
without bound.

Figure 1: The error parameter ε in the dot-product
estimate provided by a random projection can be seen
to increase without bound as the dot-product in the
original space tends to zero

3.6.2 Bound on dot-product error The previous
section indicates that the dot-product is not “well-
behaved”, and so we cannot expect to have as tight
guarantees on its preservation as we do for distances.
However, it is still of interest as to what sort of
guarantees we can place on the error incurred.

In the following section, we take A = {ui}i=1...n

to represent an arbitrary collection of d-dimensional
vectors, and {vi}i=1...n to be the corresponding random
projections into k = O(log n/ε2) dimensions, where ε is
the error parameter for distances. We are able to derive
that, with high probability,

(3.1) |vi.vj − ui.uj| ≤
ε

2
(||ui||2 + ||uj||2)

To see this, we use the fact that

x.y =
||x + y||2 − ||x− y||2

4

Now, by the theory of random projections, it is
certainly true that with high probability:

(1− ε)||ui − uj||2 ≤ ||vi − vj||2 ≤ (1 + ε)||ui − uj||2

We can show a related result as well. Suppose that
we have our data set A. Form the data-set B with 2n
points, consisting of the points in A and their negatives:
B = {ui,−ui}. Our projection guarantees tell us that,
with high probability, we must have

(1− ε)||ui + uj||2 ≤ ||vi + vj||2 ≤ (1 + ε)||ui + uj||2

since log(2n) = O(log n), meaning we are still
reducing to an O(log n/ε2) subspace. Note that the
independence of the random rows means that we don’t
really have to project the set B down to k dimensions -
we can just project A, and provided k is large enough,
the guarantees must still hold anyway.

This implies that we can get the bound

(1− ε)||ui + uj||2 − (1 + ε)||ui − uj||2 ≤
||vi + vj||2 − ||vi − vj||2 ≤

(1 + ε)||ui + uj||2 − (1− ε)||ui − uj||2

=⇒ (1− ε)
||ui + uj||2

4
− (1 + ε)

||ui − uj||2

4
≤

||vi + vj||2

4
− ||vi − vj||2

4
≤

(1 + ε)
||ui + uj||2

4
− (1− ε)

||ui − uj||2

4
=⇒ ui.uj −

ε

4
(||ui − uj||2 + ||ui + uj||2) ≤

vi.vj ≤

ui.uj +
ε

4
(||ui − uj||2 + ||ui + uj||2)

From here, we can say

|vi.vj − ui.uj| ≤
ε

4
(||ui − uj||2 + ||ui + uj||2)

=⇒ |vi.vj − ui.uj| ≤
ε

2
(||ui||2 + ||uj||2)



So, we see that with high probability,

|vi.vj − ui.uj| ≤
ε

2
(||ui||2 + ||uj||2)

4 Comparison with Lp sketch.

4.1 The Lp sketch. In [14], it was proposed to use a
p-stable distribution in order to estimate the Lp norm,

||x||p :=

(∑
i

|xi|p
)1/p

In particular, [14] deals with the problem of a single
vector a that gets updates of the form (it, at) at time t,
indicating that index it should be updated by the value
at. We can therefore represent the update vector as

C(t) = [0 0 . . . at 0 . . . 0]

and thus the state of the true/underlying vector A
at time t is just

a(t) =
t∑

n=1

C(n)

A sketch of this vector, s(t), is maintained using a
matrix

X = [x1 x2 . . . xk]

where xi is a d × 1 column vector, the entries xij

come from a p-stable distribution Z:∑
aiZi ∼

(∑
|ai|p

)1/p

Z

and the value k is shown to be O(log 1
δ /ε2) for giving

1± ε accurate estimates with probability at least 1− δ.
At every update, the sketch is updated with

s(t + 1) = s(t) + at+1r(t + 1)

where

r(t + 1) = [Xit+11 Xit+12 . . . Xit+1k]

The Lp approximation is given by

estLp
(||a||p) =

median(s2
1, s

2
2, . . . , s

2
k)

median(|Z|p)

where Z is a variable from a p-stable distribution,
and this is guaranteed to be a (1 ± ε) approximation
with probability at least 1−δ. The key fact here is that
we can get strong guarantees on the closeness of the

median of the components of the sketch to the norm of
the original stream/vector.

