
An incremental data-stream sketch using sparse random projections∗

Aditya Krishna Menon† Gia Vinh Anh Pham‡ Sanjay Chawla§ Anastasios Viglas¶

Abstract

We propose the use of random projections with a sparse ma-

trix to maintain a sketch of a collection of high-dimensional

data-streams that are updated asynchronously. This sketch

allows us to estimate L2 (Euclidean) distances and dot-

products with high accuracy. We verify the validity of this

sketch by applying it to an online clustering problem, where

we compare our results to the offline algorithm and an ex-

isting L2 sketch, and observe comparable results in terms of

accuracy, and a reduced runtime cost.

1 Introduction.

1.1 Data-streams. A data stream, as the metaphor
suggests, is the continuous flow of data generated at a
source (or multiple sources) and transmitted to various
destinations. Most data-stream frameworks for data-
mining assume that data arrives incrementally and
sequentially (in-order), and develop solutions for this
case. But in many situations, the data not only arrives
incrementally, but also asynchronously - that is, at any
point in time, we may be asked to update any arbitrary
component or attribute of the existing data. The
stream here cannot be mined with a one-pass algorithm,
since the update of components is not (necessarily)
sequential. Therefore, the challenge is to carry out our
data mining task without having to instantiate the data
vector - which may not be possible or computationally
feasible.

1.2 Problem definition. Consider a collection of n
objects, each with dimension d, represented by the n×d

matrix A =
[
u1 u2 . . . un

]T . Suppose that this
matrix is updated asynchronously at various points in
time, by updates of the form (i, j, c), which instructs us
to update row i, column j with the value c (which may
be negative).

Suppose now that the value of d can be so large as to
make instantiation of the matrix A infeasible. However,

∗Sanjay Chawla was partially funded by ARC DP0559005.
Anastasios Viglas was partially funded by ARC DP0664782.

†The University Of Sydney.
‡The University Of Sydney.
§The University Of Sydney.
¶The University Of Sydney.

we would still like to be able to extract some useful
information about the data; for example, we might want
to estimate the L2 norm (Euclidean distance) of the
individual rows/streams of the data, or perhaps the dot-
product between streams.

To make such estimates, a sketch of the streams
is usually kept. A sketch is some approximation of a
stream (or a series of streams) that has two desirable
properties: firstly, it occupies very little space, and
secondly, it allows us to give quick and accurate answers
to queries on some quantity associated with the stream.

1.3 Our contribution. We propose the use of ran-
dom projections with a sparse matrix, defined by
Achlioptas [1], to maintain a sketch of a collection
of high-dimensional streams that are updated asyn-
chronously. This sketch allows us to estimate L2 (Eu-
clidean) distances and dot-products with high accuracy.
The advantages of this approach are simplicity, and ef-
ficiency.

Further, we show how the results on L2 preservation
allow us to estimate dot-products as well, and derive
bounds on the maximal error of our estimate. We also
derive a similar result for an existing L2 sketch.

We verify the validity of our projection-based sketch
by applying it to an online clustering problem, where
we have to cluster high-dimensional data streams that
are updated incrementally at some given points in time.
We compare our results to the offline algorithm and an
existing L2 sketch, and observe comparable results in
terms of accuracy, and an improved runtime.

1.4 Related work.

1.4.1 L2-approximating sketches. An important
sketch for preserving distances of streams is the work
of Indyk [6], who proposed the use of a p-stable dis-
tribution in order to estimate the Lp norm, ||x||p :=
(
∑

i |xi|p)1/p, for arbitrary p ∈ (0, 2]. For p = 2, this re-
quires the use of Gaussian random variables to maintain
a sketch, and so the method used is essentially a random
projection, with some minor differences; we expand on
this in §4.

1.4.2 Clustering. [5] provides one-pass algorithm
for clustering a set of points; this however does not
generalize to clustering an asynchronous stream of data,
where we can update existing points.

Random projections were used to cluster non-
streaming data in [3], where it was suggested that an
ensemble of projections be used for best results. Such
an approach would be a natural extension to our work.