So, for p = 2, this means we can estimate the L2

norm using a 2-stable distribution, such as a Gaussian
distribution. As a result, we are essentially doing a pro-
jection with a matrix whose entries are i.i.d. Gaussian
variables, which is a classical random projection matrix.
However, one minor difference exists, namely, the lack of
the 1√

k
scaling we normally associate with projections.

This is because the estimate of the L2 norm is given by

estL2(||a||2) =
median(s2

1, s
2
2, . . . , s

2
k)

median(Z2)

where Z ∼ N (0, 1). This differs from the projection
estimate, which is the explicit computation of the norm:

estproj(||a||2) = ||s||2

but gives the same guarantee, namely that with
probability at least 1− δ, we have

(4.2) (1− ε)est(||a|2) ≤ ||a||2 ≤ (1 + ε)est(||a|2)

4.2 Advantage of sparse projections. Our insight
is that the computation of 2-stable values is not essential
to make accurate estimates of the L2 norm of a stream,
and that we can use the simpler Achlioptas matrix, as
outlined in §2, to do our projection. This has negli-
gible impact on the accuracy of the sketch, and leads
to greatly improved performance. One potential prob-
lem with using 2-stable distributions in this streaming
context is that we are required to regenerate the ran-
dom rows every time there is an update - were it possi-
ble to store the random matrix once at the start, there
would likely not be much difference between the two
approaches. However, since every regeneration of a ran-
dom row requires the generation of Θ(k) Gaussian vari-
ables, in streaming problems the effect of this cost can
become noticeably large after long periods of time. Of
course, depending on implementation, the precise differ-
ence between generating Gaussians and uniform random
variables may differ, but with a high-volume of updates,
even a small difference can prove to be very costly.

Further, the update itself is simplified by the fact
that the Achlioptas matrix is, on average, 2

3 rds sparse -
this means that we essentially don’t have to do 2

3 rds of
the multiplication of the update value with our random
row (whereas for the Gaussian case, we would have to
multiply this with every element in our random row of
size k).

4.3 Deriving dot-product estimate. We can use
the Lp sketch to get a dot-product estimate, as with



projections. Note that we can write the dot-product
using norms:

x.y =
||x + y||2 − ||x− y||2

4

This motivates an initial estimate for the dot-
product,

êst(ui.uj) :=
est(||ui + uj||2)− est(||ui − uj||2)

4

Recall that by Equation 4.2, we have

(1− ε)est(||ui|2) ≤ ||ui||2 ≤ (1 + ε)est(||ui|2)

Using this result and the linearity of the sketch, we
can bound the error on our estimate:

êst(ui.uj) ≤
1
4

(
||ui + uj||2

(1− ε)
− ||ui − uj||2

(1 + ε)

)
=

1
4

(
2ε(||ui||2 + ||uj||2)

(1− ε2)
+

4ui.uj

(1− ε2)

)
=

ε

(1− ε2)
||ui||2 + ||uj||2

2
+

ui.uj

(1− ε2)

Similarly, we can derive the lower bound

êst(ui.uj) ≥ −
ε

(1− ε2)
||ui||2 + ||uj||2

2
+

ui.uj

(1− ε2)

Now define the estimate of the dot-product to be

est(ui.uj) := (1− ε2)êst(ui.uj)

This gives us the following high-probability bound
on the error of our estimate:

|est(ui.uj)− ui.uj| ≤
ε

2
(||ui||2 + ||uj||2)

which is the same error bound as with projections
(Equation 3.1), since for projections we have

est(ui.uj) := vi.vj

Therefore, for both sketches, we have the same high-
probability upper bound on the error incurred using a
simple dot-product estimate.

5 Experiments.

5.1 Time for generation of Gaussian variables.
It is intuitive that the generation of a Gaussian random
variable would, on average, take longer than the gen-
eration of a uniform random variable. Of course, the
precise difference depends a lot on implementation; for
instance, if we use the Box-Muller transform to gener-
ate a Gaussian, we would expect worse results than if
we use the Ziggurat method [18].

MATLAB implements an optimized version of the
Ziggurat method to generate Gaussian variables [19].
Our results on MATLAB indicated that, surprisingly,
the generation of Gaussian variables via the built-
in randn function was faster than the generation of
uniform random variables via the built-in rand. These
tests were performed on a Pentium-D 3.2 GHz machine
with 3.5 GB of RAM.

We also tried the GNU Scientific Library1 for C,
which provides a Mersenne-twister implementation for
uniform random variables (gsl rng mt19937), and a
Ziggurat-based method for generating normal random
variables (gsl ran gaussian ziggurat). Our results
here indicated that uniform random generation was on
average faster than the generation of a Gaussian.

5.2 Clustering test. We looked at the quality of the
solution generated by random projections by applying
the above idea to the clustering of data streams. The
scenario is as follows. We have a set of data points, each
of which can be thought of as a stream. The points
are updated asynchronously - that is, at every update,
an arbitrary coordinate is varied. At given moments in
time (say every 100 time-steps), we would like to cluster
the data as it stands at that instant - we can use this
information to find groups points that, at this instant,
are “similar” to one another. The problem is that if
the streams are high-dimensional, clustering them can
be quite expensive.

So, we looked at trying clustering using both our
projection-based sketch with a sparse matrix, and the
L2 sketch of Indyk to keep a sketch of the high-
dimensional streams, and then perform clustering on
these lower-dimensional points. We ran experiments
for a randomly generated data-set (described below)
and used the k-means and kernel k-means clustering
algorithm to cluster the data. The latter uses dot-
products to measure distance, and the former Euclidean
(L2) distances.

5.2.1 Data-set. We generated an artificial clustered
data-set as follows. We chose m random cluster centres
µi, and some variances σ2

i for each of them. We then
created a mixture of Gaussians based on this:

X =
m∑

i=1

αiN (µi, σ
2
i )

where
∑m

i=1 αi = i.
This forms fairly distinct clusters. We made n

points, which were randomly assigned to one of these
clusters.

1http://www.gnu.org/software/gsl/



# values Uniform Gaussian
105 0.006074± 0.000050 0.004282± 0.000056
106 0.062306± 0.000252 0.044472± 0.000120
107 0.625017± 0.006305 0.441509± 0.000677
108 6.22510± 0.017631 4.415166± 0.022836

Table 1: Average time taken and standard deviation, in seconds, to generate uniform and Gaussian random
variables over 10,000 runs, with MATLAB

# variables Uniform Gaussian
105 0.0043± 0.0049 0.0016± 0.0050
106 0.0441± 0.0048 0.1572± 0.0045
107 0.4726± 0.0267 1.6406± 0.0945
108 4.4054± 0.1700 17.8785± 0.5173

Table 2: Average time taken and standard deviation, in seconds, to generate uniform and Gaussian random
variables over 10,000 runs, with C and GSL

We then generated a new mixture, and for each
point in the original clustering, chose a random point in
the new clustering as its “partner”. The updates then
simply made the original points become the new points.
For example, say we the first point in the original
mixture was (1, 2, 3), and its partner in the new mixture
was judged to be (0, 5, 4). Then, the set of generated
updates would be {(1, 1,−1), (1, 2, 3), (1, 3, 1)}

We chose the variances σ2 randomly, but so as to
create fairly well-defined clusters. We found that an
average σ2 of about 9 was able to create such clusters.

Also, the desired number of clusters C in our
clustering step was chosen to be m, the true number
of clusters in the data-set, so that the offline algorithm
would be expected to give excellent results, which the
streaming algorithms could be compared to.