2 Background.

Random projections are a powerful method of dimen-
sionality reduction that have been applied in numer-
ous practical problems [2, 9, 4], and have also served
as a useful tool in algorithmic design [11]. The basis
of projections is the remarkable Johnson-Lindenstrauss
lemma [7], which says that for any data set of n points
in d dimensions, and some error parameter ε, it is pos-
sible to find a mapping f : Rn×d → Rn×k, where
k = O

(
log n/ε2

)
, such that all pairwise distances be-

tween points are preserved within a factor of ε. Since
the proof of the lemma did not specify how one would
find such an f in general, in practise, one tends to use
approximate Johnson-Lindenstrauss embeddings, which
give the same guarantees, but probabilistically.

We can think of projections as a multiplication by
a suitably chosen random matrix:

f : A 7→ A.R

where R is a matrix whose entries follow some ran-
dom distribution. The “classic” form of random pro-
jections used a matrix with entries being i.i.d. N (0, 1).
Achlioptas [1] showed that a much simpler distribution,

rij =

+
√

3 p = 1/6
0 p = 2/3
−
√

3 p = 1/6

suffices. We henceforth call this matrix the Achliop-
tas matrix. This matrix has an expected sparsity of
2
3 rds, making it quite desirable to use in practise1.

3 Random projections and streams.

3.1 Projection-based sketch. Suppose we have a
data matrix A(t) ∈ Rn×d, which is updated at arbitrary
points in time. Now, suppose that updates happen to
this matrix in the following way. At time t, we get a
tuple d(t) = (it, jt, ct). When this happens,

aitjt
(t) = aitjt

(t− 1) + ct

1Recently, an even sparser matrix has been proposed in [8],
which can give a

√
d-fold speedup in computations

That is, the entry in cell (it, jt) gets incremented by
the quantity ct. We can express this as

A(t) = A(t− 1) + C(t)

where C(t) = {Cmn}, such that Cmn = ctδitmδjtn

(where δ denotes the Kronecker delta function).
Suppose that initially, A(0) ≡ 0 - we have no

information about any component at all. It is clear then
that, based on the nature of the updates, we must have

(3.1) A(t) =
t∑

n=1

C(n)

If we keep a sketch E(t) of the matrix A(t) using a
random projection, then we will have

E(t) =
1√
k

A(t)R∗ := A(t)R

where R∗ is, say, the Achlioptas matrix.
Equivalently, by Equation 3.1,

E(t) =
t∑

n=1

C(n)R

What happens the next time we get a tuple?
Ideally, we would like to use the existing E(t) matrix,
and update it rather than doing a full recomputation.
It is easy to see the recurrence:

E(t + 1) =
t+1∑
n=1

C(n)R

= E(t) + C(t + 1)R

So, the update to the sketch is very simple - we
project the matrix C(t+1), and add this to our existing
sketch. But of course, R ∈ Rd×k, which is comparable
with A in terms of size. So, we can’t really store the
random matrix R and use it for each of our projections.
We deal with this problem in the next section.

3.2 Generation of R.

3.2.1 Multiplication by C. The fact that there are
many zeros in the C matrix naturally suggests that we
are saved a lot of work, and this is precisely the case:

C(t).R =
[
0 . . . ct . . . 0

]T [r1 r2 . . . rk]

= ct

0 0 . . . 0
...

... . . .
...

rjt1 rjt2 . . . rjtk

...
... . . .

...
0 0 . . . 0

where ct = [0 . . . ct . . . 0]. So, for each update,
we only need to generate k random numbers rjti, as the
rest cancel. This is not particularly difficult; however,
the problem is that we want to generate the same
random numbers each time we refer to the same row.

3.2.2 Pseudo-random generator. To get repeat-
able generation of the random rows, we use a pseudo-
random number generator (PRNG) for generating the
row values. Suppose that row i is generated using a seed
s(i) - then certainly if we fix s(i) to be constant at all
times, we can be guaranteed to get the same random
row each time. However, since there are d rows, due to
space constraints we cannot store d seeds, one for each
row.

But we can get around this in a very simple way,
because the seed can be set to be the original column
index, or the random row index, jt [6]. With this seed,
the PRNG generates for us k values corresponding to
the random row jt. Since at times t1 and t2 where we
refer to the same row, jt1 ≡ jt2 trivially, we will generate
the same random row. So, with a PRNG, we can easily
generate the rows of R with repeatability, thus solving
the problem of not being able to store R.