5.2.2 Our implementation. We ran our simula-
tions using MATLAB, on a Pentium-D 3.2 GHz ma-
chine with 3.5 GB of RAM. We used Achlioptas’ matrix,
defined in §2 to do our projections. The reduced di-
mension k was varied, and we observed the effect on the
solution quality. We did not follow Achlioptas’ bound
(Theorem 2 in [1]) because of literature suggesting that
these bounds, while theoretically important, are some-
what weak in practise [5, 17, 16].

5.2.3 Measuring cluster quality. To assess the
cluster quality, we used two metrics - a similarity metric,
and an intra-cluster centroid distance metric.

The first measure, which we henceforth refer to
as the similarity of two clusterings, finds how many
pairs of points lie in the same/different cluster for two

given clusterings. This is useful for k-means clustering,
because it is possible that we get clusterings that “look”
different, but are actually the same. We computed the
similarity of the online (sketch-based) clustering with
respect to the offline clustering.

For instance, suppose we have two points. Are
the cluster allocations (1, 2) and (2, 1) the same?
Even though they are different, clearly they are just
re-labellings of each other, and so for most intents and
purposes, they are the same. This would not be caught
if we compared how many points were in the same
cluster, though.

For example, suppose we have the following cluster
indicator matrices:

A1 =


1 0 0 0
0 0 1 0
0 0 0 1
1 0 0 0



A2 =


0 1 0 0
0 0 1 0
0 0 1 0
0 1 0 0


Now look at pairs of points:

• (1, 2), (1, 3), (2, 4), (3, 4) are in different clusters
in both cases

• (1, 4) are in the same clusters in both cases
(disregard the fact that they are in cluster 1 in the
first case, but cluster 2 in the second case)

• (2, 3) are in different clusters in the first case, but
move to the same cluster in the second case. So,
this is counted as a ‘bad‘ pair



We say the second clustering is 14
16 × 100 = 87.5%

similar to the first - only two pairs (namely, (3, 4) and
(4, 3)) are ‘bad‘ out of a possible 16. Note that we have
side-stepped the problem that we may classify clusters
in a different way.

The other measure is that of the distance of points
to the centroids of the clusters they are in. Sup-
pose we have m clusters c1, c2, . . . , cm of our points
x1, x2, . . . , xn. These clusters are defined by centroids,
r1, r2, . . . , rm. The objective of k-means clustering is to
minimize

m∑
i=1

∑
xj∈ci

||xj − ri||2

A natural measure of cluster quality is therefore the
value of this objective function - a clustering that has a
smaller objective function value than another clustering
would be called a “better” clustering. We computed the
ratio of the centroid sum of the online clustering to that
of the offline clustering.

5.2.4 Results. For the Gaussian mixture data, our
results for k-means and kernel k-means are presented in
Tables 3 to 6.

We can see that as the reduced dimension k in-
creases, we usually get better results in terms of cluster-
ing quality. This is as expected, since the higher the di-
mension we project to, the less error we incur, and hence
the “truer” the representation of the original data. We
also see that in general, the results for kernel k-means
are not as accurate as those for k-means. This is also as
expected, as the error incurred in the dot-product does
not have as tight a bound as there is for distance.

We also note that projections, on average, manage
to out-perform the L2 sketch in terms of quality of
clustering, using either measure.

We measured the time taken for the update of the
sketch, which essentially involves the multiplication of a
random row by the update value. This does not include
the generation of the row itself, which simply involves
the generation of Θ(k) random variables (Gaussians in
the case of the L2 sketch, and uniform random variables
for the projection sketch). Our results are presented in
Table 7. We varied the number of reduced dimensions
k, and tried a large volume of updates of each of the
sketches. Our experiments indicated that the update
time for the projection sketch was faster than that of
the L2 sketch, which is to be expected, since our sketch
involves a 2

3 rds sparse row, allowing for a reduction in
the number of multiplications that are required. Also,
there is a linear growth in the difference as k increases,
which is again as expected (as each update requires Θ(k)
time).