3.3 Complexity and comments. By the results of
3.1 and 3.2.2, we see that using random projections,
we can keep a sketch with space Θ(nk) that serves as
an approximation to the original matrix A(t), and this
sketch can be updated in Θ(k) time, with no extra space
overhead. By the standard projection guarantees, for
k = O(log n/ε2), we can answer distance queries on
E(t) that are accurate up to a factor (1 ± ε) with high
probability.

3.4 The preservation of dot-product. Random
projections also let us get useful guarantees on the
preservation of dot-products. It has been shown in e.g.
[8] that dot-products are on average preserved under
projections, but with a high variance in the answer.
We are able to derive the following result on the error
incurred in the dot-product estimate.

Theorem 3.1. Let vi denote the projection of ui. With
high probability, we have that

|vi.vj − ui.uj| ≤
ε

2
(||ui||2 + ||uj||2)

Proof. To see this, we use the fact that

(3.2) x.y =
||x + y||2 − ||x− y||2

4

By the standard projection guarantees (e.g. [1]), we

know that, with high probability,

(1− ε)||ui − uj||2 ≤ ||vi − vj||2 ≤ (1 + ε)||ui − uj||2

It can be shown that (see [10]), with high probabil-
ity

(1− ε)||ui + uj||2 ≤ ||vi + vj||2 ≤ (1 + ε)||ui + uj||2

Dividing by 4 and subtracting the two equations,
by Equation 3.2,

ui.uj −
ε

4
(||ui − uj||2 + ||ui + uj||2) ≤ vi.vj ≤

ui.uj +
ε

4
(||ui − uj||2 + ||ui + uj||2)

From here, we can say

|vi.vj − ui.uj| ≤
ε

4
(||ui − uj||2 + ||ui + uj||2)

=
ε

2
(||ui||2 + ||uj||2)

So, we see that with high probability,

|vi.vj − ui.uj| ≤
ε

2
(||ui||2 + ||uj||2)

4 Comparison with Lp sketch.

4.1 The Lp sketch. In [6], it was proposed to use a
p-stable distribution in order to estimate the Lp norm,
||x||p := (

∑
i |xi|p)1/p. In particular, [6] deals with the

problem of a single vector a that gets updates of the
form (it, at) at time t, indicating that index it should
be updated by the value at. For the case p = 2, where we
are preserving L2 (Euclidean) distance, we can interpret
the sketch as a projection as stated below.

Theorem 4.1. For the case p = 2, the Lp sketch can
be considered a projection using the classical normal
projection matrix X = [x1 x2 . . . xk], where xi is
a d× 1 column vector, the entries xij ∼ N (0, 1).

However, in contrast to the projection sketch, there
is no scaling of the matrix X by 1√

k
, and further, the

estimate for the norm is given by

est(||a||2) =
median(s2

1, s
2
2, . . . , s

2
k)

median(|Z|2)

where Z ∼ N (0, 1).

Proof. See [10].

So, the main difference in using the Lp sketch is that
we need to generate Gaussian random variables in order
to preserve distances. Therefore, our insight is that this
expensive Gaussian matrix generation can be replaced
by the more efficient generation of a 2

3 rds sparse matrix,
without any sacrifice in the accuracy of sketch.

4.2 Bounds on dot-product estimate. We can
use the Lp sketch to get the following dot-product
estimate.

Theorem 4.2. Define

est(ui.uj) := (1− ε2)
est(||ui + uj||2)− est(||ui − uj||2)

4

Then, with high-probability, we have

|est(ui.uj)− ui.uj| ≤
ε

2
(||ui||2 + ||uj||2)

Proof. See [10].

Note that this is the same error bound as with
projections (Theorem 3.1); therefore, for both sketches,
we have the same high-probability upper bound on the
error incurred using a simple dot-product estimate.