6 Conclusion.

We propose the use of random projections with a sparse
matrix in data-streaming problems, as an extension of
the L2 sketch outlined by [14]. We test the quality of the
sketch provided by sparse-projections by applying the
sketch to an online clustering problem, and our results
indicate comparable accuracy to the earlier L2 sketch,
and an improved runtime performance.

A natural extension of our work would be to use
Li’s matrix [16], which might give more efficient compu-
tation of stream updates, although there might be loss
in the accuracy of the sketch.
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Similarity Centroid
Clusters k Projections L2 Projections L2

2 5 78.7045 ± 19.8381 70.7498 ± 15.1127 0.9393 ± 0.0621 0.8260 ± 0.1318
2 100 92.3418 ± 17.9205 68.9263 ± 16.6598 1.0114 ± 0.0647 0.8403 ± 0.1530
2 200 92.5962 ± 17.6414 70.2172 ± 16.1942 1.0410 ± 0.2690 0.8700 ± 0.3594
5 5 68.0808 ± 7.3734 66.7273 ± 2.7022 0.9033 ± 0.2361 0.7395 ± 0.1977
5 100 74.3030 ± 10.7344 66.3636 ± 3.6998 1.0026 ± 0.1360 0.7699 ± 0.1846
5 200 76.3030 ± 9.5702 66.6667 ± 3.9984 1.0030 ± 0.3598 0.7434 ± 0.2427

Table 5: Average similarity and centroid radio with standard deviation for kernel k-means when n = 100, d = 1000

Similarity Centroid
Clusters k Projections L2 Projections L2

2 5 74.3242 ± 18.8077 75.3663 ± 17.9369 0.8772 ± 0.0794 0.8797 ± 0.0766
2 100 98.8904 ± 4.3437 75.8661 ± 17.2666 0.9995 ± 0.0015 0.8790 ± 0.0777
2 200 99.6458 ± 1.6092 76.6790 ± 17.3473 0.9999 ± 0.0005 0.8871 ± 0.0724
5 5 60.7976 ± 11.1999 49.4422 ± 12.1253 0.9416 ± 0.0751 0.7160 ± 0.2598
5 100 72.7155 ± 12.5398 55.8168 ± 11.7787 0.9959 ± 0.1151 0.7087 ± 0.2492
5 200 74.4466 ± 12.6621 51.9475 ± 12.1305 0.9978 ± 0.1351 0.7135 ± 0.2497

Table 6: Average similarity and centroid ratio with standard deviation for kernel k-means when n = 1000, d =
1000, k = 200

Updates k Projections L2

104 5 0.0588± 0.0007 0.0594± 0.0006
104 100 0.0772± 0.0006 0.0870± 0.0007
104 200 0.0981± 0.0007 0.1096± 0.0005
104 300 0.1195± 0.0009 0.1265± 0.0007
104 400 0.1312± 0.0019 0.1438± 0.0013
104 500 0.1580± 0.0007 0.1608± 0.0012
105 5 0.6061± 0.0037 0.5977± 0.0036
105 100 0.8055± 0.0048 0.8623± 0.0046
105 200 1.0476± 0.0079 1.0928± 0.0058
105 300 1.2738± 0.0047 1.2683± 0.0057
105 400 1.4301± 0.0051 1.4159± 0.0074
105 500 1.4601± 0.0040 1.5827± 0.0035
106 5 5.8064± 0.0066 5.8430± 0.0146
106 100 7.7333± 0.0119 8.6419± 0.0311
106 200 10.6300± 0.0353 10.6701± 0.0513
106 300 11.7557± 0.0575 12.5707± 0.0777
106 400 13.0989± 0.0941 14.1790± 0.0220
106 500 15.6372± 0.0197 15.9051± 0.0276

Table 7: Average time and standard deviation, in seconds, for sketch updates
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