5 Experiments.

5.1 Time for generation of Gaussian variables.
It is intuitive that the generation of a Gaussian random
variable would, on average, take longer than the gener-
ation of a uniform random variable. Of course, the pre-
cise difference depends a lot on implementation. We ran
tests comparing the time taken for both on a Pentium-
D 3.2 GHz machine with 3.5 GB of RAM, presented in
Table 1. Our results on MATLAB indicated that, sur-
prisingly, the generation of Gaussian variables via the
built-in randn function was faster than the generation
of uniform random variables via the built-in rand. We
also tried the GNU Scientific Library2 (GSL) for C, and
compared the times taken for its implementations. Our
results here indicated that uniform random generation
was on average faster than the generation of a Gaussian.

5.2 Clustering test. We looked at the quality of the
solution generated by random projections by applying
the idea to the clustering of data streams. The scenario
is that of §1.2; namely, we have n high-dimensional
streams that are updated asynchronously, and we would
like to cluster these streams at various points in time.
We keep a low-dimensional sketch of the streams that
preserves Euclidean distances, with the intent that a
clustering of the sketch corresponds to a good clustering
of the streams. So, we tried clustering using both our
projection-based sketch with Achlioptas’ matrix (see
§2), and the L2 sketch of Indyk.

We ran experiments (using MATLAB, on a
Pentium-D 3.2 GHz machine with 3.5 GB of RAM)
for a randomly generated data-set with updates (see

2http://www.gnu.org/software/gsl/

§5.2.1) and used the k-means and kernel k-means clus-
tering algorithm to cluster the data. The latter uses
dot-products to measure distance, and the former Eu-
clidean distances. The reduced dimension k was varied,
and we observed the effect on the solution quality. We
did not follow Achlioptas’ bound for k (Theorem 2 in
[1]) because these bounds are known to be weak in prac-
tise [2, 9, 8].

5.2.1 Data-set. For our data-set, we generated a
Gaussian mixture, consisting of m cluster centres (where
m was made be to either 2 or 5), and filled with n points
in d dimensions. The centres of the clusters were chosen
randomly, and we used a mean cluster spread of σ2 = 9.

We then generated a new mixture, and for each
point in the original clustering, chose a random point
in the new clustering as its “partner”. The updates
were chosen to make the original points transform into
the partner points, one dimension at a time (so, in total,
there were nd updates in total).

We clustered the data periodically, with a total of
50 clusterings. The desired number of clusters in our
clustering step was m, the true number of clusters in the
data-set, so that the offline algorithm would be expected
to give excellent results, which the streaming algorithms
could be compared to.

5.2.2 Measuring cluster quality. To assess the
cluster quality, we used two metrics - a similarity metric,
and an intra-cluster centroid distance metric.

The first measure, which we henceforth refer to
as the similarity of two clusterings, finds how many
pairs of points lie in the same/different cluster for two
given clusterings. This is robust against relabellings
of clusters, and so is useful for k-means clustering
(which on two runs can produce differently labelled,
though actually identical clusterings). We computed the
similarity of the online (sketch-based) clustering with
respect to the offline clustering.

The other measure was the distance of points to
the centroids of the clusters they are in. Suppose we
have m clusters c1, . . . , cm of our points x1, . . . , xn.
These clusters are defined by centroids, r1, . . . , rm.
The objective of k-means clustering is to minimize∑m

i=1

∑
xj∈ci

||xj − ri||2. A natural measure of cluster
quality is therefore the value of this function - the
smaller the value, the “better” the clustering. We
computed the ratio of the centroid sum of the online
clustering to that of the offline clustering.

5.2.3 Results. Our results for k-means and kernel k-
means clustering are presented in Tables 2 and 3. We
can see that as the reduced dimension k increases, we

MATLAB GSL
values Uniform Gaussian Uniform Gaussian

105 0.006074± 0.000050 0.004282± 0.000056 0.0043± 0.0049 0.0016± 0.0050
106 0.062306± 0.000252 0.044472± 0.000120 0.0441± 0.0048 0.1572± 0.0045
107 0.625017± 0.006305 0.441509± 0.000677 0.4726± 0.0267 1.6406± 0.0945
108 6.22510± 0.017631 4.415166± 0.022836 4.4054± 0.1700 17.8785± 0.5173

Table 1: Average time taken and standard deviation, in seconds, to generate uniform and Gaussian random
variables over 10,000 runs, with MATLAB and GSL

usually get better results in terms of clustering quality.
This is as expected, since the higher the dimension we
project to, the less error we incur. We also see that
in general, the results for kernel k-means are not as
accurate as those for k-means. This is also as expected,
as the error incurred in the dot-product does not have
as tight a bound as there is for distance.

We also note that projections, on average, manage
to out-perform the L2 sketch in terms of quality of
clustering, using either measure.

We measured the time taken for the update of the
sketch, which essentially involves the multiplication of
a random row by the update value (not including the
generation of the random row itself). We varied the
number of reduced dimensions k, and tried a large
volume of updates of each of the sketches. Our results
are presented in Table 4, and indicate that the update
time for the projection sketch was faster than that of
the L2 sketch, which is to be expected, since our sketch
involves a 2

3 rds sparse row, allowing for a reduction in
the number of multiplications that are required.

6 Conclusion.

We propose the use of random projections with a sparse
matrix in data-streaming problems, as an extension of
the L2 sketch outlined by [6]. We test the quality of the
sketch provided by sparse-projections by applying the
sketch to an online clustering problem, and our results
indicate comparable accuracy to the earlier L2 sketch,
and an improved runtime performance.

References

[1] Dimitris Achlioptas. Database-friendly random pro-
jections. In PODS ’01: Proceedings of the Twenti-
eth ACM SIGMOD-SIGACT-SIGART Symposium on
Principles of Database Systems, pages 274–281, New
York, NY, USA, 2001. ACM Press.

[2] Ella Bingham and Heikki Mannila. Random projection
in dimensionality reduction: applications to image
and text data. In KDD ’01: Proceedings of the
Seventh ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, pages 245–250,
New York, NY, USA, 2001. ACM Press.

[3] Xiaoli Fern and Carla Brodley. Random projection for
high dimensional data clustering: A cluster ensemble
approach. In The Twentieth International Conference
on Machine Learning (ICML-2003), August 2003.

[4] Dmitriy Fradkin and David Madigan. Experiments
with random projections for machine learning. In
KDD ’03: Proceedings of the Ninth ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, pages 517–522, New York, NY, USA,
2003. ACM Press.

[5] S. Guha, N. Mishra, R. Motwani, and L. O’Callaghan.
Clustering data streams. In FOCS ’00: Proceedings
of the 41st Annual Symposium on Foundations of
Computer Science, page 359, Washington, DC, USA,
2000. IEEE Computer Society.

[6] Piotr Indyk. Stable distributions, pseudorandom gen-
erators, embeddings, and data stream computation. J.
ACM, 53(3):307–323, 2006.

[7] W.B. Johnson and J. Lindenstrauss. Extensions of
Lipschitz mappings into a Hilbert space. In Conference
in Modern Analysis and Probability, pages 189–206,
Providence, RI, USA, 1984. American Mathematical
Society.

[8] Ping Li, Trevor J. Hastie, and Kenneth W. Church.
Very sparse random projections. In KDD ’06: Pro-
ceedings of the 12th ACM SIGKDD international con-
ference on Knowledge discovery and data mining, pages
287–296, New York, NY, USA, 2006. ACM Press.

[9] Jessica Lin and Dimitrios Gunopulos. Dimensionality
reduction by random projection and latent semantic
indexing. In Proceedings of the Text Mining Workshop,
at the 3rd SIAM International Conference on Data
Mining, 2003.

[10] Aditya Krishna Menon, Anh Pham, Sanjay Chawla,
and Anastasios Viglas. An incremental data-stream
sketch using sparse random projections. Technical
Report 609, The University Of Sydney, January 2007.
Available at http://www.it.usyd.edu.au/research/

tr/tr609.pdf.
[11] Santosh S. Vempala. The Random Projection Method,

volume 65 of DIMACS Series in Discrete Mathematics
and Theoretical Computer Science. American Mathe-
matical Society, Providence, RI, USA, 2004.

Variables Quality measure
Similarity (%) Centroid ratio

n m k Projections L2 Projections L2

100 2 5 76.19 ± 20.72 67.88 ± 19.28 0.95 ± 0.15 0.87 ± 0.19
100 2 100 92.82 ± 17.03 88.09 ± 19.12 1.01 ± 0.02 0.99 ± 0.02
100 2 200 91.35 ± 18.99 89.25 ± 19.70 1.01 ± 0.08 1.01 ± 0.08
100 5 5 71.04 ± 9.21 68.49 ± 6.88 0.89 ± 0.30 0.81 ± 0.20
100 5 100 84.82 ± 9.48 80.36 ± 7.98 1.00 ± 0.41 0.99 ± 0.53
100 5 200 87.78 ± 9.56 83.20 ± 9.01 1.00 ± 0.23 1.00 ± 0.89

k-means 1000 2 5 84.87 ± 16.92 77.22 ± 18.01 0.95 ± 0.03 0.89 ± 0.06
1000 2 100 99.15 ± 3.15 93.27 ± 13.75 0.99 ± 0.01 0.99 ± 0.01
1000 2 200 99.72 ± 1.27 95.65 ± 11.78 0.99 ± 0.01 0.99 ± 0.01
1000 5 5 71.18 ± 10.91 75.57 ± 10.10 0.81 ± 0.25 0.84 ± 0.51
1000 5 100 93.06 ± 6.99 89.25 ± 10.02 1.00 ± 0.33 0.98 ± 0.24
1000 5 200 94.18 ± 5.62 92.67 ± 9.68 0.99 ± 0.26 0.99 ± 0.21
100 2 5 78.70 ± 19.83 70.74 ± 15.11 0.93 ± 0.06 0.82 ± 0.13
100 2 100 92.34 ± 17.92 68.92 ± 16.65 1.01 ± 0.06 0.84 ± 0.15
100 2 200 92.59 ± 17.64 70.21 ± 16.19 1.04 ± 0.26 0.87 ± 0.35
100 5 5 68.08 ± 7.37 66.72 ± 2.70 0.90 ± 0.23 0.73 ± 0.19
100 5 100 74.30 ± 10.73 66.36 ± 3.69 1.00 ± 0.13 0.76 ± 0.18

kernel 100 5 200 76.30 ± 9.57 66.66 ± 3.99 1.00 ± 0.35 0.74 ± 0.24
k-means 1000 2 5 74.32 ± 18.80 75.36 ± 17.93 0.87 ± 0.07 0.87 ± 0.07

1000 2 100 98.89 ± 4.34 75.86 ± 17.26 0.99 ± 0.01 0.87 ± 0.07
1000 2 200 99.64 ± 1.60 76.67 ± 17.34 0.99 ± 0.01 0.88 ± 0.07
1000 5 5 60.79 ± 11.19 49.44 ± 12.12 0.94 ± 0.07 0.71 ± 0.25
1000 5 100 72.71 ± 12.53 55.81 ± 11.77 0.99 ± 0.11 0.70 ± 0.24
1000 5 200 74.44 ± 12.66 51.94 ± 12.13 0.99 ± 0.13 0.71 ± 0.24

Table 2: Average similarity and centroid radio with standard deviation

104 updates 105 updates 106 updates
k Projections L2 Projections L2 Projections L2

5 0.0588± 0.0007 0.0594± 0.0006 0.6061± 0.0037 0.5977± 0.0036 5.8064± 0.0066 5.8430± 0.0146
100 0.0772± 0.0006 0.0870± 0.0007 0.8055± 0.0048 0.8623± 0.0046 7.7333± 0.0119 8.6419± 0.0311
200 0.0981± 0.0007 0.1096± 0.0005 1.0476± 0.0079 1.0928± 0.0058 10.6300± 0.0353 10.6701± 0.0513
300 0.1195± 0.0009 0.1265± 0.0007 1.2738± 0.0047 1.2683± 0.0057 11.7557± 0.0575 12.5707± 0.0777
400 0.1312± 0.0019 0.1438± 0.0013 1.4301± 0.0051 1.4159± 0.0074 13.0989± 0.0941 14.1790± 0.0220
500 0.1580± 0.0007 0.1608± 0.0012 1.4601± 0.0040 1.5827± 0.0035 15.6372± 0.0197 15.9051± 0.0276

Table 3: Average time and standard deviation, in seconds, for sketch updates

